Volume 1 Issue 1
May  2021
Turn off MathJax
Article Contents
Xu Shuaifei, Dai Huichao, Zhu Shaolong, Wu Yanchao, Sun Mingxuan, Chen Yuan, Fan Kun, Zhang Chenyang, Wang Chengliang, Hu Wenping. A branched dihydrophenazine-based polymer as a cathode material to achieve dual-ion batteries with high energy and power density[J]. eScience, 2021, 1(1): 60-68. doi: 10.1016/j.esci.2021.08.002
Citation: Xu Shuaifei, Dai Huichao, Zhu Shaolong, Wu Yanchao, Sun Mingxuan, Chen Yuan, Fan Kun, Zhang Chenyang, Wang Chengliang, Hu Wenping. A branched dihydrophenazine-based polymer as a cathode material to achieve dual-ion batteries with high energy and power density[J]. eScience, 2021, 1(1): 60-68. doi: 10.1016/j.esci.2021.08.002

A branched dihydrophenazine-based polymer as a cathode material to achieve dual-ion batteries with high energy and power density

doi: 10.1016/j.esci.2021.08.002
More Information
  • Corresponding author: E-mail address: clwang@hust.edu.cn (C. Wang)
  • Received Date: 2021-05-30
  • Revised Date: 2021-07-23
  • Accepted Date: 2021-08-31
  • Available Online: 2021-09-03
  • Organic electrode materials have exhibited good electrochemical performance in batteries, but their voltages and rate capabilities still require improvement to meet the increasing demand for batteries with high energy and power density. Herein, we design and synthesize a branched dihydrophenazine-based polymer (p-TPPZ) as a cathode material for dual-ion batteries (DIBs) through delicate molecular design. Compared with the linear dihydrophenazine-based polymer (p-DPPZ, with a theoretical capacity of 209 mAh g-1), p-TPPZ possessed a higher theoretical capacity of 233 mAh g-1 and lower highest occupied molecular orbital energy levels, which resulted in a high actual capacity (169.3 mAh g-1 at 0.5 C), an average discharge voltage of 3.65 V (vs. Li+/Li) and a high energy density (618.2 Wh kg-1, based on the cathode materials). The branched structure of p-TPPZ led to a larger specific surface area than that of p-DPPZ, which was beneficial for the electrolyte infiltration and fast ionic transport, contributing to the high power density. Due to the fast reaction kinetics, even at a power density of 23, 725 W kg-1 (40 C), the energy density still reached 474.5 Wh kg-1. We also made a detailed investigation of the p-TPPZ cathode's charge storage mechanism. This work will stimulate the further molecular design to develop organic batteries with both high energy and power density.
  • 1 These authors contributed equally.
  • loading
  • eScience-2021-1-60-ScienceDirect_files_24Jan2022_10-50-48.699.zip
  • [1]
    M. Armand, J.M. Tarascon, Building better batteries, Nature 451 (2008) 652-657 doi: 10.1038/451652a
    [2]
    W. Li, B. Song, A. Manthiram, High-voltage positive electrode materials for lithium-ion batteries, Chem. Soc. Rev. 46 (2017) 3006-3059 doi: 10.1039/C6CS00875E
    [3]
    C. Jiang, Q. Jia, M. Tang, et al, Regulating the solvation sheath of li ions by using hydrogen bonds for highly stable lithium-metal anodes, Angew. Chem. Int. Ed. 60 (2021) 10871-10879 doi: 10.1002/anie.202101976
    [4]
    Y. Lu, J. Chen, Prospects of organic electrode materials for practical lithium batteries, Nat. Rev. Chem. 4 (2020) 127-142 doi: 10.1038/s41570-020-0160-9
    [5]
    P. Poizot, J. Gaubicher, S. Renault, L. Dubois, Y. Liang, Y. Yao, Opportunities and challenges for organic electrodes in electrochemical energy storage, Chem. Rev. 120 (2020) 6490-6557 doi: 10.1021/acs.chemrev.9b00482
