Citation: | Wang Kai-Li, Yang Ying-Guo, Lou Yan-Hui, Li Meng, Igbari Femi, Cao Jun-Jie, Chen Jing, Yang Wen-Fan, Dong Chong, Li Lina, Tai Ren-Zhong, Wang Zhao-Kui. Smelting recrystallization of CsPbBrI2 perovskites for indoor and outdoor photovoltaics[J]. eScience, 2021, 1(1): 53-59. doi: 10.1016/j.esci.2021.09.001 |
![]() |
![]() |
[1] |
T. Liu, Y. Zong, Y. Zhou, M. Yang, Z. Li, O.S. Game, N.P. Padture, High-performance formamidinium-based perovskite solar cells via microstructure-mediated δ-to-α phase transformation, Chem. Mater. 29 (2017) 3246-3250 doi: 10.1021/acs.chemmater.7b00523
|
[2] |
X. Zhang, X. Ren, B. Liu, R. Munir, X. Zhu, D. Yang, Z. Yang, Stable high efficiency two-dimensional perovskite solar cells via cesium doping, Energy Environ. Sci. 10 (2017) 2095-2102 doi: 10.1039/C7EE01145H
|
[3] |
A. Swarnkar, A.R. Marshall, E.M. Sanehira, et al, Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics, Science 354 (2016) 92-95 doi: 10.1126/science.aag2700
|
[4] |
Y. Wang, X. Liu, T. Zhang, et al, The role of dimethylammonium iodide in CsPbI3 perovskite fabrication: additive or dopant?, Angew. Chem. Int. Ed. 131 (2019) 16691-16696
|
[5] |
W. Xiang, Z. Wang, D.J. Kubicki, et al, Europium-doped CsPbI2Br for stable and highly efficient inorganic perovskite solar cells, Joule 3 (2019) 205-214 doi: 10.1016/j.joule.2018.10.008
|
[6] |
K.L. Wang, R. Wang, Z.K. Wang, et al, Tailored phase transformation of CsPbI2Br films by Copper (II) Bromide for high-performance all-Inorganic perovskite solar cells, Nano Lett. 19 (2019) 5176-5184 doi: 10.1021/acs.nanolett.9b01553
|
[7] |
J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, G. Zhu, All-inorganic perovskite solar cells, J. Am. Chem. Soc. 138 (2016) 15829-15832 doi: 10.1021/jacs.6b10227
|
[8] |
P. Wang, X. Zhang, Y. Zhou, Q. Jiang, Q. Ye, Z. Chu, J. You, Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells, Nat. Commun. 9 (2018) 2225 doi: 10.1038/s41467-018-04636-4
|
[9] |
L. Zhao, R.A. Kerner, Z. Xiao, Y.L. Lin, K.M. Lee, J. Schwartz, B.P. Rand, Redox chemistry dominates the degradation and decomposition of metal halide perovskite optoelectronic devices, ACS Energy Lett. 1 (2016) 595-602 doi: 10.1021/acsenergylett.6b00320
|
[10] |
Z. Li, J. Xu, S. Zhou, B. Zhang, X. Liu, S. Dai, J. Yao, CsBr-Induced Stable CsPbI3-xBrx (x < 1) Perovskite films at low temperature for highly efficient planar heterojunction solar cells, ACS Appl. Mater. Interfaces 10 (2018) 38183-38192 doi: 10.1021/acsami.8b11474
|
[11] |
N. Rolston, K.A. Bush, A.D. Printz, A. Gold-Parker, Y. Ding, M.F. Toney, R.H. Dauskardt, Engineering stress in perovskite solar cells to improve stability, Adv. Energy Mater. 8 (2018) 1802139 doi: 10.1002/aenm.201802139
|
[12] |
J. Kim, S.H. Lee, J.H. Lee, K.H. Hong, The role of intrinsic defects in methylammonium lead iodide perovskite, J. Phys. Chem. Lett. 5 (2014) 1312-1317 doi: 10.1021/jz500370k
|
[13] |
D. Zhang, B.B. Cui, C. Zhou, L. Li, Y. Chen, N. Zhou, Q. Chen, Reduction of intrinsic defects in hybrid perovskite films via precursor purification, Chem. Commun. 53 (2017) 10548-10551 doi: 10.1039/C7CC05590K
|
[14] |
Z. Liu, J. Hu, H. Jiao, L. Li, G. Zheng, Y. Chen, H. Zhou, Chemical reduction of intrinsic defects in thicker heterojunction planar perovskite solar cells, Adv. Mater. 29 (2017) 1606774 doi: 10.1002/adma.201606774
|
[15] |
