Citation: | Ye Shufen, Wang Lifeng, Liu Fanfan, Shi Pengcheng, Yu Yan. Integration of homogeneous and heterogeneous nucleation growth via 3D alloy framework for stable Na/K metal anode[J]. eScience, 2021, 1(1): 75-82. doi: 10.1016/j.esci.2021.09.003 |
![]() |
![]() |
[1] |
A. Wang, X. Hu, H. Tang, et al, Processable and moldable sodium-metal anodes, Angew. Chem. Int. Ed. 56 (2017) 11921-11926 doi: 10.1002/anie.201703937
|
[2] |
S. Wei, S. Xu, A. Akanksha, C. Snehashis, Y. Lu, Z. Tu, L. Ma, L.A. Archer, A stable room-temperature sodium–sulfur battery, Nat. Commun. 7 (2016) 11722 doi: 10.1038/ncomms11722
|
[3] |
J. Zhu, J. Zou, H. Cheng, Y. Gu, Z. Lu, High energy batteries based on sulfur cathode, Green Energy Environ. 4 (2019) 345-359 doi: 10.1016/j.gee.2018.07.001
|
[4] |
C. Wei, Y. Tao, H. Fei, Y. An, Y. Tian, J. Feng, Y. Qian, Recent advances and perspectives in stable and dendrite-free potassium metal anodes, Energy Storage Mater. 30 (2020) 206-227 doi: 10.1016/j.ensm.2020.05.018
|
[5] |
Z. Lin, Q. Xia, W. Wang, W. Li, S. Chou, Recent research progresses in ether-and ester-based electrolytes for sodium-ion batteries, InfoMat 1 (2019) 376-389 doi: 10.1002/inf2.12023
|
[6] |
J. Zhou, Y. Liu, S. Zhang, T. Zhou, Z. Guo, Metal chalcogenides for potassium storage, InfoMat 2 (2020) 437-465 doi: 10.1002/inf2.12101
|
[7] |
C. Zhao, Y. Lu, L. Chen, Y.S. Hu, Flexible Na batteries, InfoMat 2 (2019) 126-138
|
[8] |
L. Zhu, X.X. Yang, Y.H. Xiang, P. Kong, X.W. Wu, Neurons-system-like structured SnS2/CNTs composite for high-performance sodium-ion battery anode, Rare Met. 40 (2021) 1383-1390 doi: 10.1007/s12598-020-01555-6
|
[9] |
J. Yang, H. -L. Wan, Z. -H. Zhang, et al, NASICON-structured Na3.1Zr1.95Mg0.05Si2PO12 solid electrolyte for solid-state sodium batteries, Rare Met. 37 (2018) 480-487 doi: 10.1007/s12598-018-1020-3
|
[10] |
H. Usui, Y. Domi, R. Yamagami, H. Sakaguchi, Degradation mechanism of tin phosphide as Na-ion battery negative electrode, Green Energy Environ. 4 (2019) 121-126 doi: 10.1016/j.gee.2019.01.001
|
[11] |
K. Chen, G. Li, Y. Wang, W. Chen, L. Mi, High loading FeS2 nanoparticles anchored on biomass-derived carbon tube as low cost and long cycle anode for sodium-ion batteries, Green Energy Environ. 5 (2020) 50-58 doi: 10.1016/j.gee.2019.11.001
|
[12] |
F. Liu, Z. Zhang, S. Ye, Y. Yao, Y. Yu, Challenges and improvement strategies progress of lithium metal anode, Acta Phys. -Chim. Sin. 37 (2020) 2006021
|
[13] |
X. Wu, K. Pan, M. Jia, Y. Ren, H. He, L. Zhang, S. Zhang, Electrolyte for lithium protection: from liquid to solid, Green Energy Environ. 4 (2019) 360-374 doi: 10.1016/j.gee.2019.05.003
|
[14] |