    [6]
    S. Xu, Y. Chen, C. Wang, Emerging organic potassium-ion batteries: electrodes and electrolytes, J. Mater. Chem. A 8 (2020) 15547-15574 doi: 10.1039/D0TA03310C
    [7]
    Y. Liang, Z. Tao, J. Chen, Organic electrode materials for rechargeable lithium batteries, Adv. Energy Mater. 2 (2012) 742-769 doi: 10.1002/aenm.201100795
    [8]
    D.L. Williams, J.J. Byrne, J.S. Driscoll, A high energy density lithium/dichloroisocyanuric acid battery system, J. Electrochem. Soc. 116 (1969) 2-4 doi: 10.1149/1.2411755
    [9]
    Y. Chen, C. Wang, Designing high performance organic batteries, Acc. Chem. Res. 53 (2020) 2636-2647 doi: 10.1021/acs.accounts.0c00465
    [10]
    C. Wang, Weak intermolecular interactions for strengthening organic batteries, Energy Environ. Mater. 3 (2020) 441-452 doi: 10.1002/eem2.12076
    [11]
    M. Armand, S. Grugeon, H. Vezin, et al, Conjugated dicarboxylate anodes for Li-ion batteries, Nat. Mater. 8 (2009) 120-125 doi: 10.1038/nmat2372
    [12]
    B. Häupler, A. Wild, U.S. Schubert, Carbonyls: powerful organic materials for secondary batteries, Adv. Energy Mater. 5 (2015) 1402034 doi: 10.1002/aenm.201402034
    [13]
    Q. Zhao, Z. Zhu, J. Chen, Molecular engineering with organic carbonyl electrode materials for advanced stationary and redox flow rechargeable batteries, Adv. Mater. 29 (2017) 1607007 doi: 10.1002/adma.201607007
    [14]
    B. Tian, J. Zheng, C. Zhao, et al, Carbonyl-based polyimide and polyquinoneimide for potassium-ion batteries, J. Mater. Chem. A 7 (2019) 9997-10003 doi: 10.1039/C9TA00647H
    [15]
    Z. Song, H. Zhou, Towards sustainable and versatile energy storage devices: an overview of organic electrode materials, Energy Environ. Sci. 6 (2013) 2280-2301 doi: 10.1039/c3ee40709h
    [16]
    Z. Song, Y. Qian, M.L. Gordin, et al, Polyanthraquinone as a reliable organic electrode for stable and fast lithium storage, Angew. Chem. Int. Ed. 54 (2015) 13947-13951 doi: 10.1002/anie.201506673
    [17]
    A.E. Lakraychi, E. Deunf, K. Fahsi, P. Jimenez, J.P. Bonnet, F. Djedaini-Pilard, M. Bécuwe, P. Poizot, F. Dolhem, An air-stable lithiated cathode material based on a 1, 4-benzenedisulfonate backbone for organic Li-ion batteries, J. Mater. Chem. A 6 (2018) 19182-19189 doi: 10.1039/C8TA07097K
    [18]
    L. Sieuw, A.E. Lakraychi, D. Rambabu, et al, Through-space charge modulation overriding substituent effect: rise of the redox potential at 3.35 V in a lithium-phenolate stereoelectronic isomer, Chem. Mater. 32 (2020) 9996-10006 doi: 10.1021/acs.chemmater.0c02989
    [19]
    J. Wang, A.E. Lakraychi, X. Liu, L. Sieuw, C. Morari, P. Poizot, A. Vlad, Conjugated sulfonamides as a class of organic lithium-ion positive electrodes, Nat. Mater. 20 (2021) 665-673 doi: 10.1038/s41563-020-00869-1
    [20]
    Y. Chen, S. Zhuo, Z. Li, C. Wang, Redox polymers for rechargeable metal-ion batteries, EnergyChem 2 (2020) 100030 doi: 10.1016/j.enchem.2020.100030
    [21]
    P. Jiménez, E. Levillain, O. Alévêque, D. Guyomard, B. Lestriez, J. Gaubicher, Lithium n-doped polyaniline as a high-performance electroactive material for rechargeable batteries, Angew. Chem. Int. Ed. 56 (2017) 1553-1556 doi: 10.1002/anie.201607820
    [22]
    S. Liu, F. Wang, R. Dong, T. Zhang, J. Zhang, X. Zhuang, Y. Mai, X. Feng, Dual-template synthesis of 2D mesoporous polypyrrole nanosheets with controlled pore size, Adv. Mater. 28 (2016) 8365-8370 doi: 10.1002/adma.201603036
    [23]
