Volume 1 Issue 1
May  2021
Turn off MathJax
Article Contents
Miao Yanfeng, Wang Xingtao, Zhang Haijuan, Zhang Taiyang, Wei Ning, Liu Xiaomin, Chen Yuetian, Chen Jie, Zhao Yixin. In situ growth of ultra-thin perovskitoid layer to stabilize and passivate MAPbI3 for efficient and stable photovoltaics[J]. eScience, 2021, 1(1): 91-97. doi: 10.1016/j.esci.2021.09.005
Citation: Miao Yanfeng, Wang Xingtao, Zhang Haijuan, Zhang Taiyang, Wei Ning, Liu Xiaomin, Chen Yuetian, Chen Jie, Zhao Yixin. In situ growth of ultra-thin perovskitoid layer to stabilize and passivate MAPbI3 for efficient and stable photovoltaics[J]. eScience, 2021, 1(1): 91-97. doi: 10.1016/j.esci.2021.09.005

In situ growth of ultra-thin perovskitoid layer to stabilize and passivate MAPbI3 for efficient and stable photovoltaics

doi: 10.1016/j.esci.2021.09.005
More Information
  • Corresponding author: E-mail address: yixin.zhao@sjtu.edu.cn (Y. Zhao)
  • Received Date: 2021-06-29
  • Revised Date: 2021-09-13
  • Accepted Date: 2021-09-29
  • Available Online: 2021-10-02
  • The efficiency and stability of typical three-dimensional (3D) MAPbI3 perovskite-based solar cells are highly restricted, due to the weak interaction between methylammonium (MA+) and [PbI6]4-octahedra in the 3D structure, which can cause the ion migration and the related defects. Here, we found that the in situ-grown perovskitoid TEAPbI3 layer on 3D MAPbI3 can inhibit the MA+ migration in a polar solvent, thus enhancing the thermal and moisture stability of perovskite films. The crystal structure and orientation of TEAPbI3 are reported for the first time by single crystal and synchrotron radiation analysis. The ultra-thin perovskitoid layer can reduce the trap states and accelerate photo-carrier diffusion in perovskite solar cells, as confirmed by ultra-fast spectroscopy. The power conversion efficiency of TEAPbI3-MAPbI3 based solar cells increases from 18.87% to 21.79% with enhanced stability. This work suggests that passivation and stabilization by in situ-grown perovskitoid can be a promising strategy for efficient and stable perovskite solar cells.
  • loading
  • eScience-2021-1-91-1-s2.0-S2667141721000070-mmc1.docx
  • [1]
    A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131 (2009) 6050-6051 doi: 10.1021/ja809598r
    [2]
    J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells, Nature 499 (2013) 316-319 doi: 10.1038/nature12340
    [3]
    M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature 501 (2013) 395-398 doi: 10.1038/nature12509
    [4]
    H. Min, M. Kim, S. -U. Lee, H. Kim, G. Kim, K. Choi, J.H. Lee, S.I. Seok, Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide, Science 366 (2019) 749-753 doi: 10.1126/science.aay7044
    [5]
    Y. Wang, M.I. Dar, L.K. Ono, T. Zhang, M. Kan, Y. Li, L. Zhang, X. Wang, Y. Yang, X. Gao, Thermodynamically stabilized beta-CsPbI3-based perovskite solar cells with efficiencies > 18%, Science 365 (2019) 591-595 doi: 10.1126/science.aav8680
    [6]
    Y. Yuan, J. Huang, Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability, Acc. Chem. Res. 49 (2016) 286-293 doi: 10.1021/acs.accounts.5b00420
    [7]
    D. Wei, F. Ma, R. Wang, S. Dou, P. Cui, H. Huang, J. Ji, E. Jia, X. Jia, S. Sajid, Ion-migration inhibition by the cation-π interaction in perovskite materials for efficient and stable perovskite solar cells, Adv. Mater. 30 (2018) e1707583 doi: 10.1002/adma.201707583
