Volume 2 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Yang Jia-Lin, Zhao Xin-Xin, Li Wen-Hao, Liang Hao-Jie, Gu Zhen-Yi, Liu Yan, Du Miao, Wu Xing-Long. Advanced cathode for dual-ion batteries: Waste-to-wealth reuse of spent graphite from lithium-ion batteries[J]. eScience, 2022, 2(1): 95-101. doi: 10.1016/j.esci.2021.11.001
Citation: Yang Jia-Lin, Zhao Xin-Xin, Li Wen-Hao, Liang Hao-Jie, Gu Zhen-Yi, Liu Yan, Du Miao, Wu Xing-Long. Advanced cathode for dual-ion batteries: Waste-to-wealth reuse of spent graphite from lithium-ion batteries[J]. eScience, 2022, 2(1): 95-101. doi: 10.1016/j.esci.2021.11.001

Advanced cathode for dual-ion batteries: Waste-to-wealth reuse of spent graphite from lithium-ion batteries

doi: 10.1016/j.esci.2021.11.001
More Information
  • Corresponding author: Xing-Long Wu xinglong@nenu.edu.cn
  • Received Date: 2021-08-28
  • Revised Date: 2021-09-30
  • Accepted Date: 2021-11-03
  • Available Online: 2021-11-20
  • The amount of spent lithium-ion batteries (LIBs) is constantly increasing as their popularity grows. It is important to develop a recycling method that cannot only convert large amounts of waste anode graphite into high value-added products but is also simple and environmentally friendly. In this work, spent graphite from an anode was transformed into a cathode for dual-ion batteries (DIBs) through a two-step treatment. This method enables the crystal structure and morphology of spent graphite to recover from the adverse effects of long cycling and be restored to a regular layered structure with appropriate layer spacing for anion intercalation. In addition, pyrolysis of the solid electrolyte interphase into an amorphous carbon layer prevents the electrode from degrading and improves its cycling performance. The recycled negative graphite has a high reversible capacity of 87 mAh g−1 at 200 ​mA ​g−1, and its rate performance when used as a cathode in DIBs is comparable to that of commercial graphite. This simple recycling idea turns spent anode graphite into a cathode material with attractive potential and superior electrochemical performance, genuinely achieving sustainable energy use. It also provides a new method for recovering exhausted batteries.
  • ● The recovered graphite anode is reused as advanced cathode for Li-based dual-ion batteries.
    ● This study demonstrates a new reuse strategy for graphite anode in spent lithium-ion batteries.
    ● It delivers excellent anion-storage properties including a specific capacity of 84 mAh g−1 ​and good rate performance.
    ● This work broadens the high-value utilization ideas of recycled electrode materials from spent lithium-ion batteries..
    1 The equally contributed authors.
  • loading
  • eScience-2-1-95.docx
  • [1]
    M. Li, J. Lu, Z.W. Chen, K. Amine, 30 Years of Lithium-Ion Batteries, Adv Mater, 30 (2018) 1800561 doi: 10.1002/adma.201800561
    [2]
    R.F. Service, Lithium-ion battery development takes Nobel, Science, 366 (2019) 292-292 doi: 10.1126/science.366.6463.292
    [3]
    K. Yang, L. Chen, J. Ma, Y.B. He, F. Kang, Progress and perspective of Li1+ xAlxTi2-x(PO4)3 ceramic electrolyte in lithium batteries, Infomat, (2021) 1-23
    [4]
    J.L. Zhang, C.L. Li, W.H. Wang, D.Y.W. Yu, Facile synthesis of hollow Cu3P for sodium-ion batteries anode, Rare Metals, 40 (2021) 3460-3465 doi: 10.1007/s12598-021-01718-z
    [5]
    X.X. Zhao, Z.Y. Gu, W.H. Li, X. Yang, J.Z. Guo, X.L. Wu, Temperature-Dependent Electrochemical Properties and Electrode Kinetics of Na3V2(PO4)2O2F Cathode for Sodium-Ion Batteries with High Energy Density, Chemistry, 26 (2020) 7823-7830 doi: 10.1002/chem.202000943
    [6]
    M. Li, J. Lu, Cobalt in lithium-ion batteries, Science, 367 (2020) 979-980 doi: 10.1126/science.aba9168
    [7]
    J. Zhao, X. Yang, S. Li, N. Chen, C. Wang, Y. Zeng, F. Du, Hybrid and Aqueous Liþ–Ni Metal Batteries, CCS Chem. 2 (2020) 2498–2508.
