Citation: | Yang Jia-Lin, Zhao Xin-Xin, Li Wen-Hao, Liang Hao-Jie, Gu Zhen-Yi, Liu Yan, Du Miao, Wu Xing-Long. Advanced cathode for dual-ion batteries: Waste-to-wealth reuse of spent graphite from lithium-ion batteries[J]. eScience, 2022, 2(1): 95-101. doi: 10.1016/j.esci.2021.11.001 |
![]() |
![]() |
[1] |
M. Li, J. Lu, Z.W. Chen, K. Amine, 30 Years of Lithium-Ion Batteries, Adv Mater, 30 (2018) 1800561 doi: 10.1002/adma.201800561
|
[2] |
R.F. Service, Lithium-ion battery development takes Nobel, Science, 366 (2019) 292-292 doi: 10.1126/science.366.6463.292
|
[3] |
K. Yang, L. Chen, J. Ma, Y.B. He, F. Kang, Progress and perspective of Li1+ xAlxTi2-x(PO4)3 ceramic electrolyte in lithium batteries, Infomat, (2021) 1-23
|
[4] |
J.L. Zhang, C.L. Li, W.H. Wang, D.Y.W. Yu, Facile synthesis of hollow Cu3P for sodium-ion batteries anode, Rare Metals, 40 (2021) 3460-3465 doi: 10.1007/s12598-021-01718-z
|
[5] |
X.X. Zhao, Z.Y. Gu, W.H. Li, X. Yang, J.Z. Guo, X.L. Wu, Temperature-Dependent Electrochemical Properties and Electrode Kinetics of Na3V2(PO4)2O2F Cathode for Sodium-Ion Batteries with High Energy Density, Chemistry, 26 (2020) 7823-7830 doi: 10.1002/chem.202000943
|
[6] |
M. Li, J. Lu, Cobalt in lithium-ion batteries, Science, 367 (2020) 979-980 doi: 10.1126/science.aba9168
|
[7] |
J. Zhao, X. Yang, S. Li, N. Chen, C. Wang, Y. Zeng, F. Du, Hybrid and Aqueous Liþ–Ni Metal Batteries, CCS Chem. 2 (2020) 2498–2508.
|
[8] |
X. Kang, G. Fu, X. Wang, L. Shao, W. Li, C.-W. Tsang, X.-Y. Lu, X.-Z. Fu, J.-L. Luo, Copper-cobalt-nickel oxide nanowire arrays on copper foams as self-standing anode materials for lithium ion batteries, Chinese Chem Lett, 32 (2021) 938-942 doi: 10.1016/j.cclet.2020.06.013
|
[9] |
G.S. Harper,R. Kendrick, E., Recycling lithium-ion batteries from electric vehicles, Nature, 578 (2020) 20 doi: 10.1038/d41586-020-00271-6
|
[10] |
K.H. Chan, M. Malik, J. Anawati, G. Azimi, Recycling of End-of-Life Lithium-Ion Battery of Electric Vehicles, Mineral Met Mat Ser, (2020) 23-32 doi: 10.1007/978-3-030-36758-9_3
|
[11] |
S. Zheng, S. Wang, Y. Dong, F. Zhou, J. Qin, X. Wang, F. Su, C. Sun, Z.S. Wu, H.M. Cheng, X. Bao, All-Solid-State Planar Sodium-Ion Microcapacitors with Multidirectional Fast Ion Diffusion Pathways, Adv Sci, (2019) 1902147 doi: 10.1002/advs.201902147
|
[12] |
Y. Bai, N. Muralidharan, Y.-K. Sun, S. Passerini, M. Stanley Whittingham, I. Belharouak, Energy and environmental aspects in recycling lithium-ion batteries: Concept of Battery Identity Global Passport, Mater Today, 41 (2020) 304-315 doi: 10.1016/j.mattod.2020.09.001
|
[13] |
J. Piatek, S. Afyon, T.M. Budnyak, S. Budnyk, M.H. Sipponen, A. Slabon, Sustainable Li-Ion Batteries: Chemistry and Recycling, Adv Energy Mater, (2020) 2003456
|
[14] |
J.Z. Yu, X. Wang, M.Y. Zhou, Q. Wang, A redox targeting-based material recycling strategy for spent lithium ion batteries, Energ Environ Sci, 12 (2019) 2672-2677 doi: 10.1039/c9ee01478k
|
[15] |
M.K. Tran, M.T.F. Rodrigues, K. Kato, G. Babu, P.M. Ajayan, Deep eutectic solvents for cathode recycling of Li-ion batteries, Nat Energy, 4 (2019) 339-345 doi: 10.1038/s41560-019-0368-4
|
[16] |
S.B. Wang, Z.T. Zhang, Z.G. Lu, Z.H. Xu, A novel method for screening deep eutectic solvent to recycle the cathode of Li-ion batteries, Green Chem, 22 (2020) 4473-4482 doi: 10.1039/d0gc00701c
|
[17] |
M.J. Roldan-Ruiz, M.L. Ferrer, M.C. Gutierrez, F. del Monte, Highly Efficient p-Toluenesulfonic Acid-Based Deep-Eutectic Solvents for Cathode Recycling of Li-Ion Batteries, Acs Sustain Chem Eng, 8 (2020) 5437-5445 doi: 10.1021/acssuschemeng.0c00892