    T. Janoschka, M.D. Hager, U.S. Schubert, Powering up the future: radical polymers for battery applications, Adv. Mater. 24 (2012) 6397-6409 doi: 10.1002/adma.201203119
    [24]
    W. Guo, Y. -X. Yin, S. Xin, Y. -G. Guo, L. -J. Wan, Superior radical polymer cathode material with a two-electron process redox reaction promoted by graphene, Energy Environ. Sci. 5 (2012) 5221-5225 doi: 10.1039/C1EE02148F
    [25]
    Y. Shirota, T. Nogami, N. Noma, T. Kakuta, H. Saito, Electrochemically doped poly(n-vinylcarbazole) as an electrode material for rechargeable batteries, Synth. Met. 41 (1991) 1169-1172 doi: 10.1016/0379-6779(91)91580-4
    [26]
    M. Yao, H. Senoh, T. Sakai, T. Kiyobayashi, Redox active poly(n-vinylcarbazole) for use in rechargeable lithium batteries, J. Power Sources 202 (2012) 364-368 doi: 10.1016/j.jpowsour.2011.11.035
    [27]
    C. Zhao, Z. Chen, W. Wang, P. Xiong, B. Li, M. Li, J. Yang, Y. Xu, In situ electropolymerization enables ultrafast long cycle life and high-voltage organic cathodes for lithium batteries, Angew. Chem. Int. Ed. 59 (2020) 11992-11998 doi: 10.1002/anie.202000566
    [28]
    C. Su, F. Yang, L. Ji, L. Xu, C. Zhang, Polytriphenylamine derivative with high free radical density as the novel organic cathode for lithium ion batteries, J. Mater. Chem. A 2 (2014) 20083-20088 doi: 10.1039/C4TA03413A
    [29]
    K. Yamamoto, D. Suemasa, K. Masuda, K. Aita, T. Endo, Hyperbranched triphenylamine polymer for ultrafast battery cathode, ACS Appl. Mater. Interfaces 10 (2018) 6346-6353 doi: 10.1021/acsami.7b17943
    [30]
    C. Su, H. He, L. Xu, K. Zhao, C. Zheng, C. Zhang, A mesoporous conjugated polymer based on a high free radical density polytriphenylamine derivative: its preparation and electrochemical performance as a cathode material for Li-ion batteries, J. Mater. Chem. A 5 (2017) 2701-2709 doi: 10.1039/C6TA10127E
    [31]
    M. Tang, C. Jiang, S. Liu, X. Li, Y. Chen, Y. Wu, J. Ma, C. Wang, Small amount COFs enhancing storage of large anions, Energy Storage Mater. 27 (2020) 35-42 doi: 10.1016/j.ensm.2020.01.015
    [32]
    S. Ko, Y. Yamada, A. Yamada, An overlooked issue for high-voltage Li-ion batteries: suppressing the intercalation of anions into conductive carbon, Joule 5 (2021) 998-1009 doi: 10.1016/j.joule.2021.02.016
    [33]
    G. Dai, X. Wang, Y. Qian, Z. Niu, X. Zhu, J. Ye, Y. Zhao, X. Zhang, Manipulation of conjugation to stabilize N redox-active centers for the design of high-voltage organic battery cathode, Energy Storage Mater. 16 (2019) 236-242 doi: 10.1016/j.ensm.2018.06.005
    [34]
    G. Dai, Y. Liu, Z. Niu, P. He, Y. Zhao, X. Zhang, H. Zhou, The design of quaternary nitrogen redox center for high-performance organic battery materials, Matter 1 (2019) 945-958 doi: 10.1016/j.matt.2019.05.009
    [35]
    C.N. Gannett, B.M. Peterson, L. Shen, J. Seok, B.P. Fors, H. Abruña, Cross-linking effects on performance metrics of phenazine-based polymer cathodes, ChemSusChem 13 (2020) 2428-2435 doi: 10.1002/cssc.201903243
    [36]
    F.A. Obrezkov, V. Ramezankhani, I. Zhidkov, V.F. Traven, E.Z. Kurmaev, K.J. Stevenson, P.A. Troshin, High-energy and high-power-density potassium ion batteries using dihydrophenazine-based polymer as active cathode material, J. Phys. Chem. Lett. 10 (2019) 5440-5445 doi: 10.1021/acs.jpclett.9b02039
    [37]
    Z. Niu, H. Wu, L. Liu, G. Dai, S. Xiong, Y. Zhao, X. Zhang, Chain rigidity modification to promote the electrochemical performance of polymeric battery electrode materials, J. Mater. Chem. A 7 (2019) 10581-10588 doi: 10.1039/C9TA01553A
