Citation: | Li Peng, Kim Hun, Ming Jun, Jung Hun-Gi, Belharouak Ilias, Sun Yang-Kook. Quasi-compensatory effect in emerging anode-free lithium batteries[J]. eScience, 2021, 1(1): 3-12. doi: 10.1016/j.esci.2021.10.002 |
[1] |
Y.K. Sun, Z. Chen, H.J. Noh, D.J. Lee, H. -G. Jung, Y. Ren, S. Wang, C.S. Yoon, S.T. Myung, K. Amine, Nanostructured high-energy cathode materials for advanced lithium batteries, Nat. Mater. 11 (2012) 942-947. doi: 10.1038/nmat3435
|
[2] |
Y.K. Sun, S.T. Myung, B.C. Park, J. Prakash, I. Belharouak, K. Amine, High-energy cathode material for long-life and safe lithium batteries, Nat. Mater. 8 (2009) 320-324. doi: 10.1038/nmat2418
|
[3] |
B. Scrosati, J. Hassoun, Y.K. Sun, Lithium-ion batteries a look into the future, Energy Environ. Sci. 4 (2011) 3287-3295. doi: 10.1039/c1ee01388b
|
[4] |
W. Cai, Y.X. Yao, G.L. Zhu, C. Yan, L.L. Jiang, C. He, J.Q. Huang, Q. Zhang, A review on energy chemistry of fast-charging anodes, Chem. Soc. Rev. 49 (2020) 3806-3833. doi: 10.1039/C9CS00728H
|
[5] |
J.K. Lee, C. Oh, N. Kim, J.Y. Hwang, Y. -K. Sun, Rational design of silicon-based composites for high-energy storage devices, J. Mater. Chem. A 4 (2016) 5366-5384. doi: 10.1039/C6TA00265J
|
[6] |
Y. Tian, Y.L. An, C.L. Wei, H.Y. Jiang, S.L. Xiong, J.K. Feng, Y.T. Qian, Recently advances and perspectives of anode-free rechargeable batteries, Nano Energy 78 (2020) 105344. doi: 10.1016/j.nanoen.2020.105344
|
[7] |
J.G. Zhang, Anode-less, Nat. Energy 4 (2019) 637-638. doi: 10.1038/s41560-019-0449-4
|
[8] |
Z.K. Xie, Z.J. Wu, X.W. An, X.Y. Yue, J.J. Wang, A. Abudula, G.Q. Guan, Anode-free rechargeable lithium metal batteries: progress and prospects, Energy Storage Mater. 32 (2020) 386-401. doi: 10.1016/j.ensm.2020.07.004
|
[9] |
R. Weber, M. Genovese, A.J. Louli, S. Hames, C. Martin, I.G. Hill, J.R. Dahn, Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte, Nat. Energy 4 (2019) 683-689. doi: 10.1038/s41560-019-0428-9
|
[10] |
S. Nanda, A. Gupta, A. Manthiram, Anode-free full cells: a pathway to high-energy density lithium-metal batteries, Adv. Energy Mater. 11 (2020) 2000804.
