Citation: | Sun Tao, Sun Qi-Qi, Yu Yue, Zhang Xin-Bo. Polypyrrole as an ultrafast organic cathode for dual-ion batteries[J]. eScience, 2021, 1(2): 186-193. doi: 10.1016/j.esci.2021.11.003 |
![]() |
![]() |
[1] |
J.L. Liu, J. Wang, C.H. Xu, et al., Advanced energy storage devices: basic principles, analytical methods, and rational materials design, Adv. Sci. 5 (2018), 1700322. doi: 10.1002/advs.201700322
|
[2] |
L.J. Zhang, H.T. Wang, X.M. Zhang, et al., A review of emerging dual-ion batteries: fundamentals and recent advances, Adv. Funct. Mater. 31 (2021), 2010958. doi: 10.1002/adfm.202010958
|
[3] |
F.X. Wu, J. Maier, Y. Yu, et al., Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries, Chem. Soc. Rev. 49 (2020) 1569–1614. doi: 10.1039/C7CS00863E
|
[4] |
Y.L. Cao, M. Li, J. Lu, et al., Bridging the academic and industrial metrics for nextgeneration practical batteries, Nat. Nanotechnol. 14 (2019) 200–207. doi: 10.1038/s41565-019-0371-8
|
[5] |
E.S. Fan, L. Li, Z.P. Wang, et al., Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects, Chem. Rev. 120 (2020) 7020–7063. doi: 10.1021/acs.chemrev.9b00535
|
[6] |
C.L. Jiang, Y. Fang, J.H. Lang, et al., Integrated configuration design for ultrafast rechargeable dual-ion battery, Adv. Energy Mater. 7 (2017), 1700913. doi: 10.1002/aenm.201700913
|
[7] |
X.L. Zhang, Y.B. Tang, F. Zhang, et al., A novel aluminum–graphite dual-ion battery, Adv. Energy Mater. 6 (2016), 1502588. doi: 10.1002/aenm.201502588
|
[8] |
T. Placke, A. Heckmann, R. Schmuch, et al., Perspective on performance, cost, and technical challenges for practical dual-ion batteries, Joule 2 (12) (2018) 2528–2550. doi: 10.1016/j.joule.2018.09.003
|
[9] |
L. Fan, Q. Liu, S.H. Chen, et al., Potassium-based dual ion battery with dual-graphite electrode, Small 13 (30) (2017), 1701011. doi: 10.1002/smll.201701011
|
[10] |
X.F. Tong, F. Zhang, B.F. Ji, et al., Carbon-coated porous aluminum foil anode for high-rate, long-term cycling stability, and high energy density dual-ion batteries, Adv. Mater. 28 (2016) 9979–9985. https://pubmed.ncbi.nlm.nih.gov/27678136/
|
[11] |
T. Placke, O. Fromm, S.F. Lux, et al., Reversible intercalation of bis(triflfluorometha nesulfonyl)imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells, J. Electrochem. Soc. 159 (2012) A1755–A1765. doi: 10.1149/2.011211jes
|
[12] |
S. Rothermel, P. Meister, G. Schmuelling, et al., Dual-graphite cells based on the reversible intercalation of bis(triflfluoromethanesulfonyl)imide anions from an ionic liquid electrolyte, Energy Environ. Sci. 7 (2014) 3412–3423. doi: 10.1039/C4EE01873G
|
[13] |
L. Fan, Q. Liu, Z. Xu, et al., An organic cathode for potassium dual-ion full battery, ACS Energy Lett. 2 (7) (2017) 1614–1620. doi: 10.1021/acsenergylett.7b00378
|
[14] |
L. Fan, R.F. Ma, J. Wang, et al., An ultrafast and highly stable potassium–organic battery, Adv. Mater. 30 (2018), 1805486. doi: 10.1002/adma.201805486
|
[15] |
I.A. Rodríguez-Pérez, C. Bommier, D.D. Fuller, et al., Toward higher capacities of hydrocarbon cathodes in dual-ion batteries, ACS Appl. Mater. Interfaces 10 (2018) 43311–43315. doi: 10.1021/acsami.8b17105
