Volume 1 Issue 1
May  2021
Turn off MathJax
Article Contents
Ye Shufen, Wang Lifeng, Liu Fanfan, Shi Pengcheng, Yu Yan. Integration of homogeneous and heterogeneous nucleation growth via 3D alloy framework for stable Na/K metal anode[J]. eScience, 2021, 1(1): 75-82. doi: 10.1016/j.esci.2021.09.003
Citation: Ye Shufen, Wang Lifeng, Liu Fanfan, Shi Pengcheng, Yu Yan. Integration of homogeneous and heterogeneous nucleation growth via 3D alloy framework for stable Na/K metal anode[J]. eScience, 2021, 1(1): 75-82. doi: 10.1016/j.esci.2021.09.003

Integration of homogeneous and heterogeneous nucleation growth via 3D alloy framework for stable Na/K metal anode

doi: 10.1016/j.esci.2021.09.003
More Information
  • Corresponding author: E-mail address: yanyumse@ustc.edu.cn (Y. Yu)
  • Received Date: 2021-06-18
  • Revised Date: 2021-08-07
  • Accepted Date: 2021-09-22
  • Available Online: 2021-09-24
  • Sodium/Potassium (Na/K) metal anodes have been considered as the promising anodes for next-generation Na/K secondary batteries owing to their ultrahigh specific capacity, low redox potential and low cost. However, their practical application is still hampered due to unstable solid electrolyte interphase, infinite volume change, and dendrite growth. Herein, we design a 3D-Na3Bi/3D-K3Bi alloy host which enables the homogeneous and heterogeneous nucleation growth of Na/K metal. The unique structure with periodic alternating of electron and ion conductivity improves the mass transfer kinetics and prevents the volume expansion during cycling. Meanwhile, the sodiophilicity of Na3Bi/potassiophilicity of K3Bi framework can avoid dendritic growth. Cycling lifespans over 700 h with 1 mAh cm?2 for 3D-Na3Bi@Na electrode and about 450 h with 1 mAh cm?2 for 3D-K3Bi@K electrode are achieved, respectively. 3D-Na3Bi@Na||Na3V2(PO4)3 full battery shows sustainable cycle performance over 400 cycles. This design provides a simple but effective approach for achieving safety of sodium/potassium metal anodes.
  • loading
  • eScience-2021-1-75-1-s2.0-S2667141721000057-mmc1.docx
  • [1]
    A. Wang, X. Hu, H. Tang, et al, Processable and moldable sodium-metal anodes, Angew. Chem. Int. Ed. 56 (2017) 11921-11926 doi: 10.1002/anie.201703937
    [2]
    S. Wei, S. Xu, A. Akanksha, C. Snehashis, Y. Lu, Z. Tu, L. Ma, L.A. Archer, A stable room-temperature sodium–sulfur battery, Nat. Commun. 7 (2016) 11722 doi: 10.1038/ncomms11722
    [3]
    J. Zhu, J. Zou, H. Cheng, Y. Gu, Z. Lu, High energy batteries based on sulfur cathode, Green Energy Environ. 4 (2019) 345-359 doi: 10.1016/j.gee.2018.07.001
    [4]
    C. Wei, Y. Tao, H. Fei, Y. An, Y. Tian, J. Feng, Y. Qian, Recent advances and perspectives in stable and dendrite-free potassium metal anodes, Energy Storage Mater. 30 (2020) 206-227 doi: 10.1016/j.ensm.2020.05.018
    [5]
    Z. Lin, Q. Xia, W. Wang, W. Li, S. Chou, Recent research progresses in ether-and ester-based electrolytes for sodium-ion batteries, InfoMat 1 (2019) 376-389 doi: 10.1002/inf2.12023
    [6]
    J. Zhou, Y. Liu, S. Zhang, T. Zhou, Z. Guo, Metal chalcogenides for potassium storage, InfoMat 2 (2020) 437-465 doi: 10.1002/inf2.12101
    [7]
    C. Zhao, Y. Lu, L. Chen, Y.S. Hu, Flexible Na batteries, InfoMat 2 (2019) 126-138
    [8]