Y. Li, C. Zhang, X. Zhang, D. Huang, Q. Shen, Y. Cheng, W. Huang, Intrinsic point defects in inorganic perovskite CsPbI3 from first-principles prediction, Appl. Phys. Lett. 111 (2017) 162106 doi: 10.1063/1.5001535
|
[16] |
X. He, J. Chen, X. Ren, et al, 1% Record low-light solar-cell efficiency by holistic trap-passivation using micrometer-thick perovskite film, Adv. Mater. 40 (2021) 2100770
|
[17] |
Y. Yang, S. Feng, M. Li, F. Li, C. Zhang, Y. Han, B. Sun, Enormously improved CH3NH3PbI3 film surface for environmentally stable planar perovskite solar cells with PCE exceeding 19.9%, Nano. Energy 48 (2018) 10-19 doi: 10.1016/j.nanoen.2018.03.046
|
[18] |
J.A. Steele, H. Jin, I. Dovgaliuk, et al, Thermal unequilibrium of strained black CsPbI3 thin films, Science 365 (2019) 679-684 doi: 10.1126/science.aax3878
|
[19] |
L.A. Frolova, D.V. Anokhin, A.A. Piryazev, S.Y. Luchkin, N.N. Dremova, K.J. Stevenson, P.A. Troshin, Highly efficient all-inorganic planar heterojunction perovskite solar cells produced by thermal coevaporation of CsI and PbI2, J. Phys. Chem. Lett. 8 (2017) 67-72 doi: 10.1021/acs.jpclett.6b02594
|
[20] |
G. Kresse, J. Hafner, Ab initio molecular dynamics for liquid metals, Phys. Rev. B. 47 (1993) 558-561 doi: 10.1103/PhysRevB.47.558
|
[21] |
M. Zhang, Z. Zheng, Q. Fu, P. Guo, S. Zhang, C. Chen, Y. Tian, Determination of defect levels in melt-grown all-inorganic perovskite CsPbBr3 crystals by thermally stimulated current spectra, J. Phys. Chem. C. 122 (2018) 10309-10315
|
[22] |
J. Yu, G. Liu, C. Chen, Y. Li, M. Xu, T. Wang, L. Zhang, Perovskite CsPbBr3 crystals: growth and applications, J. Mater. Chem. C. 8 (2020) 6326-6341 doi: 10.1039/D0TC00922A
|
[23] |
Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells, Nat. Commun. 5 (2014) 5784 doi: 10.1038/ncomms6784
|
[24] |
Z. Ni, C. Bao, Y. Liu, et al, Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells, Science 367 (2020) 1352-1358 doi: 10.1126/science.aba0893
|
[25] |
Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, J. You, Surface passivation of perovskite film for efficient solar cells, Nat. Photonics 13 (2019) 460-466 doi: 10.1038/s41566-019-0398-2
|
[26] |
J.M. Azpiroz, E. Mosconi, J. Bisquert, F. De Angelis, Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation, Energy Environ. Sci. 8 (2015) 2118-2127 doi: 10.1039/C5EE01265A
|
[27] |
Y. Chen, S. Tan, N. Li, et al, Self-Elimination of Intrinsic Defects improves the low-temperature performance of perovskite photovoltaics, Joule 4 (2020) 1961-1976 doi: 10.1016/j.joule.2020.07.006
|
[28] |
B. Li, Y. Zhang, L. Fu, T. Yu, S. Zhou, L. Zhang, Yin, Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells, Nat. Commun. 9 (2018) 1076 doi: 10.1038/s41467-018-03169-0
|
[29] |
Y. Cui, Y. Wang, J. Bergqvist, H. Yao, Y. Xu, B. Gao, J. Hou, Wide-gap non-fullerene acceptor enabling high-performance organic photovoltaic cells for indoor applications, Nat. Energy 4 (2019) 768-775 doi: 10.1038/s41560-019-0448-5
|
[30] |
N. Rolston, K.A. Bush, A.D. Printz, A. Gold-Parker, Y. Ding, M.F. Toney, R.H. Dauskardt, Engineering stress in perovskite solar cells to improve stability, Adv. Energy Mater. 8 (2018) 1802139 doi: 10.1002/aenm.201802139
|
[31] |
C.C. Boyd, R. Cheacharoen, T. Leijtens, M.D. McGehee, Understanding degradation mechanisms and improving stability of perovskite photovoltaics, Chem. Rev. 119 (2019) 3418-3451 doi: 10.1021/acs.chemrev.8b00336
|