X. Meng, Y. Xu, H. Cao, X. Lin, P. Ning, Y. Zhang, Y.G. Garcia, Internal failure of anode materials for lithium batteries — a critical review, Green Energy Environ. 5 (2020) 22-36 doi: 10.1016/j.gee.2019.10.003
|
[15] |
L. Ye, M. Liao, T. Zhao, H. Sun, Y. Zhao, X. Sun, B. Wang, H. Peng, A sodiophilic interphase-mediated, dendrite-free anode with ultrahigh specific capacity for sodium-metal batteries, Angew. Chem., Int. Ed. 58 (2019) 17054-17060 doi: 10.1002/anie.201910202
|
[16] |
C. Dai, G. Sun, L. Hu, Y. Xiao, Z. Zhang, L. Qu, Recent progress in graphene-based electrodes for flexible batteries, InfoMat 2 (2020) 509-526 doi: 10.1002/inf2.12039
|
[17] |
W. Fang, R. Jiang, H. Zheng, Y. Zheng, Y. Sun, X. Liang, H. -F. Xiang, Y. -Z. Feng, Y. Yu, Stable sodium metal anode enhanced by advanced electrolytes with SbF3 additive, Rare Met. 40 (2020) 433-439
|
[18] |
G. Zeng, Y. Liu, C. Gu, K. Zhang, Y. An, C. Wei, J. Feng, J. Ni, A nonflammable fluorinated carbonate electrolyte for sodium-ion batteries, Acta Phys. -Chim. Sin. 36 (2020) 1905006
|
[19] |
M. Zhou, P. Bai, X. Ji, J. Yang, C. Wang, Y. Xu, Electrolytes and interphases in potassium ion batteries, Adv. Mater. 33 (2021) 2003741 doi: 10.1002/adma.202003741
|
[20] |
Z. Cheng, Y. Mao, Q. Dong, F. Jin, Y. Shen, L. Chen, Fluoroethylene carbonate as an additive for sodium-ion batteries: effect on the sodium cathode, Acta Phys. -Chim. Sin. 35 (2019) 868-875 doi: 10.3866/PKU.WHXB201811033
|
[21] |
S. Liu, J. Mao, L. Zhang, W.K. Pang, A. Du, Z. Guo, Manipulating the solvation structure of nonflammable electrolyte and interface to enable unprecedented stability of graphite anodes beyond 2 years for safe potassium-ion batteries, Adv. Mater. 33 (2021) 2006313 doi: 10.1002/adma.202006313
|
[22] |
M. Zhu, G. Wang, X. Liu, et al, Dendrite-free sodium metal anodes enabled by a sodium benzenedithiolate-rich protection layer, Angew. Chem. Int. Ed. 59 (2020) 6596-6600 doi: 10.1002/anie.201916716
|
[23] |
H. Wang, J. Hu, J. Dong, K.C. Lau, L. Qin, Y. Lei, B. Li, D. Zhai, Y. Wu, F. Kang, Artificial solid-electrolyte interphase enabled high-capacity and stable cycling potassium metal batteries, Adv. Energy Mater. 9 (2019) 1902697 doi: 10.1002/aenm.201902697
|
[24] |
X. Tang, D. Zhou, P. Li, X. Guo, B. Sun, H. Liu, K. Yan, Y. Gogotsi, G. Wang, MXene-based dendrite-free potassium metal batteries, Adv. Mater. 32 (2019) 1906739
|
[25] |
X. Jin, Y. Zhao, Z. Shen, J. Pu, X. Xu, C. Zhong, S. Zhang, J. Li, H. Zhang, Interfacial design principle of sodiophilicity-regulated interlayer deposition in a sandwiched sodium metal anode, Energy Storage Mater. 31 (2020) 221-229 doi: 10.1016/j.ensm.2020.06.040
|
[26] |
X. Zhao, F. Chen, J. Liu, M. Cheng, H. Su, J. Liu, Y. Xu, Enhanced surface binding energy regulates uniform potassium deposition for stable potassium metal anodes, J. Mater. Chem. A 8 (2020) 5671-5678 doi: 10.1039/C9TA14226F