    [8]
    X. Kang, G. Fu, X. Wang, L. Shao, W. Li, C.-W. Tsang, X.-Y. Lu, X.-Z. Fu, J.-L. Luo, Copper-cobalt-nickel oxide nanowire arrays on copper foams as self-standing anode materials for lithium ion batteries, Chinese Chem Lett, 32 (2021) 938-942 doi: 10.1016/j.cclet.2020.06.013
    [9]
    G.S. Harper,R. Kendrick, E., Recycling lithium-ion batteries from electric vehicles, Nature, 578 (2020) 20 doi: 10.1038/d41586-020-00271-6
    [10]
    K.H. Chan, M. Malik, J. Anawati, G. Azimi, Recycling of End-of-Life Lithium-Ion Battery of Electric Vehicles, Mineral Met Mat Ser, (2020) 23-32 doi: 10.1007/978-3-030-36758-9_3
    [11]
    S. Zheng, S. Wang, Y. Dong, F. Zhou, J. Qin, X. Wang, F. Su, C. Sun, Z.S. Wu, H.M. Cheng, X. Bao, All-Solid-State Planar Sodium-Ion Microcapacitors with Multidirectional Fast Ion Diffusion Pathways, Adv Sci, (2019) 1902147 doi: 10.1002/advs.201902147
    [12]
    Y. Bai, N. Muralidharan, Y.-K. Sun, S. Passerini, M. Stanley Whittingham, I. Belharouak, Energy and environmental aspects in recycling lithium-ion batteries: Concept of Battery Identity Global Passport, Mater Today, 41 (2020) 304-315 doi: 10.1016/j.mattod.2020.09.001
    [13]
    J. Piatek, S. Afyon, T.M. Budnyak, S. Budnyk, M.H. Sipponen, A. Slabon, Sustainable Li-Ion Batteries: Chemistry and Recycling, Adv Energy Mater, (2020) 2003456
    [14]
    J.Z. Yu, X. Wang, M.Y. Zhou, Q. Wang, A redox targeting-based material recycling strategy for spent lithium ion batteries, Energ Environ Sci, 12 (2019) 2672-2677 doi: 10.1039/c9ee01478k
    [15]
    M.K. Tran, M.T.F. Rodrigues, K. Kato, G. Babu, P.M. Ajayan, Deep eutectic solvents for cathode recycling of Li-ion batteries, Nat Energy, 4 (2019) 339-345 doi: 10.1038/s41560-019-0368-4
    [16]
    S.B. Wang, Z.T. Zhang, Z.G. Lu, Z.H. Xu, A novel method for screening deep eutectic solvent to recycle the cathode of Li-ion batteries, Green Chem, 22 (2020) 4473-4482 doi: 10.1039/d0gc00701c
    [17]
    M.J. Roldan-Ruiz, M.L. Ferrer, M.C. Gutierrez, F. del Monte, Highly Efficient p-Toluenesulfonic Acid-Based Deep-Eutectic Solvents for Cathode Recycling of Li-Ion Batteries, Acs Sustain Chem Eng, 8 (2020) 5437-5445 doi: 10.1021/acssuschemeng.0c00892
    [18]
    D. Li, B. Zhang, X. Ou, J. Zhang, K. Meng, G. Ji, P. Li, J. Xu, Ammonia leaching mechanism and kinetics of LiCoO2 material from spent lithium-ion batteries, Chinese Chem Lett, 32 (2021) 2333-2337 doi: 10.1016/j.cclet.2020.11.074
    [19]
    M. Zhou, B. Li, J. Li, Z. Xu, Pyrometallurgical Technology in the Recycling of a Spent Lithium Ion Battery: Evolution and the Challenge, ACS EST Engg, 491 (2021) 229622
    [20]
    X. Ren, Y. Du, M. Song, Y. Zhou, Y. Chen, F. Ma, J. Wan, In-situ transformation of Ni foam into sandwich nanostructured Co1.29Ni1.71O4 nanoparticle@CoNi2S4 nanosheet networks for high-performance asymmetric supercapacitors, Chem Eng J, 375 (2019) 122063 doi: 10.1016/j.cej.2019.122063
    [21]
    S. Rothermel, M. Evertz, J. Kasnatscheew, X. Qi, M. Grutzke, M. Winter, S. Nowak, Graphite Recycling from Spent Lithium-Ion Batteries, Chemsuschem, 9 (2016) 3473-3484 doi: 10.1002/cssc.201601062
    [22]
