Volume 1 Issue 1
May  2021
Turn off MathJax
Article Contents
Li Peng, Kim Hun, Ming Jun, Jung Hun-Gi, Belharouak Ilias, Sun Yang-Kook. Quasi-compensatory effect in emerging anode-free lithium batteries[J]. eScience, 2021, 1(1): 3-12. doi: 10.1016/j.esci.2021.10.002
Citation: Li Peng, Kim Hun, Ming Jun, Jung Hun-Gi, Belharouak Ilias, Sun Yang-Kook. Quasi-compensatory effect in emerging anode-free lithium batteries[J]. eScience, 2021, 1(1): 3-12. doi: 10.1016/j.esci.2021.10.002

Quasi-compensatory effect in emerging anode-free lithium batteries

doi: 10.1016/j.esci.2021.10.002
More Information
  • Corresponding author: E-mail addresses: hungi@kist.re.kr (H.-G. Jung); E-mail addresses: yksun@hanyang.ac.kr (Y.-K. Sun)
  • Received Date: 2021-08-05
  • Revised Date: 2021-09-22
  • Accepted Date: 2021-10-04
  • Available Online: 2021-10-06
  • As electric vehicle (EV) sales grew approximately 50% year-over-year, surpassing 3.2 million units in 2020, the "roaring era" of EV is around the corner. To meet the increasing demand for low cost and high energy density batteries, anode-free configuration, with no heavy and voluminous host material on the current collector, has been proposed and further investigated. Nevertheless, it always suffers from several nonnegligible "bottlenecks", such as fragile solid electrolyte interface, deteriorated cycling reversibility, and uncontrolled dendrite formation. Inspired by the "compensatory effect" of some disabled people with other specific functions strengthened to make up for their inconvenience, corresponding quasi-compensatory measures after anode removal, involving dimensional compensation, SEI robustness compensation, lithiophilicity compensation, and lithium source compensation, have been carried out and achieved significant battery performance enhancement. In this review, the chemistry, challenges, and rationally designed "quasi-compensatory effect" associated with anode-free lithium-ion battery are systematically discussed with several possible R & D directions that may aid, direct, or facilitate future research on lithium storage in anode-free configuration essentially emphasized.
  • loading
  • [1]
    Y.K. Sun, Z. Chen, H.J. Noh, D.J. Lee, H. -G. Jung, Y. Ren, S. Wang, C.S. Yoon, S.T. Myung, K. Amine, Nanostructured high-energy cathode materials for advanced lithium batteries, Nat. Mater. 11 (2012) 942-947. doi: 10.1038/nmat3435
    [2]
    Y.K. Sun, S.T. Myung, B.C. Park, J. Prakash, I. Belharouak, K. Amine, High-energy cathode material for long-life and safe lithium batteries, Nat. Mater. 8 (2009) 320-324. doi: 10.1038/nmat2418
    [3]
    B. Scrosati, J. Hassoun, Y.K. Sun, Lithium-ion batteries a look into the future, Energy Environ. Sci. 4 (2011) 3287-3295. doi: 10.1039/c1ee01388b
    [4]
    W. Cai, Y.X. Yao, G.L. Zhu, C. Yan, L.L. Jiang, C. He, J.Q. Huang, Q. Zhang, A review on energy chemistry of fast-charging anodes, Chem. Soc. Rev. 49 (2020) 3806-3833. doi: 10.1039/C9CS00728H
    [5]
    J.K. Lee, C. Oh, N. Kim, J.Y. Hwang, Y. -K. Sun, Rational design of silicon-based composites for high-energy storage devices, J. Mater. Chem. A 4 (2016) 5366-5384. doi: 10.1039/C6TA00265J
    [6]
    Y. Tian, Y.L. An, C.L. Wei, H.Y. Jiang, S.L. Xiong, J.K. Feng, Y.T. Qian, Recently advances and perspectives of anode-free rechargeable batteries, Nano Energy 78 (2020) 105344. doi: 10.1016/j.nanoen.2020.105344
    [7]
    J.G. Zhang, Anode-less, Nat. Energy 4 (2019) 637-638. doi: 10.1038/s41560-019-0449-4
    [8]
    Z.K. Xie, Z.J. Wu, X.W. An, X.Y. Yue, J.J. Wang, A. Abudula, G.Q. Guan, Anode-free rechargeable lithium metal batteries: progress and prospects, Energy Storage Mater. 32 (2020) 386-401. doi: 10.1016/j.ensm.2020.07.004
    [9]
    R. Weber, M. Genovese, A.J. Louli, S. Hames, C. Martin, I.G. Hill, J.R. Dahn, Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte, Nat. Energy 4 (2019) 683-689. doi: 10.1038/s41560-019-0428-9
    [10]
    S. Nanda, A. Gupta, A. Manthiram, Anode-free full cells: a pathway to high-energy density lithium-metal batteries, Adv. Energy Mater. 11 (2020) 2000804.