    L. Zhu, X.X. Yang, Y.H. Xiang, P. Kong, X.W. Wu, Neurons-system-like structured SnS2/CNTs composite for high-performance sodium-ion battery anode, Rare Met. 40 (2021) 1383-1390 doi: 10.1007/s12598-020-01555-6
    [9]
    J. Yang, H. -L. Wan, Z. -H. Zhang, et al, NASICON-structured Na3.1Zr1.95Mg0.05Si2PO12 solid electrolyte for solid-state sodium batteries, Rare Met. 37 (2018) 480-487 doi: 10.1007/s12598-018-1020-3
    [10]
    H. Usui, Y. Domi, R. Yamagami, H. Sakaguchi, Degradation mechanism of tin phosphide as Na-ion battery negative electrode, Green Energy Environ. 4 (2019) 121-126 doi: 10.1016/j.gee.2019.01.001
    [11]
    K. Chen, G. Li, Y. Wang, W. Chen, L. Mi, High loading FeS2 nanoparticles anchored on biomass-derived carbon tube as low cost and long cycle anode for sodium-ion batteries, Green Energy Environ. 5 (2020) 50-58 doi: 10.1016/j.gee.2019.11.001
    [12]
    F. Liu, Z. Zhang, S. Ye, Y. Yao, Y. Yu, Challenges and improvement strategies progress of lithium metal anode, Acta Phys. -Chim. Sin. 37 (2020) 2006021
    [13]
    X. Wu, K. Pan, M. Jia, Y. Ren, H. He, L. Zhang, S. Zhang, Electrolyte for lithium protection: from liquid to solid, Green Energy Environ. 4 (2019) 360-374 doi: 10.1016/j.gee.2019.05.003
    [14]
    X. Meng, Y. Xu, H. Cao, X. Lin, P. Ning, Y. Zhang, Y.G. Garcia, Internal failure of anode materials for lithium batteries — a critical review, Green Energy Environ. 5 (2020) 22-36 doi: 10.1016/j.gee.2019.10.003
    [15]
    L. Ye, M. Liao, T. Zhao, H. Sun, Y. Zhao, X. Sun, B. Wang, H. Peng, A sodiophilic interphase-mediated, dendrite-free anode with ultrahigh specific capacity for sodium-metal batteries, Angew. Chem., Int. Ed. 58 (2019) 17054-17060 doi: 10.1002/anie.201910202
    [16]
    C. Dai, G. Sun, L. Hu, Y. Xiao, Z. Zhang, L. Qu, Recent progress in graphene-based electrodes for flexible batteries, InfoMat 2 (2020) 509-526 doi: 10.1002/inf2.12039
    [17]
    W. Fang, R. Jiang, H. Zheng, Y. Zheng, Y. Sun, X. Liang, H. -F. Xiang, Y. -Z. Feng, Y. Yu, Stable sodium metal anode enhanced by advanced electrolytes with SbF3 additive, Rare Met. 40 (2020) 433-439
    [18]
    G. Zeng, Y. Liu, C. Gu, K. Zhang, Y. An, C. Wei, J. Feng, J. Ni, A nonflammable fluorinated carbonate electrolyte for sodium-ion batteries, Acta Phys. -Chim. Sin. 36 (2020) 1905006
    [19]
    M. Zhou, P. Bai, X. Ji, J. Yang, C. Wang, Y. Xu, Electrolytes and interphases in potassium ion batteries, Adv. Mater. 33 (2021) 2003741 doi: 10.1002/adma.202003741
    [20]
    Z. Cheng, Y. Mao, Q. Dong, F. Jin, Y. Shen, L. Chen, Fluoroethylene carbonate as an additive for sodium-ion batteries: effect on the sodium cathode, Acta Phys. -Chim. Sin. 35 (2019) 868-875 doi: 10.3866/PKU.WHXB201811033
    [21]
    S. Liu, J. Mao, L. Zhang, W.K. Pang, A. Du, Z. Guo, Manipulating the solvation structure of nonflammable electrolyte and interface to enable unprecedented stability of graphite anodes beyond 2 years for safe potassium-ion batteries, Adv. Mater. 33 (2021) 2006313 doi: 10.1002/adma.202006313
    [22]
    M. Zhu, G. Wang, X. Liu, et al, Dendrite-free sodium metal anodes enabled by a sodium benzenedithiolate-rich protection layer, Angew. Chem. Int. Ed. 59 (2020) 6596-6600 doi: 10.1002/anie.201916716
    [23]