|
[11] |
A.J. Louli, M. Coon, M. Genovese, J. deGooyer, A. Eldesoky, J.R. Dahn, Optimizing cycling conditions for anode-free lithium metal cells, J. Electrochem. Soc. 168 (2021) 020515. doi: 10.1149/1945-7111/abe089
|
[12] |
J.J. Woo, V.A. Maroni, G. Liu, J.T. Vaughey, D.J. Gosztola, K. Amine, Z. Zhang, Symmetrical impedance study on inactivation induced degradation of lithium electrodes for batteries beyond lithium-ion, J. Electrochem. Soc. 161 (2014) A827. doi: 10.1149/2.089405jes
|
[13] |
C.C. Fang, J.X. Li, M.H. Zhang, Y.H. Zhang, F. Yang, J.Z. Lee, M.H. Lee, J. Alvarado, M.A. Schroeder, Y.C. Yang, B.Y. Lu, N. Williams, M. Ceja, L. Yang, M. Cai, J. Gu, K. Xu, X.F. Wang, Y.S. Meng, Quantifying inactive lithium in lithium metal batteries, Nature 572 (2019) 511-515. doi: 10.1038/s41586-019-1481-z
|
[14] |
A.B. Gunnarsdóttir, C.V. Amanchukwu, S. Menkin, C.P. Grey, Noninvasive in situ NMR study of "dead lithium" formation and lithium corrosion in full-cell lithium metal batteries, J. Am. Chem. Soc. 142 (2020) 20814-20827. doi: 10.1021/jacs.0c10258
|
[15] |
G. McHale, B.V. Orme, G.G. Wells, R. Ledesma-Aguilar, Apparent contact angles on lubricant-impregnated surfaces/slips: From superhydrophobicity to electrowetting, Langmuir 35 (2019) 4197-4204. doi: 10.1021/acs.langmuir.8b04136
|
[16] |
R. Weber, J.H. Cheng, A.J. Louli, M. Coon, S. Hy, J.R. Dahn, Surface area of lithium-metal electrodes measured by argon adsorption, J. Electrochem. Soc. 166 (2019) A3250. doi: 10.1149/2.1181913jes
|
[17] |
B.J. Neudecker, N.J. Dudney, J.B. Bates, Lithium-free" thin-film battery with in situ plated Li anode, J. Electrochem. Soc. 147 (2000) 517. doi: 10.1149/1.1393226
|
[18] |
T.T. Beyene, B.A. Jote, Z.T. Wondimkun, B.W. Olbassa, C.J. Huang, B. Thirumalraj, C.H. Wang, W.N. Su, H. Dai, B.J. Hwang, Effects of concentrated salt and resting protocol on solid electrolyte interface formation for improved cycle stability of anode-free lithium metal batteries, ACS Appl. Mater. Interfaces 11 (2019) 31962-31971. doi: 10.1021/acsami.9b09551
|
[19] |
T.T. Beyene, H.K. Bezabh, M.A. Weret, T.M. Hagos, C.J. Huang, C.H. Wang, W.N. Su, H. Dai, B.J. Hwang, Concentrated dual-salt electrolyte to stabilize Li metal and increase cycle life of anode free Li-metal batteries, J. Electrochem. Soc. 166 (2019) A1501. doi: 10.1149/2.0731908jes
|
[20] |
T.A. Zegeye, W.N. Su, F.W. Fenta, T.S. Zeleke, S.K. Jiang, B.J. Hwang, Ultrathin Li6.75La3Zr1.75Ta0.25O12-based composite solid electrolytes laminated on anode and cathode surfaces for anode-free lithium metal batteries, ACS Appl. Energy Mater. 3 (2020) 11713-11723. doi: 10.1021/acsaem.0c01714
|
[21] |
N.A. Sahalie, A.A. Assegie, W.N. Su, Z.T. Wondimkun, B.A. Jote, B. Thirumalraj, C.J. Huang, Y.W. Yang, B.J. Hwang, Effect of bifunctional additive potassium nitrate on performance of anode free lithium metal battery in carbonate electrolyte, J. Power Sources 437 (2019) 226912. doi: 10.1016/j.jpowsour.2019.226912
|
[22] |
