

Li-rich channels as the material gene for facile lithium diffusion in halide solid electrolytes

Guohao Yang, ^{‡1} Xianhui Liang, ^{‡1} Shisheng Zheng,¹ Haibiao Chen,^{1,2} Wentao Zhang,¹

Shunning Li, ^{1*} Feng Pan^{1*}

 ¹ School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen 518055, People's Republic of China.
 ² Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, People's Republic of China.

[‡]These authors contributed equally. ^{*}Corresponding author. *E-mail:* lisn@pku.edu.cn (S.N. Li); panfeng@pkusz.edu.cn (F. Pan)

Figure S1. MSD for Li, M and X ions in the halide compounds at 1200 K.

Figure S2. The direct Oct-Oct channels in T4-Li₃AlF₆.

T1-Li ₃ MX ₆	$E_{\rm hull}$	T1-Li ₃ M ^I _{0.5} M ^{II} _{0.5} Cl ₆	$E_{ m hull}$	T1-Li ₃ M ^I _{0.5} M ^{II} _{0.5} Cl ₆	$E_{ m hull}$
Li ₃ AlBr ₆	47	Li ₃ Sc _{0.5} Y _{0.5} Cl ₆	25	Li ₃ Mg _{0.5} Ge _{0.5} Cl ₆	91
Li ₃ AlCl ₆	53	Li ₃ Sc _{0.5} Al _{0.5} Cl ₆	42	Li ₃ Mg _{0.5} Sn _{0.5} Cl ₆	48
Li ₃ AlF ₆	51	Li ₃ Sc _{0.5} Ga _{0.5} Cl ₆	59	Li3Mg0.5Ti0.5Cl6	62
Li ₃ GaBr ₆	99	Li ₃ Sc _{0.5} In _{0.5} Cl ₆	40	Li ₃ Mg _{0.5} Zr _{0.5} Cl ₆	25
Li ₃ GaCl ₆	87	Li ₃ Y _{0.5} Al _{0.5} Cl ₆	35	Li ₃ Mg _{0.5} Hf _{0.5} Cl ₆	31
Li ₃ GaF ₆	54	Li ₃ Y _{0.5} Ga _{0.5} Cl ₆	52	Li ₃ Ca _{0.5} Ge _{0.5} Cl ₆	84
Li ₃ InBr ₆	50	Li ₃ Y _{0.5} In _{0.5} Cl ₆	33	Li3Ca0.5Sn0.5Cl6	40
Li ₃ InCl ₆	0	Li3Al0.5Ga0.5Cl6	70	Li ₃ Ca _{0.5} Ti _{0.5} Cl ₆	46
Li ₃ InF ₆	84	Li3Al0.5In0.5Cl6	51	Li3Ca0.5Zr0.5Cl6	18
Li ₃ ScBr ₆	7	Li ₃ Ga _{0.5} In _{0.5} Cl ₆	68	Li3Ca0.5Hf0.5Cl6	23
Li ₃ ScCl ₆	32			Li ₃ Sr _{0.5} Ge _{0.5} Cl ₆	87
Li ₃ ScF ₆	82			Li ₃ Sr _{0.5} Sn _{0.5} Cl ₆	42
Li ₃ YBr ₆	23			$Li_3Sr_{0.5}Ti_{0.5}Cl_6$	49
Li ₃ YCl ₆	18			Li ₃ Sr _{0.5} Zr _{0.5} Cl ₆	20
Li ₃ YF ₆	99			Li ₃ Sr _{0.5} Hf _{0.5} Cl ₆	26
				Li ₃ Zn _{0.5} Ge _{0.5} Cl ₆	111
				Li ₃ Zn _{0.5} Sn _{0.5} Cl ₆	67
				Li ₃ Zn _{0.5} Ti _{0.5} Cl ₆	72
				Li ₃ Zn _{0.5} Zr _{0.5} Cl ₆	46
				Li ₃ Zn _{0.5} Hf _{0.5} Cl ₆	32

Table S1. Energy above hull (*E*_{hull}, meV/atom) for T1 compounds.