    [38]
    L. Huang, Y. Chen, Y. Liu, T. Wu, H. Li, J. Ye, G. Dai, X. Zhang, Y. Zhao, π-extended dihydrophenazine-based polymeric cathode material for high-performance organic batteries, ACS Sustain. Chem. Eng. 8 (2020) 17868-17875 doi: 10.1021/acssuschemeng.0c07314
    [39]
    G. Dai, Y. He, Z. Niu, P. He, C. Zhang, Y. Zhao, X. Zhang, H. Zhou, A dual-ion organic symmetric battery constructed from phenazine-based artificial bipolar molecules, Angew. Chem. Int. Ed. 58 (2019) 9902-9906 doi: 10.1002/anie.201901040
    [40]
    M. Lee, J. Hong, B. Lee, K. Ku, S. Lee, C.B. Park, K. Kang, Multi-electron redox phenazine for ready-to-charge organic batteries, Green Chem 19 (2017) 2980-2985 doi: 10.1039/C7GC00849J
    [41]
    S. Xu, H. Li, Y. Chen, Y. Wu, C. Jiang, E. Wang, C. Wang, Branched conjugated polymers for fast capacitive storage of sodium ions, J. Mater. Chem. A 8 (2020) 23851-23856 doi: 10.1039/D0TA07658A
    [42]
    J. Lin, Z. Guo, H. Zhan, A robust phenazine-containing organic polymer as catalyst for amine oxidative coupling reactions, J. Catal. 385 (2020) 338-344 doi: 10.1016/j.jcat.2020.03.031
    [43]
    L. Fan, Q. Liu, Z. Xu, B. Lu, An organic cathode for potassium dual-ion full battery, ACS Energy Lett. 2 (2017) 1614-1620 doi: 10.1021/acsenergylett.7b00378
    [44]
    H. Li, M. Tang, Y. Wu, Y. Chen, S. Zhu, B. Wang, C. Jiang, E. Wang, C. Wang, Large π-conjugated porous frameworks as cathodes for sodium-ion batteries, J. Phys. Chem. Lett. 9 (2018) 3205-3211 doi: 10.1021/acs.jpclett.8b01285
    [45]
    G. Dai, Y. Gao, Z. Niu, et al, Dilution of the electron density in the π-conjugated skeleton of organic cathode materials improves the discharge voltage, ChemSusChem 13 (2020) 2264-2270 doi: 10.1002/cssc.201903502
    [46]
    M. Kolek, F. Otteny, P. Schmidt, C. Mück-Lichtenfeld, C. Einholz, J. Becking, E. Schleicher, M. Winter, P. Bieker, B. Esser, Ultra-high cycling stability of poly(vinylphenothiazine) as a battery cathode material resulting from π-π interactions, Energy Environ. Sci. 10 (2017) 2334-2341 doi: 10.1039/C7EE01473B
    [47]
    P. Acker, L. Rzesny, C.F.N. Marchiori, C.M. Araujo, B. Esser, π-conjugation enables ultra-high rate capabilities and cycling stabilities in phenothiazine copolymers as cathode-active battery materials, Adv. Funct. Mater. 29 (2019) 1906436 doi: 10.1002/adfm.201906436
    [48]
    K. Oyaizu, T. Kawamoto, T. Suga, H. Nishide, Synthesis and charge transport properties of redox-active nitroxide polyethers with large site density, Macromolecules 43 (2010) 10382-10389 doi: 10.1021/ma1020159
    [49]
    S. Chen, T. He, Y. Su, Y. Lu, L. Bao, L. Chen, Q. Zhang, J. Wang, R. Chen, F. Wu, Ni-rich LiNi0.8Co0.1Mn0.1O2 oxide coated by dual-conductive layers as high performance cathode material for lithium-ion batteries, ACS Appl. Mater. Interfaces 9 (2017) 29732-29743 doi: 10.1021/acsami.7b08006
    [50]
    J. Wang, X. Sun, Olivine LiFePO4: the remaining challenges for future energy storage, Energy Environ. Sci. 8 (2015) 1110-1138 doi: 10.1039/C4EE04016C
    [51]
    N. Casado, D. Mantione, D. Shanmukaraj, D. Mecerreyes, Symmetric all-organic battery containing a dual redox-active polymer as cathode and anode Material, ChemSusChem 13 (2020) 2464-2470 doi: 10.1002/cssc.201902856
    [52]
    J. Xie, Z. Wang, Z.J. Xu, Q. Zhang, Toward a high-performance all-plastic full battery with a'single organic polymer as both cathode and anode, Adv. Energy Mater. 8 (2018) 1703509 doi: 10.1002/aenm.201703509
    [53]
