Citation: | Xu Shuaifei, Dai Huichao, Zhu Shaolong, Wu Yanchao, Sun Mingxuan, Chen Yuan, Fan Kun, Zhang Chenyang, Wang Chengliang, Hu Wenping. A branched dihydrophenazine-based polymer as a cathode material to achieve dual-ion batteries with high energy and power density[J]. eScience, 2021, 1(1): 60-68. doi: 10.1016/j.esci.2021.08.002 |
![]() |
![]() |
[1] |
M. Armand, J.M. Tarascon, Building better batteries, Nature 451 (2008) 652-657 doi: 10.1038/451652a
|
[2] |
W. Li, B. Song, A. Manthiram, High-voltage positive electrode materials for lithium-ion batteries, Chem. Soc. Rev. 46 (2017) 3006-3059 doi: 10.1039/C6CS00875E
|
[3] |
C. Jiang, Q. Jia, M. Tang, et al, Regulating the solvation sheath of li ions by using hydrogen bonds for highly stable lithium-metal anodes, Angew. Chem. Int. Ed. 60 (2021) 10871-10879 doi: 10.1002/anie.202101976
|
[4] |
Y. Lu, J. Chen, Prospects of organic electrode materials for practical lithium batteries, Nat. Rev. Chem. 4 (2020) 127-142 doi: 10.1038/s41570-020-0160-9
|
[5] |
P. Poizot, J. Gaubicher, S. Renault, L. Dubois, Y. Liang, Y. Yao, Opportunities and challenges for organic electrodes in electrochemical energy storage, Chem. Rev. 120 (2020) 6490-6557 doi: 10.1021/acs.chemrev.9b00482
|
[6] |
S. Xu, Y. Chen, C. Wang, Emerging organic potassium-ion batteries: electrodes and electrolytes, J. Mater. Chem. A 8 (2020) 15547-15574 doi: 10.1039/D0TA03310C
|
[7] |
Y. Liang, Z. Tao, J. Chen, Organic electrode materials for rechargeable lithium batteries, Adv. Energy Mater. 2 (2012) 742-769 doi: 10.1002/aenm.201100795
|
[8] |
D.L. Williams, J.J. Byrne, J.S. Driscoll, A high energy density lithium/dichloroisocyanuric acid battery system, J. Electrochem. Soc. 116 (1969) 2-4 doi: 10.1149/1.2411755
|
[9] |
Y. Chen, C. Wang, Designing high performance organic batteries, Acc. Chem. Res. 53 (2020) 2636-2647 doi: 10.1021/acs.accounts.0c00465
|
[10] |
C. Wang, Weak intermolecular interactions for strengthening organic batteries, Energy Environ. Mater. 3 (2020) 441-452 doi: 10.1002/eem2.12076
|
[11] |
M. Armand, S. Grugeon, H. Vezin, et al, Conjugated dicarboxylate anodes for Li-ion batteries, Nat. Mater. 8 (2009) 120-125 doi: 10.1038/nmat2372
|
[12] |
B. Häupler, A. Wild, U.S. Schubert, Carbonyls: powerful organic materials for secondary batteries, Adv. Energy Mater. 5 (2015) 1402034 doi: 10.1002/aenm.201402034
|
[13] |
Q. Zhao, Z. Zhu, J. Chen, Molecular engineering with organic carbonyl electrode materials for advanced stationary and redox flow rechargeable batteries, Adv. Mater. 29 (2017) 1607007 doi: 10.1002/adma.201607007
|
[14] |
B. Tian, J. Zheng, C. Zhao, et al, Carbonyl-based polyimide and polyquinoneimide for potassium-ion batteries, J. Mater. Chem. A 7 (2019) 9997-10003 doi: 10.1039/C9TA00647H
|
[15] |
Z. Song, H. Zhou, Towards sustainable and versatile energy storage devices: an overview of organic electrode materials, Energy Environ. Sci. 6 (2013) 2280-2301 doi: 10.1039/c3ee40709h
|
[16] |