|
[18] |
D. Li, B. Zhang, X. Ou, J. Zhang, K. Meng, G. Ji, P. Li, J. Xu, Ammonia leaching mechanism and kinetics of LiCoO2 material from spent lithium-ion batteries, Chinese Chem Lett, 32 (2021) 2333-2337 doi: 10.1016/j.cclet.2020.11.074
|
[19] |
M. Zhou, B. Li, J. Li, Z. Xu, Pyrometallurgical Technology in the Recycling of a Spent Lithium Ion Battery: Evolution and the Challenge, ACS EST Engg, 491 (2021) 229622
|
[20] |
X. Ren, Y. Du, M. Song, Y. Zhou, Y. Chen, F. Ma, J. Wan, In-situ transformation of Ni foam into sandwich nanostructured Co1.29Ni1.71O4 nanoparticle@CoNi2S4 nanosheet networks for high-performance asymmetric supercapacitors, Chem Eng J, 375 (2019) 122063 doi: 10.1016/j.cej.2019.122063
|
[21] |
S. Rothermel, M. Evertz, J. Kasnatscheew, X. Qi, M. Grutzke, M. Winter, S. Nowak, Graphite Recycling from Spent Lithium-Ion Batteries, Chemsuschem, 9 (2016) 3473-3484 doi: 10.1002/cssc.201601062
|
[22] |
S. Natarajan, V. Aravindan, An Urgent Call to Spent LIB Recycling: Whys and Wherefores for Graphite Recovery, Adv Energy Mater, 10 (2020) 2002238 doi: 10.1002/aenm.202002238
|
[23] |
L. Zhang, Y. Wang, Z. Niu, J. Chen, Single Atoms on Graphene for Energy Storage and Conversion, Small Methods, 3 (2019) 1800443 doi: 10.1002/smtd.201800443
|
[24] |
Y.Y. Yi, H. Ma, X.Y. Lian, Q.Q. Mei, Z.H. Zeng, Y. Zhao, C. Lu, W. Zhao, W.Y. Guo, Z.F. Liu, J.Y. Sun, Harmonized edge/graphitic-nitrogen doped carbon nanopolyhedron@nanosheet composite via salt-confined strategy for advanced K-ion hybrid capacitors, Infomat, 3 (2021) 891-903 doi: 10.1002/inf2.12225
|
[25] |
M.Q. Liu, F. Wu, L.M. Zheng, X. Feng, Y. Li, Y. Li, Y. Bai, C. Wu, Nature-inspired porous multichannel carbon monolith: Molecular cooperative enables sustainable production and high-performance capacitive energy storage, Infomat, (2021) 1-17 doi: 10.1002/inf2.12129
|
[26] |
H. Zhang, Y. Yang, D.S. Ren, L. Wang, X.M. He, Graphite as anode materials: Fundamental mechanism, recent progress and advances, Energy Storage Mater, 36 (2021) 147-170 doi: 10.4103/jmas.jmas_294_19
|
[27] |
J. Zhang, X.L. Li, D.W. Song, Y.L. Miao, J.S. Song, L.Q. Zhang, Effective regeneration of anode material recycled from scrapped Li-ion batteries, J Power Sources, 390 (2018) 38-44 doi: 10.3390/md16010038
|
[28] |
K. Liu, S.L. Yang, L.Q. Luo, Q.C. Pan, P. Zhang, Y.G. Huang, F.H. Zheng, H.Q. Wang, Q.Y. Li, From spent graphite to recycle graphite anode for high-performance lithium ion batteries and sodium ion batteries, Electrochim Acta, 356 (2020) 136856 doi: 10.1016/j.electacta.2020.136856
|
[29] |
H.J. Liang, B.H. Hou, W.H. Li, Q.L. Ning, X. Yang, Z.Y. Gu, X.J. Nie, G. Wang, X.L. Wu, Staging Na/K-ion de-/intercalation of graphite retrieved from spent Li-ion batteries: in operando X-ray diffraction studies and an advanced anode material for Na/K-ion batteries, Energ Environ Sci, 12 (2019) 3575-3584 doi: 10.1039/c9ee02759a
|
[30] |
X. Zhou, Q. Liu, C. Jiang, B. Ji, X. Ji, Y. Tang, H.M. Cheng, Strategies towards Low-Cost Dual-Ion Batteries with High Performance, Angew Chem Int Ed Engl, 59 (2020) 3802-3832 doi: 10.1002/anie.201814294
|
[31] |
Q. Nian, S. Liu, J. Liu, Q. Zhang, J. Shi, C. Liu, R. Wang, Z. Tao, J. Chen, All-Climate Aqueous Dual-Ion Hybrid Battery with Ultrahigh Rate and Ultralong Life Performance, ACS Appl Energy Mater, 2 (2019) 4370-4378 doi: 10.1021/acsaem.9b00566
|
[32] |
W.H. Li, Q.L. Ning, X.T. Xi, B.H. Hou, J.Z. Guo, Y. Yang, B. Chen, X.L. Wu, Highly Improved Cycling Stability of Anion De-/Intercalation in the Graphite Cathode for Dual-Ion Batteries, Adv Mater, 31 (2019) 1804766 doi: 10.1002/adma.201804766