T2-Li ₃ MX ₆	$E_{\rm hull}$	$T2-Li_3M_{0.5}^{I}M_{0.5}^{II}Br_6$	$E_{\rm hull}$	$T2\text{-}Li_3M_{0.5}^{I}M_{0.5}^{II}Br_6$	E_{hull}
Li ₃ AlBr ₆	17	Li ₃ Sc _{0.5} Y _{0.5} Br ₆	25	Li ₃ Mg _{0.5} Ge _{0.5} Br ₆	80
Li ₃ AlCl ₆	24	Li ₃ Sc _{0.5} Al _{0.5} Br ₆	42	Li ₃ Mg _{0.5} Sn _{0.5} Br ₆	42
Li ₃ AlF ₆	41	Li ₃ Sc _{0.5} Ga _{0.5} Br ₆	59	Li3Mg0.5Ti0.5Br6	45
Li ₃ GaBr ₆	70	$Li_3Sc_{0.5}In_{0.5}Br_6$	40	Li3Mg0.5Zr0.5Br6	11
Li ₃ GaCl ₆	59	Li ₃ Y _{0.5} Al _{0.5} Br ₆	35	Li ₃ Mg _{0.5} Hf _{0.5} Br ₆	14
Li ₃ GaF ₆	48	Li ₃ Y _{0.5} Ga _{0.5} Br ₆	52	Li ₃ Ca _{0.5} Ge _{0.5} Br ₆	81
Li ₃ InBr ₆	29	Li ₃ Y _{0.5} In _{0.5} Br ₆	33	Li3Ca0.5Sn0.5Br6	43
Li ₃ InCl ₆	0	Li3Al0.5Ga0.5Br6	70	Li3Ca0.5Ti0.5Br6	47
Li ₃ InF ₆	100	Li ₃ Al _{0.5} In _{0.5} Br ₆	51	Li3Ca0.5Zr0.5Br6	11
Li ₃ ScBr ₆	0	Li ₃ Ga _{0.5} In _{0.5} Br ₆	68	Li3Ca0.5Hf0.5Br6	15
Li ₃ ScCl ₆	19			Li3Sr0.5Ge0.5Br6	94
Li ₃ ScF ₆	94			Li ₃ Sr _{0.5} Sn _{0.5} Br ₆	55
Li ₃ YBr ₆	0			Li ₃ Sr _{0.5} Ti _{0.5} Br ₆	60
Li ₃ YCl ₆	16			Li ₃ Sr _{0.5} Zr _{0.5} Br ₆	23
Li ₃ YF ₆	132			Li ₃ Sr _{0.5} Hf _{0.5} Br ₆	27
				Li ₃ Zn _{0.5} Ge _{0.5} Br ₆	97
				Li ₃ Zn _{0.5} Sn _{0.5} Br ₆	60
				Li ₃ Zn _{0.5} Ti _{0.5} Br ₆	62
				Li ₃ Zn _{0.5} Zr _{0.5} Br ₆	29
				Li ₃ Zn _{0.5} Hf _{0.5} Br ₆	39

Table S2. Energy above hull (*E*_{hull}, meV/atom) for T2 compounds.