    [8]
    Y. Lin, Y. Bai, Y. Fang, Q. Wang, Y. Deng, J. Huang, Suppressed ion migration in low-dimensional perovskites, ACS Energy Lett 2 (2017) 1571-1572 doi: 10.1021/acsenergylett.7b00442
    [9]
    S. Tan, I. Yavuz, N. De Marco, T. Huang, S.J. Lee, C.S. Choi, M. Wang, S. Nuryyeva, R. Wang, Y. Zhao, Steric impediment of ion migration contributes to improved operational stability of perovskite solar cells, Adv. Mater. 32 (2020) e1906995 doi: 10.1002/adma.201906995
    [10]
    T. Wu, Y. Wang, Z. Dai, D. Cui, T. Wang, X. Meng, E. Bi, X. Yang, L. Han, Efficient and stable CsPbI3 solar cells via regulating lattice distortion with surface organic terminal groups, Adv. Mater. 31 (2019) e1900605
    [11]
    M.I. Saidaminov, O.F. Mohammed, O.M. Bakr, Low-dimensional-networked metal halide perovskites: the next big thing, ACS Energy Lett. 2 (2017) 889-896 doi: 10.1021/acsenergylett.6b00705
    [12]
    H. Tsai, W. Nie, J.C. Blancon, C.C. Stoumpos, R. Asadpour, B. Harutyunyan, A.J. Neukirch, R. Verduzco, J.J. Crochet, S. Tretiak, High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells, Nature 536 (2016) 312-316 doi: 10.1038/nature18306
    [13]
    D.H. Cao, C.C. Stoumpos, O.K. Farha, J. T Hupp, M.G. Kanatzidis, 2D homologous perovskites as light-absorbing materials for solar cell applications, J. Am. Chem. Soc. 137 (2015) 7843-7850 doi: 10.1021/jacs.5b03796
    [14]
    B. Saparov, D.B. Mitzi, Organic-inorganic perovskites: structural versatility for functional materials design, Chem. Rev. 116 (2016) 4558-4596 doi: 10.1021/acs.chemrev.5b00715
    [15]
    R. Quintero-Bermudez, A. Gold-Parker, A.H. Proppe, R. Munir, Z. Yang, S.O. Kelley, A. Amassian, M.F. Toney, E.H. Sargent, Compositional and orientational control in metal halide perovskites of reduced dimensionality, Nat. Mater. 17 (2018) 900-907 doi: 10.1038/s41563-018-0154-x
    [16]
    C. Ma, D. Shen, T.W. Ng, M.F. Lo, C. S Lee, 2D perovskites with short interlayer distance for high-performance solar cell application, Adv. Mater. 30 (2018) e1800710 doi: 10.1002/adma.201800710
    [17]
    D. Lu, G. Lv, Z. Xu, Y. Dong, X. Ji, Y. Liu, Thiophene-based two-dimensional dion-jacobson perovskite solar cells with over 15% efficiency, J. Am. Chem. Soc. 142 (2020) 11114-11122 doi: 10.1021/jacs.0c03363
    [18]
    C. Ortiz-Cervantes, P.I. Roman-Roman, J. Vazquez-Chavez, M. Hernandez-Rodriguez, D. Solis-Ibarra, Thousand-fold conductivity increase in 2D perovskites by polydiacetylene incorporation and doping, Angew. Chem. Int. Ed. 57 (2018) 13882-13886 doi: 10.1002/anie.201809028
    [19]
    H. Tsai, R. Asadpour, J.C. Blancon, C.C. Stoumpos, J. Even, P.M. Ajayan, M.G. Kanatzidis, M.A. Alam, A.D. Mohite, W. Nie, Design principles for electronic charge transport in solution-processed vertically stacked 2D perovskite quantum wells, Nat. Commun. 9 (2018) 2130 doi: 10.1038/s41467-018-04430-2
    [20]
    P. Chen, Y. Bai, S. Wang, M. Lyu, J. -H. Yun, L. In Wang, Situ growth of 2D perovskite capping layer for stable and efficient perovskite solar cells, Adv. Funct. Mater. 28 (2018) 1706923 doi: 10.1002/adfm.201706923
    [21]