Z.T. Wondimkun, T.T. Beyene, M.A. Weret, N.A. Sahalie, C.J. Huang, B. Thirumalraj, B.A. Jote, D. Wang, W.N. Su, C.H. Wang, G. Brunklaus, M. Winter, B.J. Hwang, Binder-free ultra-thin graphene oxide as an artificial solid electrolyte interphase for anode-free rechargeable lithium metal batteries, J. Power Sources 450 (2020) 227589. doi: 10.1016/j.jpowsour.2019.227589
|
[23] |
S.S. Zhang, X. Fan, C.S. Wang, A tin-plated copper substrate for efficient cycling of lithium metal in an anode-free rechargeable lithium battery, Electrochim. Acta 258 (2017) 1201-1207. doi: 10.1016/j.electacta.2017.11.175
|
[24] |
A.A. Assegie, J.H. Cheng, L.M. Kuo, W.N. Su, B.J. Hwang, Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery, Nanoscale 10 (2018) 6125-6138. doi: 10.1039/C7NR09058G
|
[25] |
H.D. Liu, X.J. Yue, X. Xing, Q.Z. Yan, J. Huang, V. Petrova, H.Y. Zhou, P. Liu, A scalable 3D lithium metal anode, Energy Storage Mater. 16 (2019) 505-511. doi: 10.1016/j.ensm.2018.09.021
|
[26] |
Q. B Yun, Y.B. He, W. Lv, Y. Zhao, B.H. Li, F.Y. Kang, Q.H. Yang, Chemical dealloying derived 3D porous current collector for Li metal anodes, Adv. Mater. 28 (2016) 6932-6939. doi: 10.1002/adma.201601409
|
[27] |
Y.Y. Wang, Z.J. Wang, D.N. Lei, W. Lv, Q. Zhao, B. Ni, Y. Liu, B.H. Li, F.Y. Kang, Y.B. He, Spherical Li deposited inside 3D Cu skeleton as anode with ultrastable performance, ACS Appl. Mater. Interfaces 10 (2018) 20244-20249. doi: 10.1021/acsami.8b04881
|
[28] |
Y. Qiao, H.J. Yang, Z. Chang, H. Deng, X. Li, H.S. Zhou, A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent, Nat. Energy 6 (2021) 1-10. doi: 10.1038/s41560-021-00774-0
|
[29] |
L.D. Lin, K. Qin, Q.H. Zhang, L. Gu, L.M. Suo, Y.S. Hu, H. Li, X.J. Huang, L.Q. Chen, Li-rich Li2[Ni0.8Co0.1Mn0.1]O2 for anode-free lithium metal batteries, Angew. Chem. Int. Ed. 60 (2021) 8289-8296. doi: 10.1002/anie.202017063
|
[30] |
C. Monroe, J. Newman, Dendrite growth in lithium/polymer systems: a propagation model for liquid electrolytes under galvanostatic conditions, J. Electrochem. Soc. 150 (2003) A1377. doi: 10.1149/1.1606686
|
[31] |
C. Brissot, M. Rosso, J.N. Chazalviel, P. Baudry, S. Lascaud, In situ study of dendritic growth inlithium/PEO-salt/lithium cells, Electrochim. Acta 43 (1998) 1569-1574. doi: 10.1016/S0013-4686(97)10055-X
|
[32] |
K. Yan, Z.D. Lu, H.W. Lee, F. Xiong, P.C. Hsu, Y.Z. Li, J. Zhao, S. Chu, Y. Cui, Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth, Nat. Energy 1 (2016) 1-8.
|
[33] |
L.L. Lu, J. Ge, J.N. Yang, S.M. Chen, H.B. Yao, F. Zhou, S.H. Yu, Free-standing copper nanowire network current collector for improving lithium anode performance, Nano Lett. 16 (2016) 4431-4437. doi: 10.1021/acs.nanolett.6b01581
|
[34] |
L.H. Abrha, T.A. Zegeye, T.T. Hagos, H. Sutiono, T.M. Hagos, G.B. Berhe, C.J. Huang, S.K. Jiang, W.N. Su, Y.W. Yang, Li7La2.75Ca0.25Zr1.75Nb0.25O12@LiClO4 composite film derived solid electrolyte interphase for anode-free lithium metal battery, Electrochim. Acta 325 (2019) 134825. doi: 10.1016/j.electacta.2019.134825
|
[35] |