T3-Li ₃ MX ₆	$E_{\rm hull}$	T3-Li ₃ M ^I _{0.5} M ^{II} _{0.5} Cl ₆	E_{hull}	T3-Li ₃ M ^I _{0.5} M ^{II} _{0.5} Cl ₆	$E_{ m hull}$
Li ₃ AlBr ₆	45	Li ₃ Sc _{0.5} Y _{0.5} Cl ₆	25	Li ₃ Mg _{0.5} Ge _{0.5} Cl ₆	81
Li ₃ AlCl ₆	52	Li ₃ Sc _{0.5} Al _{0.5} Cl ₆	42	Li ₃ Mg _{0.5} Sn _{0.5} Cl ₆	36
Li ₃ AlF ₆	69	Li ₃ Sc _{0.5} Ga _{0.5} Cl ₆	59	Li3Mg0.5Ti0.5Cl6	43
Li ₃ GaBr ₆	97	Li ₃ Sc _{0.5} In _{0.5} Cl ₆	40	Li ₃ Mg _{0.5} Zr _{0.5} Cl ₆	16
Li ₃ GaCl ₆	86	Li ₃ Y _{0.5} Al _{0.5} Cl ₆	35	Li ₃ Mg _{0.5} Hf _{0.5} Cl ₆	21
Li ₃ GaF ₆	217	Li ₃ Y _{0.5} Ga _{0.5} Cl ₆	52	Li ₃ Ca _{0.5} Ge _{0.5} Cl ₆	86
Li ₃ InBr ₆	46	Li ₃ Y _{0.5} In _{0.5} Cl ₆	33	Li3Ca0.5Sn0.5Cl6	38
Li ₃ InCl ₆	0	Li3Al0.5Ga0.5Cl6	70	Li3Ca0.5Ti0.5Cl6	48
Li ₃ InF ₆	0	Li3Al0.5In0.5Cl6	51	Li ₃ Ca _{0.5} Zr _{0.5} Cl ₆	18
Li ₃ ScBr ₆	60	Li ₃ Ga _{0.5} In _{0.5} Cl ₆	68	Li ₃ Ca _{0.5} Hf _{0.5} Cl ₆	23
Li ₃ ScCl ₆	5			Li ₃ Sr _{0.5} Ge _{0.5} Cl ₆	99
Li ₃ ScF ₆	33			Li3Sr0.5Sn0.5Cl6	51
Li ₃ YBr ₆	14			$Li_3Sr_{0.5}Ti_{0.5}Cl_6$	60
Li ₃ YCl ₆	23			Li ₃ Sr _{0.5} Zr _{0.5} Cl ₆	31
Li ₃ YF ₆	152			Li ₃ Sr _{0.5} Hf _{0.5} Cl ₆	35
				Li ₃ Zn _{0.5} Ge _{0.5} Cl ₆	99
				Li ₃ Zn _{0.5} Sn _{0.5} Cl ₆	54
				Li ₃ Zn _{0.5} Ti _{0.5} Cl ₆	61
				Li ₃ Zn _{0.5} Zr _{0.5} Cl ₆	34
				Li ₃ Zn _{0.5} Hf _{0.5} Cl ₆	51

Table S3. Energy above hull (*E*_{hull}, meV/atom) for T3 compounds.

T4-Li ₃ MX ₆	$E_{\rm hull}$	$T4-Li_3M_{0.5}^{I}M_{0.5}^{II}F_6$	$E_{ m hull}$	$T4-Li_3M_{0.5}^{I}M_{0.5}^{II}F_6$	$E_{ m hull}$
Li ₃ AlBr ₆	50	Li ₃ Sc _{0.5} Y _{0.5} F ₆	25	Li ₃ Mg _{0.5} Ge _{0.5} F ₆	76
Li ₃ AlCl ₆	140	Li ₃ Sc _{0.5} Al _{0.5} F ₆	42	$Li_{3}Mg_{0.5}Sn_{0.5}F_{6}$	78
Li ₃ AlF ₆	0	Li ₃ Sc _{0.5} Ga _{0.5} F ₆	59	Li3Mg0.5Ti0.5F6	64
Li ₃ GaBr ₆	/	Li ₃ Sc _{0.5} In _{0.5} F ₆	40	Li ₃ Mg _{0.5} Zr _{0.5} F ₆	56
Li ₃ GaCl ₆	180	Li ₃ Y _{0.5} Al _{0.5} F ₆	35	Li3Mg0.5Hf0.5F6	41
Li ₃ GaF ₆	18	Li ₃ Y _{0.5} Ga _{0.5} F ₆	52	Li ₃ Ca _{0.5} Ge _{0.5} F ₆	105
Li ₃ InBr ₆	/	Li3Y0.5In0.5F6	33	Li ₃ Ca _{0.5} Sn _{0.5} F ₆	104
Li ₃ InCl ₆	109	Li3Al0.5Ga0.5F6	70	Li3Ca0.5Ti0.5F6	85
Li ₃ InF ₆	73	Li ₃ Al _{0.5} In _{0.5} F ₆	51	Li ₃ Ca _{0.5} Zr _{0.5} F ₆	84
Li ₃ ScBr ₆	172	Li3Ga0.5In0.5F6	68	Li ₃ Ca _{0.5} Hf _{0.5} F ₆	99
Li ₃ ScCl ₆	137			Li ₃ Sr _{0.5} Ge _{0.5} F ₆	119
Li ₃ ScF ₆	64			Li ₃ Sr _{0.5} Sn _{0.5} F ₆	122
Li ₃ YBr ₆	/			Li ₃ Sr _{0.5} Ti _{0.5} F ₆	111
Li ₃ YCl ₆	132			Li ₃ Sr _{0.5} Zr _{0.5} F ₆	/
Li ₃ YF ₆	5			Li ₃ Sr _{0.5} Hf _{0.5} F ₆	/
				Li ₃ Zn _{0.5} Ge _{0.5} F ₆	80
				Li ₃ Zn _{0.5} Sn _{0.5} F ₆	82
				$Li_{3}Zn_{0.5}Ti_{0.5}F_{6}$	69
				Li ₃ Zn _{0.5} Zr _{0.5} F ₆	60
				Li3Zn0.5Hf0.5F6	45