Z. Song, Y. Qian, M.L. Gordin, et al, Polyanthraquinone as a reliable organic electrode for stable and fast lithium storage, Angew. Chem. Int. Ed. 54 (2015) 13947-13951 doi: 10.1002/anie.201506673
|
[17] |
A.E. Lakraychi, E. Deunf, K. Fahsi, P. Jimenez, J.P. Bonnet, F. Djedaini-Pilard, M. Bécuwe, P. Poizot, F. Dolhem, An air-stable lithiated cathode material based on a 1, 4-benzenedisulfonate backbone for organic Li-ion batteries, J. Mater. Chem. A 6 (2018) 19182-19189 doi: 10.1039/C8TA07097K
|
[18] |
L. Sieuw, A.E. Lakraychi, D. Rambabu, et al, Through-space charge modulation overriding substituent effect: rise of the redox potential at 3.35 V in a lithium-phenolate stereoelectronic isomer, Chem. Mater. 32 (2020) 9996-10006 doi: 10.1021/acs.chemmater.0c02989
|
[19] |
J. Wang, A.E. Lakraychi, X. Liu, L. Sieuw, C. Morari, P. Poizot, A. Vlad, Conjugated sulfonamides as a class of organic lithium-ion positive electrodes, Nat. Mater. 20 (2021) 665-673 doi: 10.1038/s41563-020-00869-1
|
[20] |
Y. Chen, S. Zhuo, Z. Li, C. Wang, Redox polymers for rechargeable metal-ion batteries, EnergyChem 2 (2020) 100030 doi: 10.1016/j.enchem.2020.100030
|
[21] |
P. Jiménez, E. Levillain, O. Alévêque, D. Guyomard, B. Lestriez, J. Gaubicher, Lithium n-doped polyaniline as a high-performance electroactive material for rechargeable batteries, Angew. Chem. Int. Ed. 56 (2017) 1553-1556 doi: 10.1002/anie.201607820
|
[22] |
S. Liu, F. Wang, R. Dong, T. Zhang, J. Zhang, X. Zhuang, Y. Mai, X. Feng, Dual-template synthesis of 2D mesoporous polypyrrole nanosheets with controlled pore size, Adv. Mater. 28 (2016) 8365-8370 doi: 10.1002/adma.201603036
|
[23] |
T. Janoschka, M.D. Hager, U.S. Schubert, Powering up the future: radical polymers for battery applications, Adv. Mater. 24 (2012) 6397-6409 doi: 10.1002/adma.201203119
|
[24] |
W. Guo, Y. -X. Yin, S. Xin, Y. -G. Guo, L. -J. Wan, Superior radical polymer cathode material with a two-electron process redox reaction promoted by graphene, Energy Environ. Sci. 5 (2012) 5221-5225 doi: 10.1039/C1EE02148F
|
[25] |
Y. Shirota, T. Nogami, N. Noma, T. Kakuta, H. Saito, Electrochemically doped poly(n-vinylcarbazole) as an electrode material for rechargeable batteries, Synth. Met. 41 (1991) 1169-1172 doi: 10.1016/0379-6779(91)91580-4
|
[26] |
M. Yao, H. Senoh, T. Sakai, T. Kiyobayashi, Redox active poly(n-vinylcarbazole) for use in rechargeable lithium batteries, J. Power Sources 202 (2012) 364-368 doi: 10.1016/j.jpowsour.2011.11.035
|
[27] |
C. Zhao, Z. Chen, W. Wang, P. Xiong, B. Li, M. Li, J. Yang, Y. Xu, In situ electropolymerization enables ultrafast long cycle life and high-voltage organic cathodes for lithium batteries, Angew. Chem. Int. Ed. 59 (2020) 11992-11998 doi: 10.1002/anie.202000566
|
[28] |
C. Su, F. Yang, L. Ji, L. Xu, C. Zhang, Polytriphenylamine derivative with high free radical density as the novel organic cathode for lithium ion batteries, J. Mater. Chem. A 2 (2014) 20083-20088 doi: 10.1039/C4TA03413A
|
[29] |