|
[16] |
I.A. Rodríguez-Pérez, X.L. Ji, Anion hosting cathodes in dual-ion batteries, ACS Energy Lett. 2 (8) (2017) 1762–1770. doi: 10.1021/acsenergylett.7b00321
|
[17] |
P. Poizot, J. Gaubicher, S. Renault, et al., Opportunities and challenges for organic electrodes in electrochemical energy storage, Chem. Rev. 120 (2020) 6490–6557. doi: 10.1021/acs.chemrev.9b00482
|
[18] |
H.L. Peng, Q.C. Yu, S.P. Wang, et al., Molecular design strategies for electrochemical behavior of aromatic carbonyl compounds in organic and aqueous electrolytes, Adv. Sci. 6 (2019), 1900431. doi: 10.1002/advs.201900431
|
[19] |
M. Tang, S.L. Zhu, Z.T. Liu, et al., Tailoring π-conjugated systems: from π-π Stacking to high-rate-performance organic cathodes, Chem 4 (11) (2018) 2600–2614. doi: 10.1016/j.chempr.2018.08.014
|
[20] |
Y. Chen, C.L. Wang, Designing high performance organic batteries, Accounts Chem. Res. 53 (2020) 2636–2647. doi: 10.1021/acs.accounts.0c00465
|
[21] |
Z.Q. Zhu, J. Chen, Review—advanced carbon-supported organic electrode materials for lithium (sodium)-ion batteries, J. Electrochem. Soc. 162 (2015) A2393–A2405. doi: 10.1149/2.0031514jes
|
[22] |
H. Li, Practical evaluation of Li-ion batteries, Joule 3 (4) (2019) 911–914. doi: 10.1016/j.joule.2019.03.028
|
[23] |
H. Chen, H.Y. Xu, S.Y. Wang, et al., Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life, Sci. Adv. 3 (2017) eaao7233. doi: 10.1126/sciadv.aao7233
|
[24] |
T. Janoschka, M.D. Hager, U.S. Schubert, Powering up the future: radical polymers for battery applications, Adv. Mater. 24 (2012) 6397–6409. doi: 10.1002/adma.201203119
|
[25] |
Y.L. Liang, Y. Yao, Positioning organic electrode materials in the battery landscape, Joule 2 (9) (2018) 1690–1706. https://www.sciencedirect.com/science/article/pii/S2542435118302940
|
[26] |
Z.P. Song, H.S. Zhou, Towards sustainable and versatile energy storage devices: an overview of organic electrode materials, Energy Environ. Sci. 6 (2013) 2280–2301. doi: 10.1039/c3ee40709h
|
[27] |
L. Qie, L. -X. Yuan, W. -X. Zhang, et al., Revisit of polypyrrole as cathode material for lithium-ion battery, J. Electrochem. Soc. 159 (2012) A1624–A1629. doi: 10.1149/2.042210jes
|
[28] |
T. Fukutsuka, F. Yamane, K. Miyazaki, et al., Electrochemical intercalation of bis(fluorosul fonyl)amide anion into graphite, J. Electrochem. Soc. 163 (2016) A499–A503. doi: 10.1149/2.0881603jes
|
[29] |
A. Heckmann, P. Meister, L. -Y. Kuo, et al., A route towards understanding the kinetic processes of bis(triflfluoromethanesulfonyl) imide anion intercalation into graphite for dual-ion batteries, Electrochim. Acta 284 (2018) 669–680. doi: 10.1016/j.electacta.2018.07.181
|
[30] |
J. Tian, D.P. Cao, X.J. Zhou, et al., High-capacity Mg–organic batteries based on nanostructured rhodizonate salts activated by Mg–Li dual-salt electrolyte, ACS Nano 12 (4) (2018) 3424–3435. doi: 10.1021/acsnano.7b09177
|
[31] |
N. Patil, A. Mavrandonakis, C. Jérôme, et al., Polymers bearing catechol pendants as. universal hosts for aqueous rechargeable H+, Li-Ion, and post-Li-ion (mono-, di-, and trivalent) batteries, ACS Appl. Energy Mater. 2 (2019) 3035–3041.