Table S4. Energy above hull (*E*_{hull}, meV/atom) for T4 compounds.

Table S5. DFT-PBE bandgaps (eV) of the 36 halides that exhibit E_{hull} below 25 meV/atom.

Halide	Bandgap (eV)	Halide	Bandgap (eV)
T2-Li ₃ Al _{0.5} In _{0.5} Br ₆	2.74	T1-Li ₃ InCl ₆	3.38
T3-Li ₃ InCl ₆	4.08	T1-Li ₃ ScBr ₆	2.98
$T2-Li_3Sc_{0.5}In_{0.5}Br_6$	4.89	T3-Li ₃ ScBr ₆	3.55
$T2-Li_{3}Y_{0.5}In_{0.5}Br_{6}$	3.38	$T2-Li_{3}Y_{0.5}Sc_{0.5}Br_{6}$	3.00
T2-Li ₃ InCl ₆	2.95	T2-Li ₃ ScBr ₆	3.72
T2-Li ₃ Ca _{0.5} Zr _{0.5} Br ₆	3.72	T1-Li ₃ Ca _{0.5} Hf _{0.5} Cl ₆	2.52
$T2-Li_3Mg_{0.5}Zr_{0.5}Br_6$	4.94	T3-Li ₃ Hf _{0.5} Mg _{0.5} Cl ₆	2.93
$T2-Li_3Sr_{0.5}Zr_{0.5}Br_6$	3.56	$T3\text{-}Li_3Ca_{0.5}Hf_{0.5}Cl_6$	2.92
T2-Li ₃ AlBr ₆	3.15	T1-Li ₃ YBr ₆	2.32
$T2\text{-}Li_3Sc_{0.5}Al_{0.5}Br_6$	4.90	T3-Li ₃ YBr ₆	2.31
$T2-Li_{3}Y_{0.5}Al_{0.5}Br_{6}$	3.833	T2-Li ₃ YBr ₆	4.24
$T2\text{-}Li_3Hf_{0.5}Mg_{0.5}Br_6$	3.52	T2-Li ₃ ScCl ₆	2.54
$T2\text{-}Li_3Ca_{0.5}Hf_{0.5}Br_6$	8.20	T1-Li ₃ YCl ₆	2.95
T1-Li ₃ Ca _{0.5} Zr _{0.5} Cl ₆	6.51	T2-Li ₃ YCl ₆	3.16
$T1-Li_3Sr_{0.5}Zr_{0.5}Cl_6$	7.61	T3-Li ₃ YCl ₆	5.02
$T3\text{-}Li_3Ca_{0.5}Zr_{0.5}Cl_6$	3.92	T4-Li ₃ GaF ₆	3.71
T3-Li ₃ Mg _{0.5} Zr _{0.5} Cl ₆	3.18	T4-Li ₃ AlF ₆	2.73
T2-Li ₃ AlCl ₆	5.51	T4-Li ₃ YF ₆	3.15

Table S6. Reaction energy (ΔE_r , meV/atom) at the interface between the cathodes and the 36 halides that exhibit E_{hull} below 25 meV/atom.