K. Yamamoto, D. Suemasa, K. Masuda, K. Aita, T. Endo, Hyperbranched triphenylamine polymer for ultrafast battery cathode, ACS Appl. Mater. Interfaces 10 (2018) 6346-6353 doi: 10.1021/acsami.7b17943
|
[30] |
C. Su, H. He, L. Xu, K. Zhao, C. Zheng, C. Zhang, A mesoporous conjugated polymer based on a high free radical density polytriphenylamine derivative: its preparation and electrochemical performance as a cathode material for Li-ion batteries, J. Mater. Chem. A 5 (2017) 2701-2709 doi: 10.1039/C6TA10127E
|
[31] |
M. Tang, C. Jiang, S. Liu, X. Li, Y. Chen, Y. Wu, J. Ma, C. Wang, Small amount COFs enhancing storage of large anions, Energy Storage Mater. 27 (2020) 35-42 doi: 10.1016/j.ensm.2020.01.015
|
[32] |
S. Ko, Y. Yamada, A. Yamada, An overlooked issue for high-voltage Li-ion batteries: suppressing the intercalation of anions into conductive carbon, Joule 5 (2021) 998-1009 doi: 10.1016/j.joule.2021.02.016
|
[33] |
G. Dai, X. Wang, Y. Qian, Z. Niu, X. Zhu, J. Ye, Y. Zhao, X. Zhang, Manipulation of conjugation to stabilize N redox-active centers for the design of high-voltage organic battery cathode, Energy Storage Mater. 16 (2019) 236-242 doi: 10.1016/j.ensm.2018.06.005
|
[34] |
G. Dai, Y. Liu, Z. Niu, P. He, Y. Zhao, X. Zhang, H. Zhou, The design of quaternary nitrogen redox center for high-performance organic battery materials, Matter 1 (2019) 945-958 doi: 10.1016/j.matt.2019.05.009
|
[35] |
C.N. Gannett, B.M. Peterson, L. Shen, J. Seok, B.P. Fors, H. Abruña, Cross-linking effects on performance metrics of phenazine-based polymer cathodes, ChemSusChem 13 (2020) 2428-2435 doi: 10.1002/cssc.201903243
|
[36] |
F.A. Obrezkov, V. Ramezankhani, I. Zhidkov, V.F. Traven, E.Z. Kurmaev, K.J. Stevenson, P.A. Troshin, High-energy and high-power-density potassium ion batteries using dihydrophenazine-based polymer as active cathode material, J. Phys. Chem. Lett. 10 (2019) 5440-5445 doi: 10.1021/acs.jpclett.9b02039
|
[37] |
Z. Niu, H. Wu, L. Liu, G. Dai, S. Xiong, Y. Zhao, X. Zhang, Chain rigidity modification to promote the electrochemical performance of polymeric battery electrode materials, J. Mater. Chem. A 7 (2019) 10581-10588 doi: 10.1039/C9TA01553A
|
[38] |
L. Huang, Y. Chen, Y. Liu, T. Wu, H. Li, J. Ye, G. Dai, X. Zhang, Y. Zhao, π-extended dihydrophenazine-based polymeric cathode material for high-performance organic batteries, ACS Sustain. Chem. Eng. 8 (2020) 17868-17875 doi: 10.1021/acssuschemeng.0c07314
|
[39] |
G. Dai, Y. He, Z. Niu, P. He, C. Zhang, Y. Zhao, X. Zhang, H. Zhou, A dual-ion organic symmetric battery constructed from phenazine-based artificial bipolar molecules, Angew. Chem. Int. Ed. 58 (2019) 9902-9906 doi: 10.1002/anie.201901040
|
[40] |
M. Lee, J. Hong, B. Lee, K. Ku, S. Lee, C.B. Park, K. Kang, Multi-electron redox phenazine for ready-to-charge organic batteries, Green Chem 19 (2017) 2980-2985 doi: 10.1039/C7GC00849J
|
[41] |
S. Xu, H. Li, Y. Chen, Y. Wu, C. Jiang, E. Wang, C. Wang, Branched conjugated polymers for fast capacitive storage of sodium ions, J. Mater. Chem. A 8 (2020) 23851-23856 doi: 10.1039/D0TA07658A