    [11]
    A.J. Louli, M. Coon, M. Genovese, J. deGooyer, A. Eldesoky, J.R. Dahn, Optimizing cycling conditions for anode-free lithium metal cells, J. Electrochem. Soc. 168 (2021) 020515. doi: 10.1149/1945-7111/abe089
    [12]
    J.J. Woo, V.A. Maroni, G. Liu, J.T. Vaughey, D.J. Gosztola, K. Amine, Z. Zhang, Symmetrical impedance study on inactivation induced degradation of lithium electrodes for batteries beyond lithium-ion, J. Electrochem. Soc. 161 (2014) A827. doi: 10.1149/2.089405jes
    [13]
    C.C. Fang, J.X. Li, M.H. Zhang, Y.H. Zhang, F. Yang, J.Z. Lee, M.H. Lee, J. Alvarado, M.A. Schroeder, Y.C. Yang, B.Y. Lu, N. Williams, M. Ceja, L. Yang, M. Cai, J. Gu, K. Xu, X.F. Wang, Y.S. Meng, Quantifying inactive lithium in lithium metal batteries, Nature 572 (2019) 511-515. doi: 10.1038/s41586-019-1481-z
    [14]
    A.B. Gunnarsdóttir, C.V. Amanchukwu, S. Menkin, C.P. Grey, Noninvasive in situ NMR study of "dead lithium" formation and lithium corrosion in full-cell lithium metal batteries, J. Am. Chem. Soc. 142 (2020) 20814-20827. doi: 10.1021/jacs.0c10258
    [15]
    G. McHale, B.V. Orme, G.G. Wells, R. Ledesma-Aguilar, Apparent contact angles on lubricant-impregnated surfaces/slips: From superhydrophobicity to electrowetting, Langmuir 35 (2019) 4197-4204. doi: 10.1021/acs.langmuir.8b04136
    [16]
    R. Weber, J.H. Cheng, A.J. Louli, M. Coon, S. Hy, J.R. Dahn, Surface area of lithium-metal electrodes measured by argon adsorption, J. Electrochem. Soc. 166 (2019) A3250. doi: 10.1149/2.1181913jes
    [17]
    B.J. Neudecker, N.J. Dudney, J.B. Bates, Lithium-free" thin-film battery with in situ plated Li anode, J. Electrochem. Soc. 147 (2000) 517. doi: 10.1149/1.1393226
    [18]
    T.T. Beyene, B.A. Jote, Z.T. Wondimkun, B.W. Olbassa, C.J. Huang, B. Thirumalraj, C.H. Wang, W.N. Su, H. Dai, B.J. Hwang, Effects of concentrated salt and resting protocol on solid electrolyte interface formation for improved cycle stability of anode-free lithium metal batteries, ACS Appl. Mater. Interfaces 11 (2019) 31962-31971. doi: 10.1021/acsami.9b09551
    [19]
    T.T. Beyene, H.K. Bezabh, M.A. Weret, T.M. Hagos, C.J. Huang, C.H. Wang, W.N. Su, H. Dai, B.J. Hwang, Concentrated dual-salt electrolyte to stabilize Li metal and increase cycle life of anode free Li-metal batteries, J. Electrochem. Soc. 166 (2019) A1501. doi: 10.1149/2.0731908jes
    [20]
    T.A. Zegeye, W.N. Su, F.W. Fenta, T.S. Zeleke, S.K. Jiang, B.J. Hwang, Ultrathin Li6.75La3Zr1.75Ta0.25O12-based composite solid electrolytes laminated on anode and cathode surfaces for anode-free lithium metal batteries, ACS Appl. Energy Mater. 3 (2020) 11713-11723. doi: 10.1021/acsaem.0c01714
    [21]