	LiCoO ₂	LiFePO ₄	LiMn ₂ O ₄	LiMnO ₂	LiNiO ₂
T2-Li ₃ Al _{0.5} In _{0.5} Br ₆	-59	-23	-46	-63	-118
T3-Li ₃ InCl ₆	-65	-14	-52	-64	-121
$T2\text{-}Li_3Sc_{0.5}In_{0.5}Br_6$	-14	0	0	-34	-82
$T2\text{-}Li_3Y_{0.5}In_{0.5}Br_6$	-58	-23	-46	-63	-118
T2-Li3InCl6	-95	-15	-72	-89	-173
T2-Li3Ca0.5Zr0.5Br6	-54	-29	-21	-79	-127
$T2\text{-}Li_3Mg_{0.5}Zr_{0.5}Br_6$	-14	0	0	-34	-82
$T2\text{-}Li_3Sr_{0.5}Zr_{0.5}Br_6$	-105	-69	-63	-128	-181
T2-Li ₃ AlBr ₆	-77	-48	-48	-99	-139
T2-Li3Sc0.5Al0.5Br6	-96	-14	-73	-88	-179
T2-Li ₃ Y _{0.5} Al _{0.5} Br ₆	-42	-36	-22	-65	-100
T2-Li3Hf0.5Mg0.5Br6	-41	-36	-21	-64	-100
T2-Li ₃ Ca _{0.5} Hf _{0.5} Br ₆	-87	-10	-65	-81	-168
T1-Li3Ca0.5Zr0.5Cl6	-65	-38	-35	-87	-126
T1-Li ₃ Sr _{0.5} Zr _{0.5} Cl ₆	-76	-48	-48	-99	-138
T3-Li ₃ Ca _{0.5} Zr _{0.5} Cl ₆	-16	-6	-6	-23	-24
T3-Li ₃ Mg _{0.5} Zr _{0.5} Cl ₆	-30	0	0	-45	-53
T1-Li3InCl ₆	-98	-23	-80	-92	-158
T1-Li ₃ ScBr ₆	-14	0	0	-34	-82

	Se	Scier	nce		
T3-Li ₃ ScBr ₆	-72	-11	-53	-72	-140
$T2\text{-}Li_3Y_{0.5}Sc_{0.5}Br_6$	-130	-37	-103	-111	-215
T2-Li ₃ ScBr ₆	-97	-15	-74	-90	-181
$T1\text{-}Li_3Ca_{0.5}Hf_{0.5}Cl_6$	-110	-34	-92	-102	-172
$T3-Li_3Hf_{0.5}Mg_{0.5}Cl_6$	-67	-40	-36	-89	-128
T3-Li ₃ Ca _{0.5} Hf _{0.5} Cl ₆	-50	-1	-10	-72	-85
T1-Li ₃ YBr ₆	-174	-63	-146	-152	-260
T3-Li ₃ YBr ₆	-43	-23	-38	-49	-97
T2-Li ₃ YBr ₆	-119	-52	-96	-103	-170
T2-Li ₃ ScCl ₆	-60	-26	-47	-64	-120
T1-Li ₃ YCl ₆	-89	-16	-72	-84	-148
T2-Li ₃ YCl ₆	-119	-48	-91	-102	-193
T3-Li ₃ YCl ₆	-111	-33	-92	-103	-194
T4-Li ₃ GaF ₆	-45	-38	-24	-68	-103
T4-Li ₃ AlF ₆	-82	-47	-47	-100	-144
T4-Li ₃ YF ₆	-73	-37	-34	-90	-134
T1-Li ₃ InCl ₆	-65	-38	-35	-87	-126

Halide	$V_{\rm f.u.}$ (Å ³)	Halide	V _{f.u.} (Å ³)	Halide	V _{f.u.} (Å ³)
T1-Li ₃ InCl ₆	225.5	T1-Li ₃ Ca _{0.5} Hf _{0.5} Cl ₆	234.4	T2-Li ₃ YBr ₆	275.8
T2-Li ₃ ScCl ₆	217.9	T2-Li ₃ ScBr ₆	263.7	T2-Li ₃ YCl ₆	231.3
T2-Li ₃ Y _{0.5} Sc _{0.5} Br ₆	270.8	T3-Li ₃ YCl ₆	258.0	T3-Li ₃ Mg _{0.5} Hf _{0.5} Cl ₆	220.2
T4-Li ₃ AlF ₆	100.5	T4-Li ₃ GaF ₆	104.4		

Table S7. Volume per formula unit ($V_{f.u.}$) for the promising halides.