T.T. Hagos, B. Thirumalraj, C.J. Huang, L.H. Abrha, T.M. Hagos, G.B. Berhe, H.K. Bezabh, J. Cherng, S.F. Chiu, W.N. Su, B.J. Hwang, Locally concentrated LiPF6 in a carbonate-based electrolyte with fluoroethylene carbonate as a diluent for anode-free lithium metal batteries, ACS Appl. Mater. Interfaces 11 (2019) 9955-9963. doi: 10.1021/acsami.8b21052
|
[36] |
S.Y. Li, Q.L. Liu, W.D. Zhang, L. Fan, X.Y. Wang, X. Wang, Z.Y. Shen, X.X. Zang, Y. Zhao, F.Y. Ma, Y.Y. Lu, High-efficacy and polymeric solid-electrolyte interphase for closely packed Li electrodeposition, Adv. Sci. 8 (2021) 2003240. doi: 10.1002/advs.202003240
|
[37] |
J. Alvarado, M.A. Schroeder, T.P. Pollard, X.F. Wang, J.Z. Lee, M.H. Zhang, T. Wynn, M. Ding, O. Borodin, Y.S. Meng, K. Xu, Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes, Energy Environ. Sci. 12 (2019) 780-794. doi: 10.1039/C8EE02601G
|
[38] |
S.H. Jurng, Z.L. Brown, J.Y. Kim, B.L. Lucht, Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes, Energy Environ. Sci. 11 (2018) 2600-2608. doi: 10.1039/C8EE00364E
|
[39] |
A.J. Louli, A. Eldesoky, R. Weber, M. Genovese, M. Coon, J. deGooyer, Z. Deng, R.T. White, J. Lee, T. Rodgers, R. Petibon, S. Hy, J.H. Cheng, J.R. Dahn, Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis, Nat. Energy 5 (2020) 693-702. doi: 10.1038/s41560-020-0668-8
|
[40] |
M. Monisha, P. Permude, A. Ghosh, A. Kumar, S. Zafar, S. Mitra, B. Lochab, Halogen-free flame-retardant sulfur copolymers with stable Li–S battery performance, Energy Storage Mater. 29 (2020) 350-360. doi: 10.1016/j.ensm.2020.04.041
|
[41] |
F. Ding, W. Xu, G.L. Graff, J. Zhang, M.L. Sushko, X.L. Chen, Y.Y. Shao, M.H. Engelhard, Z.M. Nie, J. Xiao, X.J. Liu, P.V. Sushko, J. Liu, J.G. Zhang, Dendrite-free lithium deposition via self-healing electrostatic shield mechanism, J. Am. Chem. Soc. 135 (2013) 4450-4456. doi: 10.1021/ja312241y
|
[42] |
H. Ye, Y.X. Yin, S.F. Zhang, Y. Shi, L. Liu, X.X. Zeng, R. Wen, Y.G. Guo, L.J. Wan, Synergism of Al-containing solid electrolyte interphase layer and Al-based colloidal particles for stable lithium anode, Nano Energy 36 (2017) 411-417. doi: 10.1016/j.nanoen.2017.04.056
|
[43] |
Y.H. Chen, S.A. Freunberger, Z.Q. Peng, O. Fontaine, P.G. Bruce, Charging a Li–O2 battery using a redox mediator, Nat. Chem. 5 (2013) 489-494. doi: 10.1038/nchem.1646
|
[44] |
X.Q. Zhang, X. Chen, X.B. Cheng, B.Q. Li, X. Shen, C. Yan, J.Q. Huang, Q. Zhang, Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes, Angew. Chem. Int. Ed. 130 (2018) 5399-5403. doi: 10.1002/ange.201801513
|
[45] |
W.S. Jia, C. Fan, L.P. Wang, Q.J. Wang, M.J. Zhao, A.J. Zhou, J.Z. Li, Extremely accessible potassium nitrate (KNO3) as the highly efficient electrolyte additive in lithium battery, ACS Appl. Mater. Interfaces 8 (2016) 15399-15405. doi: 10.1021/acsami.6b03897
|
[46] |
D. Aurbach, M.L. Daroux, P.W. Faguy, E. Yeager, Identification of surface films formed on lithium in propylene carbonate solutions, J. Electrochem. Soc. 134 (1987) 1611. doi: 10.1149/1.2100722
|
[47] |