|
[27] |
G. Li, Q. Yang, J. Chao, B. Zhang, M. Wan, X. Liu, E. Mao, L. Wang, H. Yang, Z.W. Seh, J. Jiang, Y. Sun, Enhanced processability and electrochemical cyclability of metallic sodium at elevated temperature using sodium alloy composite, Energy Storage Mater. 35 (2021) 310-316 doi: 10.1016/j.ensm.2020.11.015
|
[28] |
X. Zheng, W. Yang, Z. Wang, L. Huang, S. Geng, J. Wen, W. Luo, Y. Huang, Embedding a percolated dual-conductive skeleton with high sodiophilicity toward stable sodium metal anodes, Nano Energy 69 (2020) 104387 doi: 10.1016/j.nanoen.2019.104387
|
[29] |
M. Guo, H. Dou, W. Zhao, X. Zhao, B. Wan, J. Wang, Y. Yan, X. Wang, Z. -F. Ma, X. Yang, Three dimensional frameworks of super ionic conductor for thermodynamically and dynamically favorable sodium metal anode, Nano Energy 70 (2020) 104479 doi: 10.1016/j.nanoen.2020.104479
|
[30] |
L. Qin, Y. Lei, H. Wang, J. Dong, Y. Wu, D. Zhai, F. Kang, Y. Tao, Q.H. Yang, Capillary encapsulation of metallic potassium in aligned carbon nanotubes for use as stable potassium metal anodes, Adv. Energy Mater. 9 (2019) 1901427 doi: 10.1002/aenm.201901427
|
[31] |
C. Lu, Z. Gao, B. Liu, Z. Shi, Y. Yi, W. Zhao, W. Guo, Z. Liu, J. Sun, Synchronous promotion in sodiophilicity and conductivity of flexible host via vertical graphene cultivator for longevous sodium metal batteries, Adv. Funct. Mater. 31 (2021) 2101233 doi: 10.1002/adfm.202101233
|
[32] |
C. Zhang, S. Liu, G. Li, C. Zhang, X. Liu, J. Luo, Incorporating ionic paths into 3D conducting scaffolds for high volumetric and areal capacity, high rate lithium-metal anodes, Adv. Mater. 30 (2018) 1801328 doi: 10.1002/adma.201801328
|
[33] |
J. Xiong, S. Kushwaha, J. Krizan, T. Liang, R.J. Cava, N.P. Ong, Anomalous conductivity tensor in the Dirac semimetal Na3Bi, EPL 114 (2016) 27002 doi: 10.1209/0295-5075/114/27002
|
[34] |
Q. Chen, H. He, Z. Hou, W. Zhuang, T. Zhang, Z. Sun, L. Huang, Building an artificial solid electrolyte interphase with high-uniformity and fast ion diffusion for ultralong-life sodium metal anodes, J. Mater. Chem. A 8 (2020) 16232-16237 doi: 10.1039/D0TA04715E
|
[35] |
S. Zhang, Q. Fan, Y. Liu, S. Xi, X. Liu, Z. Wu, J. Hao, W.K. Pang, T. Zhou, Z. Guo, Dehydration-triggered ionic channel engineering in potassium niobate for Li/K-ion storage, Adv. Mater. 32 (2020) 2000380 doi: 10.1002/adma.202000380
|
[36] |
X. -f. Yu, G. Giorgi, H. Ushiyama, K. Yamashita, First-principles study of fast Na diffusion in Na3P, Chem. Phys. Lett. 612 (2014) 129-133 doi: 10.1016/j.cplett.2014.08.010
|
[37] |
C. Chu, N. Wang, L. Li, L. Lin, F. Tian, Y. Li, J. Yang, S. -x. Dou, Y. Qian, Uniform nucleation of sodium in 3D carbon nanotube framework via oxygen doping for long-life and efficient Na metal anodes, Energy Storage Mater. 23 (2019) 137-143 doi: 10.1016/j.ensm.2019.05.020