    S. Natarajan, V. Aravindan, An Urgent Call to Spent LIB Recycling: Whys and Wherefores for Graphite Recovery, Adv Energy Mater, 10 (2020) 2002238 doi: 10.1002/aenm.202002238
    [23]
    L. Zhang, Y. Wang, Z. Niu, J. Chen, Single Atoms on Graphene for Energy Storage and Conversion, Small Methods, 3 (2019) 1800443 doi: 10.1002/smtd.201800443
    [24]
    Y.Y. Yi, H. Ma, X.Y. Lian, Q.Q. Mei, Z.H. Zeng, Y. Zhao, C. Lu, W. Zhao, W.Y. Guo, Z.F. Liu, J.Y. Sun, Harmonized edge/graphitic-nitrogen doped carbon nanopolyhedron@nanosheet composite via salt-confined strategy for advanced K-ion hybrid capacitors, Infomat, 3 (2021) 891-903 doi: 10.1002/inf2.12225
    [25]
    M.Q. Liu, F. Wu, L.M. Zheng, X. Feng, Y. Li, Y. Li, Y. Bai, C. Wu, Nature-inspired porous multichannel carbon monolith: Molecular cooperative enables sustainable production and high-performance capacitive energy storage, Infomat, (2021) 1-17 doi: 10.1002/inf2.12129
    [26]
    H. Zhang, Y. Yang, D.S. Ren, L. Wang, X.M. He, Graphite as anode materials: Fundamental mechanism, recent progress and advances, Energy Storage Mater, 36 (2021) 147-170 doi: 10.4103/jmas.jmas_294_19
    [27]
    J. Zhang, X.L. Li, D.W. Song, Y.L. Miao, J.S. Song, L.Q. Zhang, Effective regeneration of anode material recycled from scrapped Li-ion batteries, J Power Sources, 390 (2018) 38-44 doi: 10.3390/md16010038
    [28]
    K. Liu, S.L. Yang, L.Q. Luo, Q.C. Pan, P. Zhang, Y.G. Huang, F.H. Zheng, H.Q. Wang, Q.Y. Li, From spent graphite to recycle graphite anode for high-performance lithium ion batteries and sodium ion batteries, Electrochim Acta, 356 (2020) 136856 doi: 10.1016/j.electacta.2020.136856
    [29]
    H.J. Liang, B.H. Hou, W.H. Li, Q.L. Ning, X. Yang, Z.Y. Gu, X.J. Nie, G. Wang, X.L. Wu, Staging Na/K-ion de-/intercalation of graphite retrieved from spent Li-ion batteries: in operando X-ray diffraction studies and an advanced anode material for Na/K-ion batteries, Energ Environ Sci, 12 (2019) 3575-3584 doi: 10.1039/c9ee02759a
    [30]
    X. Zhou, Q. Liu, C. Jiang, B. Ji, X. Ji, Y. Tang, H.M. Cheng, Strategies towards Low-Cost Dual-Ion Batteries with High Performance, Angew Chem Int Ed Engl, 59 (2020) 3802-3832 doi: 10.1002/anie.201814294
    [31]
    Q. Nian, S. Liu, J. Liu, Q. Zhang, J. Shi, C. Liu, R. Wang, Z. Tao, J. Chen, All-Climate Aqueous Dual-Ion Hybrid Battery with Ultrahigh Rate and Ultralong Life Performance, ACS Appl Energy Mater, 2 (2019) 4370-4378 doi: 10.1021/acsaem.9b00566
    [32]
    W.H. Li, Q.L. Ning, X.T. Xi, B.H. Hou, J.Z. Guo, Y. Yang, B. Chen, X.L. Wu, Highly Improved Cycling Stability of Anion De-/Intercalation in the Graphite Cathode for Dual-Ion Batteries, Adv Mater, 31 (2019) 1804766 doi: 10.1002/adma.201804766
    [33]
    X. Shi, W. Zhang, J. Wang, W. Zheng, K. Huang, H. Zhang, S. Feng, H. Chen, (EMIm)+(PF6)− Ionic Liquid Unlocks Optimum Energy/Power Density for Architecture of Nanocarbon-Based Dual-Ion Battery, Adv Energy Mater, 6 (2016).1601378 doi: 10.1002/aenm.201601378
    [34]
    S. Chen, Q. Kuang, H.J. Fan, Dual-Carbon Batteries: Materials and Mechanism, Small, 16 (2020) 2002803 doi: 10.1002/smll.202002803
    [35]