    N.A. Sahalie, A.A. Assegie, W.N. Su, Z.T. Wondimkun, B.A. Jote, B. Thirumalraj, C.J. Huang, Y.W. Yang, B.J. Hwang, Effect of bifunctional additive potassium nitrate on performance of anode free lithium metal battery in carbonate electrolyte, J. Power Sources 437 (2019) 226912. doi: 10.1016/j.jpowsour.2019.226912
    [22]
    Z.T. Wondimkun, T.T. Beyene, M.A. Weret, N.A. Sahalie, C.J. Huang, B. Thirumalraj, B.A. Jote, D. Wang, W.N. Su, C.H. Wang, G. Brunklaus, M. Winter, B.J. Hwang, Binder-free ultra-thin graphene oxide as an artificial solid electrolyte interphase for anode-free rechargeable lithium metal batteries, J. Power Sources 450 (2020) 227589. doi: 10.1016/j.jpowsour.2019.227589
    [23]
    S.S. Zhang, X. Fan, C.S. Wang, A tin-plated copper substrate for efficient cycling of lithium metal in an anode-free rechargeable lithium battery, Electrochim. Acta 258 (2017) 1201-1207. doi: 10.1016/j.electacta.2017.11.175
    [24]
    A.A. Assegie, J.H. Cheng, L.M. Kuo, W.N. Su, B.J. Hwang, Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery, Nanoscale 10 (2018) 6125-6138. doi: 10.1039/C7NR09058G
    [25]
    H.D. Liu, X.J. Yue, X. Xing, Q.Z. Yan, J. Huang, V. Petrova, H.Y. Zhou, P. Liu, A scalable 3D lithium metal anode, Energy Storage Mater. 16 (2019) 505-511. doi: 10.1016/j.ensm.2018.09.021
    [26]
    Q. B Yun, Y.B. He, W. Lv, Y. Zhao, B.H. Li, F.Y. Kang, Q.H. Yang, Chemical dealloying derived 3D porous current collector for Li metal anodes, Adv. Mater. 28 (2016) 6932-6939. doi: 10.1002/adma.201601409
    [27]
    Y.Y. Wang, Z.J. Wang, D.N. Lei, W. Lv, Q. Zhao, B. Ni, Y. Liu, B.H. Li, F.Y. Kang, Y.B. He, Spherical Li deposited inside 3D Cu skeleton as anode with ultrastable performance, ACS Appl. Mater. Interfaces 10 (2018) 20244-20249. doi: 10.1021/acsami.8b04881
    [28]
    Y. Qiao, H.J. Yang, Z. Chang, H. Deng, X. Li, H.S. Zhou, A high-energy-density and long-life initial-anode-free lithium battery enabled by a Li2O sacrificial agent, Nat. Energy 6 (2021) 1-10. doi: 10.1038/s41560-021-00774-0
    [29]
    L.D. Lin, K. Qin, Q.H. Zhang, L. Gu, L.M. Suo, Y.S. Hu, H. Li, X.J. Huang, L.Q. Chen, Li-rich Li2[Ni0.8Co0.1Mn0.1]O2 for anode-free lithium metal batteries, Angew. Chem. Int. Ed. 60 (2021) 8289-8296. doi: 10.1002/anie.202017063
    [30]
    C. Monroe, J. Newman, Dendrite growth in lithium/polymer systems: a propagation model for liquid electrolytes under galvanostatic conditions, J. Electrochem. Soc. 150 (2003) A1377. doi: 10.1149/1.1606686
    [31]
    C. Brissot, M. Rosso, J.N. Chazalviel, P. Baudry, S. Lascaud, In situ study of dendritic growth inlithium/PEO-salt/lithium cells, Electrochim. Acta 43 (1998) 1569-1574. doi: 10.1016/S0013-4686(97)10055-X
    [32]
    K. Yan, Z.D. Lu, H.W. Lee, F. Xiong, P.C. Hsu, Y.Z. Li, J. Zhao, S. Chu, Y. Cui, Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth, Nat. Energy 1 (2016) 1-8.