|
[42] |
J. Lin, Z. Guo, H. Zhan, A robust phenazine-containing organic polymer as catalyst for amine oxidative coupling reactions, J. Catal. 385 (2020) 338-344 doi: 10.1016/j.jcat.2020.03.031
|
[43] |
L. Fan, Q. Liu, Z. Xu, B. Lu, An organic cathode for potassium dual-ion full battery, ACS Energy Lett. 2 (2017) 1614-1620 doi: 10.1021/acsenergylett.7b00378
|
[44] |
H. Li, M. Tang, Y. Wu, Y. Chen, S. Zhu, B. Wang, C. Jiang, E. Wang, C. Wang, Large π-conjugated porous frameworks as cathodes for sodium-ion batteries, J. Phys. Chem. Lett. 9 (2018) 3205-3211 doi: 10.1021/acs.jpclett.8b01285
|
[45] |
G. Dai, Y. Gao, Z. Niu, et al, Dilution of the electron density in the π-conjugated skeleton of organic cathode materials improves the discharge voltage, ChemSusChem 13 (2020) 2264-2270 doi: 10.1002/cssc.201903502
|
[46] |
M. Kolek, F. Otteny, P. Schmidt, C. Mück-Lichtenfeld, C. Einholz, J. Becking, E. Schleicher, M. Winter, P. Bieker, B. Esser, Ultra-high cycling stability of poly(vinylphenothiazine) as a battery cathode material resulting from π-π interactions, Energy Environ. Sci. 10 (2017) 2334-2341 doi: 10.1039/C7EE01473B
|
[47] |
P. Acker, L. Rzesny, C.F.N. Marchiori, C.M. Araujo, B. Esser, π-conjugation enables ultra-high rate capabilities and cycling stabilities in phenothiazine copolymers as cathode-active battery materials, Adv. Funct. Mater. 29 (2019) 1906436 doi: 10.1002/adfm.201906436
|
[48] |
K. Oyaizu, T. Kawamoto, T. Suga, H. Nishide, Synthesis and charge transport properties of redox-active nitroxide polyethers with large site density, Macromolecules 43 (2010) 10382-10389 doi: 10.1021/ma1020159
|
[49] |
S. Chen, T. He, Y. Su, Y. Lu, L. Bao, L. Chen, Q. Zhang, J. Wang, R. Chen, F. Wu, Ni-rich LiNi0.8Co0.1Mn0.1O2 oxide coated by dual-conductive layers as high performance cathode material for lithium-ion batteries, ACS Appl. Mater. Interfaces 9 (2017) 29732-29743 doi: 10.1021/acsami.7b08006
|
[50] |
J. Wang, X. Sun, Olivine LiFePO4: the remaining challenges for future energy storage, Energy Environ. Sci. 8 (2015) 1110-1138 doi: 10.1039/C4EE04016C
|
[51] |
N. Casado, D. Mantione, D. Shanmukaraj, D. Mecerreyes, Symmetric all-organic battery containing a dual redox-active polymer as cathode and anode Material, ChemSusChem 13 (2020) 2464-2470 doi: 10.1002/cssc.201902856
|
[52] |
J. Xie, Z. Wang, Z.J. Xu, Q. Zhang, Toward a high-performance all-plastic full battery with a'single organic polymer as both cathode and anode, Adv. Energy Mater. 8 (2018) 1703509 doi: 10.1002/aenm.201703509
|
[53] |
T. Suga, H. Ohshiro, S. Sugita, K. Oyaizu, H. Nishide, Emerging n-type redox-active radical polymer for a totally organic polymer-based rechargeable battery, Adv. Mater. 21 (2009) 1627-1630 doi: 10.1002/adma.200803073
|
[54] |
A. Wild, M. Strumpf, B. Häupler, M.D. Hager, U.S. Schubert, All-organic battery composed of thianthrene- and TCAQ-based polymers, Adv. Energy Mater. 7 (2017) 1601415 doi: 10.1002/aenm.201601415