    T. Suga, H. Ohshiro, S. Sugita, K. Oyaizu, H. Nishide, Emerging n-type redox-active radical polymer for a totally organic polymer-based rechargeable battery, Adv. Mater. 21 (2009) 1627-1630 doi: 10.1002/adma.200803073
    [54]
    A. Wild, M. Strumpf, B. Häupler, M.D. Hager, U.S. Schubert, All-organic battery composed of thianthrene- and TCAQ-based polymers, Adv. Energy Mater. 7 (2017) 1601415 doi: 10.1002/aenm.201601415
    [55]
    J. Qin, Q. Lan, N. Liu, F. Men, X. Wang, Z. Song, H. Zhan, A metal-free battery with pure ionic liquid electrolyte, iScience 15 (2019) 16-27 doi: 10.1016/j.isci.2019.04.010
    [56]
    A. Jouhara, N. Dupré, A. -C. Gaillot, D. Guyomard, F. Dolhem, P. Poizot, Raising the redox potential in carboxyphenolate-based positive organic materials via cation substitution, Nat. Commun. 9 (2018) 4401 doi: 10.1038/s41467-018-06708-x
    [57]
    J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles, J. Phys. Chem. C 111 (2007) 14925-14931 doi: 10.1021/jp074464w
    [58]
    M. Tang, S. Zhu, Z. Liu, et al, Tailoring π-conjugated systems: from π-π stacking to high-rate-performance organic cathodes, Chem 4 (2018) 2600-2614 doi: 10.1016/j.chempr.2018.08.014
    [59]
    Y. Chen, M. Tang, Y. Wu, X. Su, X. Li, S. Xu, S. Zhuo, J. Ma, D. Yuan, C. Wang, W. Hu, A one-dimensional π-d conjugated coordination polymer for sodium storage with catalytic activity in negishi coupling, Angew. Chem. Int. Ed. 58 (2019) 14731-14739 doi: 10.1002/anie.201908274
    [60]
    S. Wang, Q. Wang, P. Shao, Y. Han, X. Gao, L. Ma, S. Yuan, X. Ma, J. Zhou, X. Feng, B. Wang, Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries, J. Am. Chem. Soc. 139 (2017) 4258-4261 doi: 10.1021/jacs.7b02648
    [61]
    Y. Chen, H. Li, M. Tang, S. Zhuo, Y. Wu, E. Wang, S. Wang, C. Wang, W. Hu, Capacitive conjugated ladder polymers for fast-charge and -discharge sodium-ion batteries and hybrid supercapacitors, J. Mater. Chem. A 7 (2019) 20891-20898 doi: 10.1039/C9TA07546A
    [62]
    R. Shi, L. Liu, Y. Lu, Y. Li, S. Zheng, Z. Yan, K. Zhang, J. Chen, In situ polymerized conjugated poly(pyrene-4, 5, 9, 10-tetraone)/carbon nanotubes composites for high-performance cathode of sodium batteries, Adv. Energy Mater. 11 (2021) 2002917 doi: 10.1002/aenm.202002917
    [63]
    S. Zhuo, M. Tang, Y. Wu, Y. Chen, S. Zhu, Q. Wang, C. Xia, C. Wang, Size control of zwitterionic polymer micro/nanospheres and its dependence on sodium storage, Nanoscale Horiz. 4 (2019) 1092-1098 doi: 10.1039/C9NH00154A
    [64]
    K. Syed Mohamed, D.K. Padma, R.G. Kalbandkeri, A.R. Vasudeva Murthy, Pyridinium poly(hydrogen fluoride) — a reagent for the preparation of hexafluorophosphates, J. Fluorine Chem. 23 (1983) 509-514 doi: 10.1016/S0022-1139(00)85135-0
    [65]
    Z. Wang, S. Gu, L. Cao, L. Kong, Z. Wang, N. Qin, M. Li, W. Luo, J. Chen, S. Wu, G. Liu, H. Yuan, Y. Bai, K. Zhang, Z. Lu, Redox of dual-radical intermediates in a methylene-linked covalent triazine framework for high-performance lithium-ion batteries, ACS Appl. Mater. Interfaces 13 (2021) 514-521 doi: 10.1021/acsami.0c17692
    [66]
    S. Gu, S. Wu, L. Cao, M. Li, N. Qin, J. Zhu, Z. Wang, Y. Li, Z. Li, J. Chen, Z. Lu, Tunable redox chemistry and stability of radical intermediates in 2D covalent organic frameworks for high performance sodium ion batteries, J. Am. Chem. Soc. 141 (2019) 9623-9628 doi: 10.1021/jacs.9b03467
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (348) PDF downloads(21) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return