K. Leung, C.M. Tenney, Toward first principles prediction of voltage dependences of electrolyte/electrolyte interfacial processes in lithium ion batteries, J. Phys. Chem. C 117 (2013) 24224-24235. doi: 10.1021/jp408974k
|
[48] |
W.J. Xue, Z. Shi, M.J. Huang, S.T. Feng, C. Wang, F. Wang, J. Lopez, B. Qiao, G.Y. Xu, W.X. Zhang, Y.H. Dong, R. Gao, S.H. Yang, J.A. Johnson, J. Li, FSI-inspired solvent and "full fluorosulfonyl" electrolyte for 4 V class lithium-metal batteries, Energy Environ. Sci. 13 (2020) 212-220. doi: 10.1039/C9EE02538C
|
[49] |
D. Aurbach, Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries, J. Power Sources 89 (2000) 206-218. doi: 10.1016/S0378-7753(00)00431-6
|
[50] |
A. Pei, G.Y. Zheng, F.F. Shi, Y.Z. Li, Y. Cui, Nanoscale nucleation and growth of electrodeposited lithium metal, Nano Lett. 17 (2017) 1132-1139. doi: 10.1021/acs.nanolett.6b04755
|
[51] |
V. Pande, V. Viswanathan, Computational screening of current collectors for enabling anode-free lithium metal batteries, ACS Energy Lett. 4 (2019) 2952-2959. doi: 10.1021/acsenergylett.9b02306
|
[52] |
S. Liu, X.Y. Zhang, R.S. Li, L.B. Gao, J.Y. Luo, Dendrite-free Li metal anode by lowering deposition interface energy with Cu99Zn alloy coating, Energy Storage Mater. 14 (2018) 143-148. doi: 10.1016/j.ensm.2018.03.004
|
[53] |
J.Y. Wang, H.S. Wang, J. Xie, A.K. Yang, A. Pei, C.L. Wu, F.F. Shi, Y.Y. Liu, D.C. Lin, Y.J. Gong, Y. Cui, Fundamental study on the wetting property of liquid lithium, Energy Storage Mater. 14 (2018) 345-350. doi: 10.1016/j.ensm.2018.05.021
|
[54] |
J. Chen, J.W. Xiang, X. Chen, L.X. Yuan, Z. Li, Y.H. Huang, Li2S-based anode-free full batteries with modified Cu current collector, Energy Storage Mater. 30 (2020) 179-186. doi: 10.1016/j.ensm.2020.05.009
|
[55] |
Q. Li, H.Y. Pan, W.J. Li, Y. Wang, J.Y. Wang, J.Y. Zheng, X.Q. Yu, H. Li, L.Q. Chen, Homogeneous interface conductivity for lithium dendrite-free anode, ACS Energy Lett. 3 (2018) 2259-2266. doi: 10.1021/acsenergylett.8b01244
|
[56] |
Y.T. Ma, L. Li, L.L. Wang, J. Qian, X. Hu, W.J. Qu, Z.H. Wang, R. Luo, S.Y. Fu, F. Wu, R.J. Chen, A mixed modified layer formed in situ to protect and guide lithium plating/stripping behavior, ACS Appl. Mater. Interfaces 12 (2020) 31411-31418. doi: 10.1021/acsami.0c06546
|
[57] |
Z.Y. Tu, M.J. Zachman, S. Choudhury, K.A. Khan, Q. Zhao, L.F. Kourkoutis, L.A. Archer, Stabilizing protic and aprotic liquid electrolytes at high-bandgap oxide interphases, Chem. Mater. 30 (2018) 5655-5662. doi: 10.1021/acs.chemmater.8b01996
|
[58] |
T. Kang, J.H. Zhao, F. Guo, L. Zheng, Y.Y. Mao, C. Wang, Y.F. Zhao, J.H. Zhu, Y.J. Qiu, Y.B. Shen, Dendrite-free lithium anodes enabled by a commonly used copper antirusting agent, ACS Appl. Mater. Interfaces 12 (2020) 8168-8175. doi: 10.1021/acsami.9b19655
|
[59] |
W. Liu, W.Y. Li, D. Zhuo, G.Y. Zheng, Z.D. Lu, K. Liu, Y. Cui, Core-shell nanoparticle coating as an interfacial layer for dendrite-free lithium metal anodes, ACS Cent. Sci. 3 (2017) 135-140. doi: 10.1021/acscentsci.6b00389
|
[60] |