    [33]
    L.L. Lu, J. Ge, J.N. Yang, S.M. Chen, H.B. Yao, F. Zhou, S.H. Yu, Free-standing copper nanowire network current collector for improving lithium anode performance, Nano Lett. 16 (2016) 4431-4437. doi: 10.1021/acs.nanolett.6b01581
    [34]
    L.H. Abrha, T.A. Zegeye, T.T. Hagos, H. Sutiono, T.M. Hagos, G.B. Berhe, C.J. Huang, S.K. Jiang, W.N. Su, Y.W. Yang, Li7La2.75Ca0.25Zr1.75Nb0.25O12@LiClO4 composite film derived solid electrolyte interphase for anode-free lithium metal battery, Electrochim. Acta 325 (2019) 134825. doi: 10.1016/j.electacta.2019.134825
    [35]
    T.T. Hagos, B. Thirumalraj, C.J. Huang, L.H. Abrha, T.M. Hagos, G.B. Berhe, H.K. Bezabh, J. Cherng, S.F. Chiu, W.N. Su, B.J. Hwang, Locally concentrated LiPF6 in a carbonate-based electrolyte with fluoroethylene carbonate as a diluent for anode-free lithium metal batteries, ACS Appl. Mater. Interfaces 11 (2019) 9955-9963. doi: 10.1021/acsami.8b21052
    [36]
    S.Y. Li, Q.L. Liu, W.D. Zhang, L. Fan, X.Y. Wang, X. Wang, Z.Y. Shen, X.X. Zang, Y. Zhao, F.Y. Ma, Y.Y. Lu, High-efficacy and polymeric solid-electrolyte interphase for closely packed Li electrodeposition, Adv. Sci. 8 (2021) 2003240. doi: 10.1002/advs.202003240
    [37]
    J. Alvarado, M.A. Schroeder, T.P. Pollard, X.F. Wang, J.Z. Lee, M.H. Zhang, T. Wynn, M. Ding, O. Borodin, Y.S. Meng, K. Xu, Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes, Energy Environ. Sci. 12 (2019) 780-794. doi: 10.1039/C8EE02601G
    [38]
    S.H. Jurng, Z.L. Brown, J.Y. Kim, B.L. Lucht, Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes, Energy Environ. Sci. 11 (2018) 2600-2608. doi: 10.1039/C8EE00364E
    [39]
    A.J. Louli, A. Eldesoky, R. Weber, M. Genovese, M. Coon, J. deGooyer, Z. Deng, R.T. White, J. Lee, T. Rodgers, R. Petibon, S. Hy, J.H. Cheng, J.R. Dahn, Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis, Nat. Energy 5 (2020) 693-702. doi: 10.1038/s41560-020-0668-8
    [40]
    M. Monisha, P. Permude, A. Ghosh, A. Kumar, S. Zafar, S. Mitra, B. Lochab, Halogen-free flame-retardant sulfur copolymers with stable Li–S battery performance, Energy Storage Mater. 29 (2020) 350-360. doi: 10.1016/j.ensm.2020.04.041
    [41]
    F. Ding, W. Xu, G.L. Graff, J. Zhang, M.L. Sushko, X.L. Chen, Y.Y. Shao, M.H. Engelhard, Z.M. Nie, J. Xiao, X.J. Liu, P.V. Sushko, J. Liu, J.G. Zhang, Dendrite-free lithium deposition via self-healing electrostatic shield mechanism, J. Am. Chem. Soc. 135 (2013) 4450-4456. doi: 10.1021/ja312241y
    [42]
    H. Ye, Y.X. Yin, S.F. Zhang, Y. Shi, L. Liu, X.X. Zeng, R. Wen, Y.G. Guo, L.J. Wan, Synergism of Al-containing solid electrolyte interphase layer and Al-based colloidal particles for stable lithium anode, Nano Energy 36 (2017) 411-417. doi: 10.1016/j.nanoen.2017.04.056
    [43]
    Y.H. Chen, S.A. Freunberger, Z.Q. Peng, O. Fontaine, P.G. Bruce, Charging a Li–O2 battery using a redox mediator, Nat. Chem. 5 (2013) 489-494. doi: 10.1038/nchem.1646
    [44]
    X.Q. Zhang, X. Chen, X.B. Cheng, B.Q. Li, X. Shen, C. Yan, J.Q. Huang, Q. Zhang, Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes, Angew. Chem. Int. Ed. 130 (2018) 5399-5403. doi: 10.1002/ange.201801513
    [45]
    W.S. Jia, C. Fan, L.P. Wang, Q.J. Wang, M.J. Zhao, A.J. Zhou, J.Z. Li, Extremely accessible potassium nitrate (KNO3) as the highly efficient electrolyte additive in lithium battery, ACS Appl. Mater. Interfaces 8 (2016) 15399-15405. doi: 10.1021/acsami.6b03897