|
[32] |
N. Patil, A. Aqil, F. Ouhib, et al., Bioinspired redox-active catechol-bearing polymers as ultra robust organic cathodes for lithium storage, Adv. Mater. 29 (2017), 1703373. doi: 10.1002/adma.201703373
|
[33] |
K. Xu, A. von Cresce, U. Lee, Differentiating contributions to "Ion transfer" barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface, Langmuir 26 (13) (2010) 11538–11543. doi: 10.1021/la1009994
|
[34] |
K. Xu, A. von Cresce, Interfacing electrolytes with electrodes in Li ion batteries, J. Mater. Chem. A 21 (2011) 9849–9864. doi: 10.1039/c0jm04309e
|
[35] |
M. Li, C.S. Wang, Z.W. Chen, et al., New concepts in electrolytes, Chem. Rev. 120 (14) (2020) 6783–6819. doi: 10.1021/acs.chemrev.9b00531
|
[36] |
S. Iwasa, T. Nishi, S. Nakamura, Enhancement of rapid charging capability of organic radical battery using ethylene carbonate-based electrolyte containing LiFSI, J. Power Sources 402 (2018) 157–162. doi: 10.1016/j.jpowsour.2018.09.025
|
[37] |
L.J. Zhang, H.T. Wang, X.M. Zhang, et al., A review of emerging dual-ion batteries: fundamentals and recent advances, Adv. Funct. Mater. 31 (2021), 2010958. doi: 10.1002/adfm.202010958
|
[38] |
J.J. Shea, C. Luo, Organic electrode materials for metal ion batteries, ACS Appl. Mater. Interfaces 12 (2020) 5361–5380. doi: 10.1021/acsami.9b20384
|
[39] |
A. Kumar, R.K. Singh, K. Agarwal, et al., Effect of p-toluenesulfonate on inhibition of overoxidation of polypyrrole, J. Appl. Polym. Sci. 130 (2013) 434–442. doi: 10.1002/app.39182
|
[40] |
M. Omastova, M. Trchova, J. Kovarova, et al., Synthesis and structural study of polypyrroles prepared in the presence of surfactants, Synth. Met. 138 (2003) 447–455. doi: 10.1016/S0379-6779(02)00498-8
|
[41] |
L. -X. Wang, X. -G. Li, Y. -L. Yang, Preparation, properties and applications of polypyr roles, React. Funct. Polym. 47 (2001) 125–139. doi: 10.1016/S1381-5148(00)00079-1
|
[42] |
Y. Kudoh, Properties of polypyrrole prepared by chemical polymerization using aqueous solution containing Fe2(SO4)3 and anionic surfactant, Synth. Met. 79 (1996) 17–22. doi: 10.1016/0379-6779(96)80124-X
|
[43] |
A. Kumar, R.K. Singh, H.K. Singh, et al., Enhanced capacitance and stability of p-toluenesulfonate doped polypyrrole/carbon composite for electrode application in electrochemical capacitors, J. Power Sources 246 (2014) 800–807. doi: 10.1016/j.jpowsour.2013.07.121
|
[44] |
K. Kanamura, Y. Kawai, S. Yonezawa, et al., Diffusion behavior of anions in polyaniline during electrochemical undoping. 2. Effect of the preparation conditions of polyaniline on the diffusion coefficient of BF4, J. Phys. Chem. 98 (1994) 2174–2179. doi: 10.1021/j100059a034
|
[45] |
T. y. V. Vernitskaya, O.N. Efimov, Polypyrrole: a conducting polymer; its synthesis, properties and applications, Russ. Chem. Rev. 66 (1997) 443–457. doi: 10.1070/RC1997v066n05ABEH000261
|
[46] |
G.L. Dai, Y. Liu, Z.H. Niu, et al., The design of quaternary nitrogen redox center for high-performance organic battery materials, Matter 1 (2019) 945–958. doi: 10.1016/j.matt.2019.05.009
|
[47] |