|
[33] |
X. Shi, W. Zhang, J. Wang, W. Zheng, K. Huang, H. Zhang, S. Feng, H. Chen, (EMIm)+(PF6)− Ionic Liquid Unlocks Optimum Energy/Power Density for Architecture of Nanocarbon-Based Dual-Ion Battery, Adv Energy Mater, 6 (2016).1601378 doi: 10.1002/aenm.201601378
|
[34] |
S. Chen, Q. Kuang, H.J. Fan, Dual-Carbon Batteries: Materials and Mechanism, Small, 16 (2020) 2002803 doi: 10.1002/smll.202002803
|
[35] |
L. Fan, Q. Liu, S. Chen, K. Lin, Z. Xu, B. Lu, Potassium-Based Dual Ion Battery with Dual-Graphite Electrode, Small, 13 (2017) 1701011 doi: 10.1002/smll.201701011
|
[36] |
K. Yang, Q. Liu, Y. Zheng, H. Yin, S. Zhang, Y. Tang, Locally Ordered Graphitized Carbon Cathodes for High-Capacity Dual-Ion Batteries, Angew Chem Int Ed Engl, 60 (2021) 6326-6332 doi: 10.1002/anie.202016233
|
[37] |
R. Zheng, H. Yu, X. Zhang, Y. Ding, M. Xia, K. Cao, J. Shu, A. Vlad, B.L. Su, A TiSe2 -Graphite Dual Ion Battery: Fast Na-Ion Insertion and Excellent Stability, Angew Chem Int Ed Engl, 60 (2021) 18430-18437 doi: 10.1002/anie.202105439
|
[38] |
P. Ouzilleau, A.E. Gheribi, P. Chartrand, G. Soucy, M. Monthioux, Why some carbons may or may not graphitize? The point of view of thermodynamics, Carbon, 149 (2019) 419-435 doi: 10.1016/j.carbon.2019.04.018
|
[39] |
A. Heckmann, O. Fromm, U. Rodehorst, P. Munster, M. Winter, T. Placke, New insights into electrochemical anion intercalation into carbonaceous materials for dual-ion batteries: Impact of the graphitization degree, Carbon, 131 (2018) 201-212 doi: 10.1016/j.carbon.2018.01.099
|
[40] |
D. Sui, Y. Xie, W. Zhao, H. Zhang, Y. Zhou, X. Qin, Y. Ma, Y. Yang, Y. Chen, A high-performance ternary Si composite anode material with crystal graphite core and amorphous carbon shell, J Power Sources, 384 (2018) 328-333 doi: 10.1016/j.jpowsour.2018.03.008
|
[41] |
G. Song, J. Ryu, S. Ko, B.M. Bang, S. Choi, M. Shin, S.Y. Lee, S. Park, Revisiting Surface Modification of Graphite: Dual-Layer Coating for High-Performance Lithium Battery Anode Materials, Chem Asian J, 11 (2016) 1711-1717 doi: 10.1002/asia.201600249
|
[42] |
W. Wang, H. Huang, B. Wang, C. Qian, P. Li, J. Zhou, Z. Liang, C. Yang, S. Guo, A new dual-ion battery based on amorphous carbon, Science Bull, 64 (2019) 1634-1642 doi: 10.1016/j.scib.2019.08.021
|
[43] |
J.A. Read, In-Situ Studies on the Electrochemical Intercalation of Hexafluorophosphate Anion in Graphite with Selective Cointercalation of Solvent, The J Phys Chem C, 119 (2015) 8438-8446 doi: 10.1021/jp5115465
|
[44] |
K. Yang, L. Jia, X. Liu, Z. Wang, Y. Wang, Y. Li, H. Chen, B. Wu, L. Yang, F. Pan, Revealing the anion intercalation behavior and surface evolution of graphite in dual-ion batteries via in situ AFM, Nano Res, 13 (2020) 412-418 doi: 10.1007/s12274-020-2623-1
|
[45] |
M. Dubarry, C. Truchot, B.Y. Liaw, Cell degradation in commercial LiFePO4 cells with high-power and high-energy designs, J Power Sources, 258 (2014) 408-419 doi: 10.1016/j.jpowsour.2014.02.052
|
[46] |
H. Yang, X. Shi, T. Deng, T. Qin, L. Sui, M. Feng, H. Chen, W. Zhang, W. Zheng, Carbon-Based Dual-Ion Battery with Enhanced Capacity and Cycling Stability, ChemElectroChem, 5 (2018) 3612-3618 doi: 10.1002/celc.201801108
|
[47] |
X. Han, G. Xu, Z. Zhang, X. Du, P. Han, X. Zhou, G. Cui, L. Chen, An In Situ Interface Reinforcement Strategy Achieving Long Cycle Performance of Dual-Ion Batteries, Adv Energy Mater, 9 (2019) 1804022 doi: 10.1002/aenm.201804022
|