    [46]
    D. Aurbach, M.L. Daroux, P.W. Faguy, E. Yeager, Identification of surface films formed on lithium in propylene carbonate solutions, J. Electrochem. Soc. 134 (1987) 1611. doi: 10.1149/1.2100722
    [47]
    K. Leung, C.M. Tenney, Toward first principles prediction of voltage dependences of electrolyte/electrolyte interfacial processes in lithium ion batteries, J. Phys. Chem. C 117 (2013) 24224-24235. doi: 10.1021/jp408974k
    [48]
    W.J. Xue, Z. Shi, M.J. Huang, S.T. Feng, C. Wang, F. Wang, J. Lopez, B. Qiao, G.Y. Xu, W.X. Zhang, Y.H. Dong, R. Gao, S.H. Yang, J.A. Johnson, J. Li, FSI-inspired solvent and "full fluorosulfonyl" electrolyte for 4 V class lithium-metal batteries, Energy Environ. Sci. 13 (2020) 212-220. doi: 10.1039/C9EE02538C
    [49]
    D. Aurbach, Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries, J. Power Sources 89 (2000) 206-218. doi: 10.1016/S0378-7753(00)00431-6
    [50]
    A. Pei, G.Y. Zheng, F.F. Shi, Y.Z. Li, Y. Cui, Nanoscale nucleation and growth of electrodeposited lithium metal, Nano Lett. 17 (2017) 1132-1139. doi: 10.1021/acs.nanolett.6b04755
    [51]
    V. Pande, V. Viswanathan, Computational screening of current collectors for enabling anode-free lithium metal batteries, ACS Energy Lett. 4 (2019) 2952-2959. doi: 10.1021/acsenergylett.9b02306
    [52]
    S. Liu, X.Y. Zhang, R.S. Li, L.B. Gao, J.Y. Luo, Dendrite-free Li metal anode by lowering deposition interface energy with Cu99Zn alloy coating, Energy Storage Mater. 14 (2018) 143-148. doi: 10.1016/j.ensm.2018.03.004
    [53]
    J.Y. Wang, H.S. Wang, J. Xie, A.K. Yang, A. Pei, C.L. Wu, F.F. Shi, Y.Y. Liu, D.C. Lin, Y.J. Gong, Y. Cui, Fundamental study on the wetting property of liquid lithium, Energy Storage Mater. 14 (2018) 345-350. doi: 10.1016/j.ensm.2018.05.021
    [54]
    J. Chen, J.W. Xiang, X. Chen, L.X. Yuan, Z. Li, Y.H. Huang, Li2S-based anode-free full batteries with modified Cu current collector, Energy Storage Mater. 30 (2020) 179-186. doi: 10.1016/j.ensm.2020.05.009
    [55]
    Q. Li, H.Y. Pan, W.J. Li, Y. Wang, J.Y. Wang, J.Y. Zheng, X.Q. Yu, H. Li, L.Q. Chen, Homogeneous interface conductivity for lithium dendrite-free anode, ACS Energy Lett. 3 (2018) 2259-2266. doi: 10.1021/acsenergylett.8b01244
    [56]
    Y.T. Ma, L. Li, L.L. Wang, J. Qian, X. Hu, W.J. Qu, Z.H. Wang, R. Luo, S.Y. Fu, F. Wu, R.J. Chen, A mixed modified layer formed in situ to protect and guide lithium plating/stripping behavior, ACS Appl. Mater. Interfaces 12 (2020) 31411-31418. doi: 10.1021/acsami.0c06546
    [57]
    Z.Y. Tu, M.J. Zachman, S. Choudhury, K.A. Khan, Q. Zhao, L.F. Kourkoutis, L.A. Archer, Stabilizing protic and aprotic liquid electrolytes at high-bandgap oxide interphases, Chem. Mater. 30 (2018) 5655-5662. doi: 10.1021/acs.chemmater.8b01996
    [58]
    T. Kang, J.H. Zhao, F. Guo, L. Zheng, Y.Y. Mao, C. Wang, Y.F. Zhao, J.H. Zhu, Y.J. Qiu, Y.B. Shen, Dendrite-free lithium anodes enabled by a commonly used copper antirusting agent, ACS Appl. Mater. Interfaces 12 (2020) 8168-8175. doi: 10.1021/acsami.9b19655
    [59]
    W. Liu, W.Y. Li, D. Zhuo, G.Y. Zheng, Z.D. Lu, K. Liu, Y. Cui, Core-shell nanoparticle coating as an interfacial layer for dendrite-free lithium metal anodes, ACS Cent. Sci. 3 (2017) 135-140. doi: 10.1021/acscentsci.6b00389