    H. Wang, J. Hu, J. Dong, K.C. Lau, L. Qin, Y. Lei, B. Li, D. Zhai, Y. Wu, F. Kang, Artificial solid-electrolyte interphase enabled high-capacity and stable cycling potassium metal batteries, Adv. Energy Mater. 9 (2019) 1902697 doi: 10.1002/aenm.201902697
    [24]
    X. Tang, D. Zhou, P. Li, X. Guo, B. Sun, H. Liu, K. Yan, Y. Gogotsi, G. Wang, MXene-based dendrite-free potassium metal batteries, Adv. Mater. 32 (2019) 1906739
    [25]
    X. Jin, Y. Zhao, Z. Shen, J. Pu, X. Xu, C. Zhong, S. Zhang, J. Li, H. Zhang, Interfacial design principle of sodiophilicity-regulated interlayer deposition in a sandwiched sodium metal anode, Energy Storage Mater. 31 (2020) 221-229 doi: 10.1016/j.ensm.2020.06.040
    [26]
    X. Zhao, F. Chen, J. Liu, M. Cheng, H. Su, J. Liu, Y. Xu, Enhanced surface binding energy regulates uniform potassium deposition for stable potassium metal anodes, J. Mater. Chem. A 8 (2020) 5671-5678 doi: 10.1039/C9TA14226F
    [27]
    G. Li, Q. Yang, J. Chao, B. Zhang, M. Wan, X. Liu, E. Mao, L. Wang, H. Yang, Z.W. Seh, J. Jiang, Y. Sun, Enhanced processability and electrochemical cyclability of metallic sodium at elevated temperature using sodium alloy composite, Energy Storage Mater. 35 (2021) 310-316 doi: 10.1016/j.ensm.2020.11.015
    [28]
    X. Zheng, W. Yang, Z. Wang, L. Huang, S. Geng, J. Wen, W. Luo, Y. Huang, Embedding a percolated dual-conductive skeleton with high sodiophilicity toward stable sodium metal anodes, Nano Energy 69 (2020) 104387 doi: 10.1016/j.nanoen.2019.104387
    [29]
    M. Guo, H. Dou, W. Zhao, X. Zhao, B. Wan, J. Wang, Y. Yan, X. Wang, Z. -F. Ma, X. Yang, Three dimensional frameworks of super ionic conductor for thermodynamically and dynamically favorable sodium metal anode, Nano Energy 70 (2020) 104479 doi: 10.1016/j.nanoen.2020.104479
    [30]
    L. Qin, Y. Lei, H. Wang, J. Dong, Y. Wu, D. Zhai, F. Kang, Y. Tao, Q.H. Yang, Capillary encapsulation of metallic potassium in aligned carbon nanotubes for use as stable potassium metal anodes, Adv. Energy Mater. 9 (2019) 1901427 doi: 10.1002/aenm.201901427
    [31]
    C. Lu, Z. Gao, B. Liu, Z. Shi, Y. Yi, W. Zhao, W. Guo, Z. Liu, J. Sun, Synchronous promotion in sodiophilicity and conductivity of flexible host via vertical graphene cultivator for longevous sodium metal batteries, Adv. Funct. Mater. 31 (2021) 2101233 doi: 10.1002/adfm.202101233
    [32]
    C. Zhang, S. Liu, G. Li, C. Zhang, X. Liu, J. Luo, Incorporating ionic paths into 3D conducting scaffolds for high volumetric and areal capacity, high rate lithium-metal anodes, Adv. Mater. 30 (2018) 1801328 doi: 10.1002/adma.201801328
    [33]
    J. Xiong, S. Kushwaha, J. Krizan, T. Liang, R.J. Cava, N.P. Ong, Anomalous conductivity tensor in the Dirac semimetal Na3Bi, EPL 114 (2016) 27002 doi: 10.1209/0295-5075/114/27002
    [34]
    Q. Chen, H. He, Z. Hou, W. Zhuang, T. Zhang, Z. Sun, L. Huang, Building an artificial solid electrolyte interphase with high-uniformity and fast ion diffusion for ultralong-life sodium metal anodes, J. Mater. Chem. A 8 (2020) 16232-16237 doi: 10.1039/D0TA04715E
    [35]
    S. Zhang, Q. Fan, Y. Liu, S. Xi, X. Liu, Z. Wu, J. Hao, W.K. Pang, T. Zhou, Z. Guo, Dehydration-triggered ionic channel engineering in potassium niobate for Li/K-ion storage, Adv. Mater. 32 (2020) 2000380 doi: 10.1002/adma.202000380