|
[38] |
W. Go, M.H. Kim, J. Park, C.H. Lim, S.H. Joo, Y. Kim, H.W. Lee, Nanocrevasse-rich carbon fibers for stable lithium and sodium metal anodes, Nano Lett. 19 (2019) 1504-1511 doi: 10.1021/acs.nanolett.8b04106
|
[39] |
M. Zhu, S. Li, B. Li, Y. Gong, Z. Du, S. Yang, Homogeneous guiding deposition of sodium through main group II metals toward dendrite-free sodium anodes, Sci. Adv. 5 (2019) eaau6264 doi: 10.1126/sciadv.aau6264
|
[40] |
T. Yang, T. Qian, Y. Sun, J. Zhong, F. Rosei, C. Yan, Mega high utilization of sodium metal anodes enabled by single zinc atom sites, Nano Lett. 19 (2019) 7827-7835 doi: 10.1021/acs.nanolett.9b02833
|
[41] |
B. Sun, P. Li, J. Zhang, D. Wang, P. Munroe, C. Wang, P.H.L. Notten, G. Wang, Dendrite-free sodium-metal anodes for high-energy sodium-metal batteries, Adv. Mater. 30 (2018) e1801334 doi: 10.1002/adma.201801334
|
[42] |
P. Li, T. Xu, P. Ding, et al, Highly reversible Na and K metal anodes enabled by carbon paper protection, Energy Storage Mater. 15 (2018) 8-13
|
[43] |
Y. Jiang, X. Zhou, D. Li, X. Cheng, F. Liu, Y. Yu, Highly reversible Na storage in Na3V2(PO4)3 by optimizing nanostructure and rational surface engineering, Adv. Energy Mater. 8 (2018) 1800068 doi: 10.1002/aenm.201800068
|
[44] |
C. Wang, D. Du, M. Song, Y. Wang, F. Li, A high-power Na3V2(PO4)3-Bi sodium-ion full battery in a wide temperature range, Adv. Energy Mater. 9 (2019) 1900022 doi: 10.1002/aenm.201900022
|
[45] |
X. Cheng, R. Shao, D. Li, H. Yang, Y. Wu, B. Wang, C. Sun, Y. Jiang, Q. Zhang, Y. Yu, A self-healing volume variation three-dimensional continuous bulk porous bismuth for ultrafast sodium storage, Adv. Funct. Mater. 31 (2021) 2011264 doi: 10.1002/adfm.202011264
|
[46] |
P. Xiong, P. Bai, A. Li, B. Li, M. Cheng, Y. Chen, S. Huang, Q. Jiang, X.H. Bu, Y. Xu, Bismuth nanoparticle@carbon composite anodes for ultralong cycle life and high-rate sodium-ion batteries, Adv. Mater. 31 (2019) 1904771 doi: 10.1002/adma.201904771
|
[47] |
A. Kushima, K.P. So, C. Su, P. Bai, N. Kuriyama, T. Maebashi, Y. Fujiwara, M.Z. Bazant, J. Li, Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: root growth, dead lithium and lithium flotsams, Nano Energy 32 (2017) 271-279 doi: 10.1016/j.nanoen.2016.12.001
|
[48] |
S. -H. Qi, J. -W. Deng, W. -C. Zhang, Y. -Z. Feng, J. -M. Ma, Recent advances in alloy-based anode materials for potassium ion batteries, Rare Met. 39 (2020) 970-988 doi: 10.1007/s12598-020-01454-w
|
[49] |
K. -X. Lei, J. Wang, C. Chen, S. -Y. Li, S. -W. Wang, S. -J. Zheng, F. -J. Li, Recent progresses on alloy-based anodes for potassium-ion batteries, Rare Met. 39 (2020) 989-1004 doi: 10.1007/s12598-020-01463-9
|