Z.H. Niu, H.X. Wu, L. Liu, et al., Chain rigidity modification to promote the electro chemical performance of polymeric battery electrode materials, J. Mater. Chem. 7 (2019) 10581–10588. doi: 10.1039/C9TA01553A
|
[48] |
W. -H. Li, H. -J. Liang, X. -K. Hou, et al., Feasible engineering of cathode electrolyte interphase enables the profoundly improved electrochemical properties in dual-ion battery, J. Energy Chem. 50 (2020) 416–423. doi: 10.1016/j.jechem.2020.03.043
|
[49] |
X.K. Hou, W.H. Li, Y.Y. Wang, et al., Sodium-based dual ion batteries via coupling high-capacity selenium/graphene anode with high voltage graphite cathode, Chin. Chem. Lett. 31 (2020) 2314–2318. doi: 10.1016/j.cclet.2020.04.021
|
[50] |
W.H. Li, Q.L. Ning, X.T. Xi, et al., Highly improved cycling stability of anion de-/ intercalation in the graphite cathode for dual-ion batteries, Adv. Mater. 31 (2019), 1804766. doi: 10.1002/adma.201804766
|
[51] |
S. Fleischmann, J.B. Mitchell, R.C. Wang, et al., Pseudocapacitance: from funda mental understanding to high power energy storage materials, Chem. Rev. 120 (14) (2020) 6738–6782. doi: 10.1021/acs.chemrev.0c00170
|
[52] |
Z.H. Wang, C. Xu, P. Tammela, et al., Conducting polymer paper-based cathodes for high-areal-capacity lithium–organic batteries, Energy Technol. 3 (2015) 563–569. doi: 10.1002/ente.201402224
|
[53] |
S.H. Liu, F.X. Wang, R.H. Dong, et al., Soft template construction of 3D macroporous polypyrrole scaffolds, Small 13 (2017), 1604099. doi: 10.1002/smll.201604099
|
[54] |
X.J. Li, D. Fang, Y.H. Cao, et al., Template-sacrificed synthesis of polypyrrole nano fibers for lithium battery, J. Mater. Sci. 51 (2016) 9526–9533. doi: 10.1007/s10853-016-0199-7
|
[55] |
S.F. Xu, H.C. Dai, S.L. Zhu, et al., A branched dihydrophenazine-based polymer as a cathode material to achieve dual ion batteries with high energy and power density, eScience 1 (2021) 60–68. doi: 10.1016/j.esci.2021.08.002
|
[56] |
S.H. Liu, F.X. Wang, R.H. Dong, et al., Dual template synthesis of 2D mesoporous polypyrrole nanosheets with controlled pore size, Adv. Mater. 28 (2016) 8365–8370. doi: 10.1002/adma.201603036
|
[57] |
J. Duan, D.G. Zou, J.L. Li, et al., One-dimensional PPy@CNT based on reversible anions doping/dedoping as a novel high performance cathode for potassium based double ion batteries, Electrochim. Acta 376 (2021), 138047. doi: 10.1016/j.electacta.2021.138047
|
[58] |
Y. Yang, K.C. He, P. Yan, et al., Enhanced capacity of polypyrrole/anthraquinone sulfonate/graphene composite as cathode in lithium batteries, Electrochim. Acta 138 (2014) 481–485. doi: 10.1016/j.electacta.2014.06.125
|
[59] |
M. Zhou, Y. Xiong, Y.L. Cao, et al., Electroactive organic anion-doped polypyrrole as a low cost and renewable cathode for sodium-ion batteries, J. Polym. Sci., Part B: Polym. Phys. 51 (2013) 114–118. doi: 10.1002/polb.23184
|
[60] |
Y. Yang, C.Y. Wang, B.B. Yue, et al., Electrochemically synthesized polypyrrole/graphene composite film for lithium batteries, Adv. Energy Mater. 2 (2012) 266–272. doi: 10.1002/aenm.201100449
|
[61] |
D.W. Su, J.Q. Zhang, S.X. Dou, et al., Polypyrrole hollow nanospheres: stable cathode materials for sodium-ion batteries, Chem. Commun. 51 (2015), 16092. doi: 10.1039/C5CC04229A
|