Z.T. Wondimkun, W.A. Tegegne, J. Shi-Kai, C.J. Huang, N.A. Sahalie, M.A. Weret, J.Y. Hsu, P.L. Hsieh, Y.S. Huang, S.H. Wu, Highly-lithiophilic Ag@PDA-GO film to suppress dendrite formation on Cu substrate in anode-free lithium metal batteries, Energy Storage Mater. 35 (2021) 334-344. doi: 10.1016/j.ensm.2020.11.023
|
[61] |
Y.G. Lee, S. Fujiki, C.H. Jung, N. Suzuki, N. Yashiro, R. Omoda, D.S. Ko, T. Shiratsuchi, T. Sugimoto, S. Ryu, J.H. Ku, T. Watanabe, Youngsin Park, Y. Aihara, D.M. Im, I.T. Han, High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes, Nat. Energy 5 (2020) 299-308. doi: 10.1038/s41560-020-0575-z
|
[62] |
T. Kang, J.H. Zhao, F. Guo, L. Zheng, Y.Y. Mao, C. Wang, Y.F. Zhao, J.H. Zhu, Y.J. Qiu, Y.B. Shen, L.W. Chen, Dendrite-free lithium anodes enabled by a commonly used copper antirusting agent, ACS Appl. Mater. Interfaces 12 (2020) 8168-8175. doi: 10.1021/acsami.9b19655
|
[63] |
A.A. Assegie, C.C. Chung, M.C. Tsai, W.N. Su, C.W. Chen, B.J. Hwang, Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries, Nanoscale 11 (2019) 2710-2720. doi: 10.1039/C8NR06980H
|
[64] |
L.D. Lin, L.M. Suo, Y.S. Hu, H. Li, X.J. Huang, L.Q. Chen, Epitaxial induced plating current-collector lasting lifespan of anode-free lithium metal battery, Adv. Energy Mater. 11 (2021) 2003709. doi: 10.1002/aenm.202003709
|
[65] |
W.D. Li, X.M. Liu, Q. Xie, Y. You, M.F. Chi, A. Manthiram, Long-term cyclability of NCM811 at high voltages in lithium-ion batteries: an in-depth diagnostic study, Chem. Mater. 32 (2020) 7796-7804. doi: 10.1021/acs.chemmater.0c02398
|
[66] |
U.H. Kim, S.T. Myung, C.S. Yoon, Y.K. Sun, Extending the battery life using an Al-doped Li[Ni0.76Co0.09Mn0.15]O2 cathode with concentration gradients for lithium ion batteries, ACS Energy Lett. 2 (2017) 1848-1854. doi: 10.1021/acsenergylett.7b00613
|
[67] |
H.H. Ryu, K.J. Park, D.R. Yoon, A. Aishova, C.S. Yoon, Y.K. Sun, Li[Ni0.9Co0.09W0.01]O2: a new type of layered oxide cathode with high cycling stability, Adv. Energy Mater. 9 (2019) 1902698. doi: 10.1002/aenm.201902698
|
[68] |
Z. Tong, B. Bazri, S.F. Hu, R.S. Liu, Interfacial chemistry in anode-free batteries: challenges and strategies, J. Mater. Chem. A 9 (2021) 7396-7406. doi: 10.1039/D1TA00419K
|
[69] |
S.H. Park, D. Jun, G.H. Lee, S.G. Lee, Y.J. Lee, Toward high-performance anodeless batteries based on controlled lithium metal deposition: a review, J. Mater. Chem. A 9 (2021) 14656-14681. doi: 10.1039/D1TA02657G
|
[70] |
X. Shen, R. Zhang, X. Chen, X.B. Cheng, X. Li, Q. Zhang, The failure of solid electrolyte interphase on Li metal anode: structural uniformity or mechanical strength? Adv. Energy Mater. 10 (2020) 1903645. doi: 10.1002/aenm.201903645
|
[71] |
Q. Li, Z. Cao, G. Liu, H. Cheng, Y. Wu, H. Ming, G.T. Park, D. Yin, L. Wang, L. Cavallo, Y.K. Sun, J. Ming, Electrolyte chemistry in 3D metal oxide nanorod arrays deciphers lithium dendrite-free plating/stripping behaviors for high-performance lithium batteries, J. Phys. Chem. Lett. 12 (2021) 4857-4866. doi: 10.1021/acs.jpclett.1c01049
|