    Q. Zhou, L. Liang, J. Hu, B. Cao, L. Yang, T. Wu, X. Li, B. Zhang, P. Gao, High-performance perovskite solar cells with enhanced environmental stability based on a (p-FC6H4C2H4NH3)2[PbI4] capping layer, Adv. Energy Mater. 9 (2019) 1802595 doi: 10.1002/aenm.201802595
    [22]
    J. Hu, C. Wang, S. Qiu, Y. Zhao, E. Gu, L. Zeng, Y. Yang, C. Li, X. Liu, K. Forberich, Spontaneously self-assembly of a 2D/3D heterostructure enhances the efficiency and stability in printed perovskite solar cells, Adv. Energy Mater. 10 (2020) 2000173 doi: 10.1002/aenm.202000173
    [23]
    C.C. Stoumpos, L. Mao, C.D. Malliakas, M.G. Kanatzidis, Structure-band gap relationships in hexagonal polytypes and low-dimensional structures of hybrid tin iodide perovskites, Inorg. Chem. 56 (2017) 56-73 doi: 10.1021/acs.inorgchem.6b02764
    [24]
    F. Ansari, E. Shirzadi, M. Salavati-Niasari, T. LaGrange, K. Nonomura, J.H. Yum, K. Sivula, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Gratzel, Passivation mechanism exploiting surface dipoles affords high-performance perovskite solar cells, J. Am. Chem. Soc. 142 (2020) 11428-11433 doi: 10.1021/jacs.0c01704
    [25]
    N. Yang, C. Zhu, Y. Chen, H. Zai, C. Wang, X. Wang, H. Wang, S. Ma, Z. Gao, X. Wang, In-situ cross-linked 1D/3D perovskite heterostructure improves stability of hybrid perovskite solar cells for over 3000h operation, Energy Environ. Sci. 13 (2020) 4344-4352 doi: 10.1039/D0EE01736A
    [26]
    J. Fan, Y. Ma, C. Zhang, C. Liu, W. Li, R.E.I. Schropp, Y. Mai, Thermodynamically self-healing 1D-3D hybrid perovskite solar cells, Adv. Energy Mater. 8 (2018) 1703421 doi: 10.1002/aenm.201703421
    [27]
    C. Ma, D. Shen, B. Huang, X. Li, W. -C. Chen, M. -F. Lo, P. Wang, M. Hon-Wah Lam, Y. Lu, B. Ma, High performance low-dimensional perovskite solar cells based on a one dimensional lead iodide perovskite, J. Mater. Chem. A 7 (2019) 8811-8817 doi: 10.1039/C9TA01859J
    [28]
    Z. Yuan, C. Zhou, Y. Tian, Y. Shu, J. Messier, J.C. Wang, L.J. van de Burgt, K. Kountouriotis, Y. Xin, E. Holt, One-dimensional organic lead halide perovskites with efficient bluish white-light emission, Nat. Commun. 8 (2017) 14051 doi: 10.1038/ncomms14051
    [29]
    S. Yang, Y. Wang, P. Liu, Y. -B. Cheng, H.J. Zhao, H.G. Yang, Functionalization of perovskite thin films with moisture-tolerant molecules, Nat. Energy 1 (2016) 15016 doi: 10.1038/nenergy.2015.16
    [30]
    N.F. Jamaludin, N. Yantara, Y.F. Ng, M. Li, T.W. Goh, K. Thirumal, T.C. Sum, N. Mathews, C. Soci, S. Mhaisalkar, Grain size modulation and interfacial engineering of CH3NH3PbBr3 emitter films through incorporation of tetraethylammonium bromide, ChemPhysChem 19 (2018) 1075-1080 doi: 10.1002/cphc.201701380
    [31]
    X. Liu, X. Wang, T. Zhang, Y. Miao, Z. Qin, Y. Chen, Y. Zhao, Organic tetrabutylammonium cation intercalation to heal inorganic CsPbI3 perovskite, Angew. Chem. Int. Ed. 60 (2021) 12351-12355 doi: 10.1002/anie.202102538
    [32]
    X. Wang, Y. Wang, T. Zhang, X. Liu, Y. Zhao, Steric mixed-cation 2D perovskite as a methylammonium locker to stabilize MAPbI3, Angew. Chem. Int. Ed. 59 (2020) 1469-1473 doi: 10.1002/anie.201911518
    [33]
    M.I. Saidaminov, A.L. Abdelhady, B. Murali, E. Alarousu, V.M. Burlakov, W. Peng, I. Dursun, L. Wang, Y. He, G. Maculan, High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization, Nat. Commun. 6 (2015) 7586 doi: 10.1038/ncomms8586
    [34]
    Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, J. Huang, Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3 PbI3single crystals, Science 347 (2015) 967-970 doi: 10.1126/science.aaa5760
    [35]
    K. Leng, I. Abdelwahab, I. Verzhbitskiy, M. Telychko, L. Chu, W. Fu, X. Chi, N. Guo, Z. Chen, Z. Chen, Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation, Nat. Mater. 17 (2018) 908-914 doi: 10.1038/s41563-018-0164-8
    [36]
    X. Li, J.M. Hoffman, M.G. Kanatzidis, The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency, Chem. Rev. 121 (2021) 2230-2291 doi: 10.1021/acs.chemrev.0c01006
    [37]
    A. Krishna, S. Gottis, M.K. Nazeeruddin, F. Sauvage, Mixed dimensional 2D/3D hybrid perovskite absorbers: the future of perovskite solar cells?, Adv. Funct. Mater. 29 (2019) 1806482 doi: 10.1002/adfm.201806482
    [38]
    Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Surface passivation of perovskite film for efficient solar cells, Nat. Photonics 13 (2019) 460-466 doi: 10.1038/s41566-019-0398-2
    [39]
    Y. Wang, Y. Zhou, T. Zhang, M. -G. Ju, L. Zhang, M. Kan, Y. Li, X.C. Zeng, N.P. Padture, Y. Zhao, Integration of a functionalized graphene nano-network into a planar perovskite absorber for high-efficiency large-area solar cells, Mater. Horiz. 5 (2018) 868-873 doi: 10.1039/C8MH00511G
    [40]
    X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, XC. Zeng, J. Huang, Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations, Nat. Energy 2 (2017) 17102 doi: 10.1038/nenergy.2017.102
    [41]
    A.Z. Chen, M. Shiu, J.H. Ma, M.R. Alpert, D. Zhang, B.J. Foley, D.M. Smilgies, S.H. Lee, J.J. Choi, Origin of vertical orientation in two-dimensional metal halide perovskites and its effect on photovoltaic performance, Nat. Commun. 9 (2018) 1336 doi: 10.1038/s41467-018-03757-0
    [42]
    Q. Cui, X. Song, Y. Liu, Z. Xu, H. Ye, Z. Yang, K. Zhao, S. Liu, Halide-modulated self-assembly of metal-free perovskite single crystals for bio-friendly X-ray detection, Matter 4 (2021) 2490-2507 doi: 10.1016/j.matt.2021.05.018
    [43]
    A. Agresti, A. Pazniak, S. Pescetelli, A. Di Vito, D. Rossi, A. Pecchia, M. Auf der Maur, A. Liedl, R. Larciprete, D.V. Kuznetsov, et al, Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells, Nat. Mater. 18 (2019) 1228-1234 doi: 10.1038/s41563-019-0478-1
    [44]
    J. Qing, X. -K. Liu, M. Li, F. Liu, Z. Yuan, E. Tiukalova, Z. Yan, M. Duchamp, S. Chen, Y. Wang, Aligned and graded type-II ruddlesden-popper perovskite films for efficient solar cells, Adv. Energy Mater. 8 (2018) 1800185 doi: 10.1002/aenm.201800185
    [45]
    Y. Yang, Y. Yan, M. Yang, S. Choi, K. Zhu, J.M. Luther, M.C. Beard, Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal, Nat. Commun. 6 (2015) 7961 doi: 10.1038/ncomms8961
    [46]
    Y. Yang, M. Yang, DT. Moore, Y. Yan, EM. Miller, K. Zhu, Beard, , C. Matthew, Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films, Nat. Energy 2 (2017) 16207 doi: 10.1038/nenergy.2016.207
    [47]
    J. Liu, S. Chen, D. Qian, B. Gautam, G. Yang, J. Zhao, J. Bergqvist, F. Zhang, W. Ma, H. Ade, Fast charge separation in a non-fullerene organic solar cell with a small driving force, Nat. Energy 1 (2016) 16089 doi: 10.1038/nenergy.2016.89
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (368) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return