    L. Fan, Q. Liu, S. Chen, K. Lin, Z. Xu, B. Lu, Potassium-Based Dual Ion Battery with Dual-Graphite Electrode, Small, 13 (2017) 1701011 doi: 10.1002/smll.201701011
    [36]
    K. Yang, Q. Liu, Y. Zheng, H. Yin, S. Zhang, Y. Tang, Locally Ordered Graphitized Carbon Cathodes for High-Capacity Dual-Ion Batteries, Angew Chem Int Ed Engl, 60 (2021) 6326-6332 doi: 10.1002/anie.202016233
    [37]
    R. Zheng, H. Yu, X. Zhang, Y. Ding, M. Xia, K. Cao, J. Shu, A. Vlad, B.L. Su, A TiSe2 -Graphite Dual Ion Battery: Fast Na-Ion Insertion and Excellent Stability, Angew Chem Int Ed Engl, 60 (2021) 18430-18437 doi: 10.1002/anie.202105439
    [38]
    P. Ouzilleau, A.E. Gheribi, P. Chartrand, G. Soucy, M. Monthioux, Why some carbons may or may not graphitize? The point of view of thermodynamics, Carbon, 149 (2019) 419-435 doi: 10.1016/j.carbon.2019.04.018
    [39]
    A. Heckmann, O. Fromm, U. Rodehorst, P. Munster, M. Winter, T. Placke, New insights into electrochemical anion intercalation into carbonaceous materials for dual-ion batteries: Impact of the graphitization degree, Carbon, 131 (2018) 201-212 doi: 10.1016/j.carbon.2018.01.099
    [40]
    D. Sui, Y. Xie, W. Zhao, H. Zhang, Y. Zhou, X. Qin, Y. Ma, Y. Yang, Y. Chen, A high-performance ternary Si composite anode material with crystal graphite core and amorphous carbon shell, J Power Sources, 384 (2018) 328-333 doi: 10.1016/j.jpowsour.2018.03.008
    [41]
    G. Song, J. Ryu, S. Ko, B.M. Bang, S. Choi, M. Shin, S.Y. Lee, S. Park, Revisiting Surface Modification of Graphite: Dual-Layer Coating for High-Performance Lithium Battery Anode Materials, Chem Asian J, 11 (2016) 1711-1717 doi: 10.1002/asia.201600249
    [42]
    W. Wang, H. Huang, B. Wang, C. Qian, P. Li, J. Zhou, Z. Liang, C. Yang, S. Guo, A new dual-ion battery based on amorphous carbon, Science Bull, 64 (2019) 1634-1642 doi: 10.1016/j.scib.2019.08.021
    [43]
    J.A. Read, In-Situ Studies on the Electrochemical Intercalation of Hexafluorophosphate Anion in Graphite with Selective Cointercalation of Solvent, The J Phys Chem C, 119 (2015) 8438-8446 doi: 10.1021/jp5115465
    [44]
    K. Yang, L. Jia, X. Liu, Z. Wang, Y. Wang, Y. Li, H. Chen, B. Wu, L. Yang, F. Pan, Revealing the anion intercalation behavior and surface evolution of graphite in dual-ion batteries via in situ AFM, Nano Res, 13 (2020) 412-418 doi: 10.1007/s12274-020-2623-1
    [45]
    M. Dubarry, C. Truchot, B.Y. Liaw, Cell degradation in commercial LiFePO4 cells with high-power and high-energy designs, J Power Sources, 258 (2014) 408-419 doi: 10.1016/j.jpowsour.2014.02.052
    [46]
    H. Yang, X. Shi, T. Deng, T. Qin, L. Sui, M. Feng, H. Chen, W. Zhang, W. Zheng, Carbon-Based Dual-Ion Battery with Enhanced Capacity and Cycling Stability, ChemElectroChem, 5 (2018) 3612-3618 doi: 10.1002/celc.201801108
    [47]
    X. Han, G. Xu, Z. Zhang, X. Du, P. Han, X. Zhou, G. Cui, L. Chen, An In Situ Interface Reinforcement Strategy Achieving Long Cycle Performance of Dual-Ion Batteries, Adv Energy Mater, 9 (2019) 1804022 doi: 10.1002/aenm.201804022
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (139) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return