    [36]
    X. -f. Yu, G. Giorgi, H. Ushiyama, K. Yamashita, First-principles study of fast Na diffusion in Na3P, Chem. Phys. Lett. 612 (2014) 129-133 doi: 10.1016/j.cplett.2014.08.010
    [37]
    C. Chu, N. Wang, L. Li, L. Lin, F. Tian, Y. Li, J. Yang, S. -x. Dou, Y. Qian, Uniform nucleation of sodium in 3D carbon nanotube framework via oxygen doping for long-life and efficient Na metal anodes, Energy Storage Mater. 23 (2019) 137-143 doi: 10.1016/j.ensm.2019.05.020
    [38]
    W. Go, M.H. Kim, J. Park, C.H. Lim, S.H. Joo, Y. Kim, H.W. Lee, Nanocrevasse-rich carbon fibers for stable lithium and sodium metal anodes, Nano Lett. 19 (2019) 1504-1511 doi: 10.1021/acs.nanolett.8b04106
    [39]
    M. Zhu, S. Li, B. Li, Y. Gong, Z. Du, S. Yang, Homogeneous guiding deposition of sodium through main group II metals toward dendrite-free sodium anodes, Sci. Adv. 5 (2019) eaau6264 doi: 10.1126/sciadv.aau6264
    [40]
    T. Yang, T. Qian, Y. Sun, J. Zhong, F. Rosei, C. Yan, Mega high utilization of sodium metal anodes enabled by single zinc atom sites, Nano Lett. 19 (2019) 7827-7835 doi: 10.1021/acs.nanolett.9b02833
    [41]
    B. Sun, P. Li, J. Zhang, D. Wang, P. Munroe, C. Wang, P.H.L. Notten, G. Wang, Dendrite-free sodium-metal anodes for high-energy sodium-metal batteries, Adv. Mater. 30 (2018) e1801334 doi: 10.1002/adma.201801334
    [42]
    P. Li, T. Xu, P. Ding, et al, Highly reversible Na and K metal anodes enabled by carbon paper protection, Energy Storage Mater. 15 (2018) 8-13
    [43]
    Y. Jiang, X. Zhou, D. Li, X. Cheng, F. Liu, Y. Yu, Highly reversible Na storage in Na3V2(PO4)3 by optimizing nanostructure and rational surface engineering, Adv. Energy Mater. 8 (2018) 1800068 doi: 10.1002/aenm.201800068
    [44]
    C. Wang, D. Du, M. Song, Y. Wang, F. Li, A high-power Na3V2(PO4)3-Bi sodium-ion full battery in a wide temperature range, Adv. Energy Mater. 9 (2019) 1900022 doi: 10.1002/aenm.201900022
    [45]
    X. Cheng, R. Shao, D. Li, H. Yang, Y. Wu, B. Wang, C. Sun, Y. Jiang, Q. Zhang, Y. Yu, A self-healing volume variation three-dimensional continuous bulk porous bismuth for ultrafast sodium storage, Adv. Funct. Mater. 31 (2021) 2011264 doi: 10.1002/adfm.202011264
    [46]
    P. Xiong, P. Bai, A. Li, B. Li, M. Cheng, Y. Chen, S. Huang, Q. Jiang, X.H. Bu, Y. Xu, Bismuth nanoparticle@carbon composite anodes for ultralong cycle life and high-rate sodium-ion batteries, Adv. Mater. 31 (2019) 1904771 doi: 10.1002/adma.201904771
    [47]
    A. Kushima, K.P. So, C. Su, P. Bai, N. Kuriyama, T. Maebashi, Y. Fujiwara, M.Z. Bazant, J. Li, Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams, Nano Energy 32 (2017) 271-279 doi: 10.1016/j.nanoen.2016.12.001
    [48]
    S. -H. Qi, J. -W. Deng, W. -C. Zhang, Y. -Z. Feng, J. -M. Ma, Recent advances in alloy-based anode materials for potassium ion batteries, Rare Met. 39 (2020) 970-988 doi: 10.1007/s12598-020-01454-w
    [49]
    K. -X. Lei, J. Wang, C. Chen, S. -Y. Li, S. -W. Wang, S. -J. Zheng, F. -J. Li, Recent progresses on alloy-based anodes for potassium-ion batteries, Rare Met. 39 (2020) 989-1004 doi: 10.1007/s12598-020-01463-9
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (331) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return