    [60]
    Z.T. Wondimkun, W.A. Tegegne, J. Shi-Kai, C.J. Huang, N.A. Sahalie, M.A. Weret, J.Y. Hsu, P.L. Hsieh, Y.S. Huang, S.H. Wu, Highly-lithiophilic Ag@PDA-GO film to suppress dendrite formation on Cu substrate in anode-free lithium metal batteries, Energy Storage Mater. 35 (2021) 334-344. doi: 10.1016/j.ensm.2020.11.023
    [61]
    Y.G. Lee, S. Fujiki, C.H. Jung, N. Suzuki, N. Yashiro, R. Omoda, D.S. Ko, T. Shiratsuchi, T. Sugimoto, S. Ryu, J.H. Ku, T. Watanabe, Youngsin Park, Y. Aihara, D.M. Im, I.T. Han, High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes, Nat. Energy 5 (2020) 299-308. doi: 10.1038/s41560-020-0575-z
    [62]
    T. Kang, J.H. Zhao, F. Guo, L. Zheng, Y.Y. Mao, C. Wang, Y.F. Zhao, J.H. Zhu, Y.J. Qiu, Y.B. Shen, L.W. Chen, Dendrite-free lithium anodes enabled by a commonly used copper antirusting agent, ACS Appl. Mater. Interfaces 12 (2020) 8168-8175. doi: 10.1021/acsami.9b19655
    [63]
    A.A. Assegie, C.C. Chung, M.C. Tsai, W.N. Su, C.W. Chen, B.J. Hwang, Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries, Nanoscale 11 (2019) 2710-2720. doi: 10.1039/C8NR06980H
    [64]
    L.D. Lin, L.M. Suo, Y.S. Hu, H. Li, X.J. Huang, L.Q. Chen, Epitaxial induced plating current-collector lasting lifespan of anode-free lithium metal battery, Adv. Energy Mater. 11 (2021) 2003709. doi: 10.1002/aenm.202003709
    [65]
    W.D. Li, X.M. Liu, Q. Xie, Y. You, M.F. Chi, A. Manthiram, Long-term cyclability of NCM811 at high voltages in lithium-ion batteries: an in-depth diagnostic study, Chem. Mater. 32 (2020) 7796-7804. doi: 10.1021/acs.chemmater.0c02398
    [66]
    U.H. Kim, S.T. Myung, C.S. Yoon, Y.K. Sun, Extending the battery life using an Al-doped Li[Ni0.76Co0.09Mn0.15]O2 cathode with concentration gradients for lithium ion batteries, ACS Energy Lett. 2 (2017) 1848-1854. doi: 10.1021/acsenergylett.7b00613
    [67]
    H.H. Ryu, K.J. Park, D.R. Yoon, A. Aishova, C.S. Yoon, Y.K. Sun, Li[Ni0.9Co0.09W0.01]O2: a new type of layered oxide cathode with high cycling stability, Adv. Energy Mater. 9 (2019) 1902698. doi: 10.1002/aenm.201902698
    [68]
    Z. Tong, B. Bazri, S.F. Hu, R.S. Liu, Interfacial chemistry in anode-free batteries: challenges and strategies, J. Mater. Chem. A 9 (2021) 7396-7406. doi: 10.1039/D1TA00419K
    [69]
    S.H. Park, D. Jun, G.H. Lee, S.G. Lee, Y.J. Lee, Toward high-performance anodeless batteries based on controlled lithium metal deposition: a review, J. Mater. Chem. A 9 (2021) 14656-14681. doi: 10.1039/D1TA02657G
    [70]
    X. Shen, R. Zhang, X. Chen, X.B. Cheng, X. Li, Q. Zhang, The failure of solid electrolyte interphase on Li metal anode: structural uniformity or mechanical strength? Adv. Energy Mater. 10 (2020) 1903645. doi: 10.1002/aenm.201903645
    [71]
    Q. Li, Z. Cao, G. Liu, H. Cheng, Y. Wu, H. Ming, G.T. Park, D. Yin, L. Wang, L. Cavallo, Y.K. Sun, J. Ming, Electrolyte chemistry in 3D metal oxide nanorod arrays deciphers lithium dendrite-free plating/stripping behaviors for high-performance lithium batteries, J. Phys. Chem. Lett. 12 (2021) 4857-4866. doi: 10.1021/acs.jpclett.1c01049
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views (310) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return