|
[55] |
J. Qin, Q. Lan, N. Liu, F. Men, X. Wang, Z. Song, H. Zhan, A metal-free battery with pure ionic liquid electrolyte, iScience 15 (2019) 16-27 doi: 10.1016/j.isci.2019.04.010
|
[56] |
A. Jouhara, N. Dupré, A. -C. Gaillot, D. Guyomard, F. Dolhem, P. Poizot, Raising the redox potential in carboxyphenolate-based positive organic materials via cation substitution, Nat. Commun. 9 (2018) 4401 doi: 10.1038/s41467-018-06708-x
|
[57] |
J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles, J. Phys. Chem. C 111 (2007) 14925-14931 doi: 10.1021/jp074464w
|
[58] |
M. Tang, S. Zhu, Z. Liu, et al, Tailoring π-conjugated systems: from π-π stacking to high-rate-performance organic cathodes, Chem 4 (2018) 2600-2614 doi: 10.1016/j.chempr.2018.08.014
|
[59] |
Y. Chen, M. Tang, Y. Wu, X. Su, X. Li, S. Xu, S. Zhuo, J. Ma, D. Yuan, C. Wang, W. Hu, A one-dimensional π-d conjugated coordination polymer for sodium storage with catalytic activity in negishi coupling, Angew. Chem. Int. Ed. 58 (2019) 14731-14739 doi: 10.1002/anie.201908274
|
[60] |
S. Wang, Q. Wang, P. Shao, Y. Han, X. Gao, L. Ma, S. Yuan, X. Ma, J. Zhou, X. Feng, B. Wang, Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries, J. Am. Chem. Soc. 139 (2017) 4258-4261 doi: 10.1021/jacs.7b02648
|
[61] |
Y. Chen, H. Li, M. Tang, S. Zhuo, Y. Wu, E. Wang, S. Wang, C. Wang, W. Hu, Capacitive conjugated ladder polymers for fast-charge and -discharge sodium-ion batteries and hybrid supercapacitors, J. Mater. Chem. A 7 (2019) 20891-20898 doi: 10.1039/C9TA07546A
|
[62] |
R. Shi, L. Liu, Y. Lu, Y. Li, S. Zheng, Z. Yan, K. Zhang, J. Chen, In situ polymerized conjugated poly(pyrene-4, 5, 9, 10-tetraone)/carbon nanotubes composites for high-performance cathode of sodium batteries, Adv. Energy Mater. 11 (2021) 2002917 doi: 10.1002/aenm.202002917
|
[63] |
S. Zhuo, M. Tang, Y. Wu, Y. Chen, S. Zhu, Q. Wang, C. Xia, C. Wang, Size control of zwitterionic polymer micro/nanospheres and its dependence on sodium storage, Nanoscale Horiz. 4 (2019) 1092-1098 doi: 10.1039/C9NH00154A
|
[64] |
K. Syed Mohamed, D.K. Padma, R.G. Kalbandkeri, A.R. Vasudeva Murthy, Pyridinium poly(hydrogen fluoride) — a reagent for the preparation of hexafluorophosphates, J. Fluorine Chem. 23 (1983) 509-514 doi: 10.1016/S0022-1139(00)85135-0
|
[65] |
Z. Wang, S. Gu, L. Cao, L. Kong, Z. Wang, N. Qin, M. Li, W. Luo, J. Chen, S. Wu, G. Liu, H. Yuan, Y. Bai, K. Zhang, Z. Lu, Redox of dual-radical intermediates in a methylene-linked covalent triazine framework for high-performance lithium-ion batteries, ACS Appl. Mater. Interfaces 13 (2021) 514-521 doi: 10.1021/acsami.0c17692
|
[66] |
S. Gu, S. Wu, L. Cao, M. Li, N. Qin, J. Zhu, Z. Wang, Y. Li, Z. Li, J. Chen, Z. Lu, Tunable redox chemistry and stability of radical intermediates in 2D covalent organic frameworks for high performance sodium ion batteries, J. Am. Chem. Soc. 141 (2019) 9623-9628 doi: 10.1021/jacs.9b03467
|