Volume 1 Issue 2
Dec.  2021
Turn off MathJax
Article Contents
Sun Tao, Sun Qi-Qi, Yu Yue, Zhang Xin-Bo. Polypyrrole as an ultrafast organic cathode for dual-ion batteries[J]. eScience, 2021, 1(2): 186-193. doi: 10.1016/j.esci.2021.11.003
Citation: Sun Tao, Sun Qi-Qi, Yu Yue, Zhang Xin-Bo. Polypyrrole as an ultrafast organic cathode for dual-ion batteries[J]. eScience, 2021, 1(2): 186-193. doi: 10.1016/j.esci.2021.11.003

Polypyrrole as an ultrafast organic cathode for dual-ion batteries

doi: 10.1016/j.esci.2021.11.003
More Information
  • Corresponding author: Xin-Bo Zhang, E-mail address: xbzhang@ciac.ac.cn
  • Received Date: 2021-06-28
  • Revised Date: 2021-10-19
  • Accepted Date: 2021-11-09
  • Available Online: 2021-11-19
  • Organic electrode materials based on the chemical bond cleavage/recombination working principle usually produce unimpressive reaction kinetics and stability. In this work, polypyrrole (PPy) is investigated as an ultrafast (87% retention at 20 A g1) and stable (83% retention across 3000 cycles) cathode material in PPy|graphite dual-ion batteries. The fast intrinsic reaction kinetics, coupled with a capacitance-dominated mechanism, enable PPy to bypass the sluggish chemical bond rearrangement process. Electrochemically induced secondary doping improves the ordered aggregation of polymer chains and thus has a profound impact on anion diffusion and electrical conductivity. The excellent rate capability presented here changes our understanding of organic electrode materials and could prove useful for designing ultrafast rechargeable electrochemical devices.
  • • The excellent rate capability of polypyrrole is far superior to results in previous related reports.
    • Fast redox kinetics, coupled with a capacitance-dominated mechanism, afford dual-ion batteries excellent performance.
    • This work aims to present a new avenue for preparing high-performance, sustainable energy storage devices.
    1 These authors contributed equally to this work.
  • loading
  • eScience-2021-1-186-1-s2.0-S2667141721000240-mmc1.docx
  • [1]
    J.L. Liu, J. Wang, C.H. Xu, et al., Advanced energy storage devices: basic principles, analytical methods, and rational materials design, Adv. Sci. 5 (2018), 1700322. doi: 10.1002/advs.201700322
    [2]
    L.J. Zhang, H.T. Wang, X.M. Zhang, et al., A review of emerging dual-ion batteries: fundamentals and recent advances, Adv. Funct. Mater. 31 (2021), 2010958. doi: 10.1002/adfm.202010958
    [3]
    F.X. Wu, J. Maier, Y. Yu, et al., Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries, Chem. Soc. Rev. 49 (2020) 1569–1614. doi: 10.1039/C7CS00863E
    [4]
    Y.L. Cao, M. Li, J. Lu, et al., Bridging the academic and industrial metrics for nextgeneration practical batteries, Nat. Nanotechnol. 14 (2019) 200–207. doi: 10.1038/s41565-019-0371-8
    [5]
    E.S. Fan, L. Li, Z.P. Wang, et al., Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects, Chem. Rev. 120 (2020) 7020–7063. doi: 10.1021/acs.chemrev.9b00535
    [6]
    C.L. Jiang, Y. Fang, J.H. Lang, et al., Integrated configuration design for ultrafast rechargeable dual-ion battery, Adv. Energy Mater. 7 (2017), 1700913. doi: 10.1002/aenm.201700913
    [7]
    X.L. Zhang, Y.B. Tang, F. Zhang, et al., A novel aluminum–graphite dual-ion battery, Adv. Energy Mater. 6 (2016), 1502588. doi: 10.1002/aenm.201502588
    [8]
    T. Placke, A. Heckmann, R. Schmuch, et al., Perspective on performance, cost, and technical challenges for practical dual-ion batteries, Joule 2 (12) (2018) 2528–2550. doi: 10.1016/j.joule.2018.09.003
    [9]
    L. Fan, Q. Liu, S.H. Chen, et al., Potassium-based dual ion battery with dual-graphite electrode, Small 13 (30) (2017), 1701011. doi: 10.1002/smll.201701011
    [10]
    X.F. Tong, F. Zhang, B.F. Ji, et al., Carbon-coated porous aluminum foil anode for high-rate, long-term cycling stability, and high energy density dual-ion batteries, Adv. Mater. 28 (2016) 9979–9985. https://pubmed.ncbi.nlm.nih.gov/27678136/
    [11]
    T. Placke, O. Fromm, S.F. Lux, et al., Reversible intercalation of bis(triflfluorometha nesulfonyl)imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells, J. Electrochem. Soc. 159 (2012) A1755–A1765. doi: 10.1149/2.011211jes
    [12]
    S. Rothermel, P. Meister, G. Schmuelling, et al., Dual-graphite cells based on the reversible intercalation of bis(triflfluoromethanesulfonyl)imide anions from an ionic liquid electrolyte, Energy Environ. Sci. 7 (2014) 3412–3423. doi: 10.1039/C4EE01873G
    [13]
    L. Fan, Q. Liu, Z. Xu, et al., An organic cathode for potassium dual-ion full battery, ACS Energy Lett. 2 (7) (2017) 1614–1620. doi: 10.1021/acsenergylett.7b00378
    [14]
    L. Fan, R.F. Ma, J. Wang, et al., An ultrafast and highly stable potassium–organic battery, Adv. Mater. 30 (2018), 1805486. doi: 10.1002/adma.201805486
    [15]
    I.A. Rodríguez-Pérez, C. Bommier, D.D. Fuller, et al., Toward higher capacities of hydrocarbon cathodes in dual-ion batteries, ACS Appl. Mater. Interfaces 10 (2018) 43311–43315. doi: 10.1021/acsami.8b17105
    [16]
    I.A. Rodríguez-Pérez, X.L. Ji, Anion hosting cathodes in dual-ion batteries, ACS Energy Lett. 2 (8) (2017) 1762–1770. doi: 10.1021/acsenergylett.7b00321
    [17]
    P. Poizot, J. Gaubicher, S. Renault, et al., Opportunities and challenges for organic electrodes in electrochemical energy storage, Chem. Rev. 120 (2020) 6490–6557. doi: 10.1021/acs.chemrev.9b00482
    [18]
    H.L. Peng, Q.C. Yu, S.P. Wang, et al., Molecular design strategies for electrochemical behavior of aromatic carbonyl compounds in organic and aqueous electrolytes, Adv. Sci. 6 (2019), 1900431. doi: 10.1002/advs.201900431
    [19]
    M. Tang, S.L. Zhu, Z.T. Liu, et al., Tailoring π-conjugated systems: from π-π Stacking to high-rate-performance organic cathodes, Chem 4 (11) (2018) 2600–2614. doi: 10.1016/j.chempr.2018.08.014
    [20]
    Y. Chen, C.L. Wang, Designing high performance organic batteries, Accounts Chem. Res. 53 (2020) 2636–2647. doi: 10.1021/acs.accounts.0c00465
    [21]
    Z.Q. Zhu, J. Chen, Review—advanced carbon-supported organic electrode materials for lithium (sodium)-ion batteries, J. Electrochem. Soc. 162 (2015) A2393–A2405. doi: 10.1149/2.0031514jes
    [22]
    H. Li, Practical evaluation of Li-ion batteries, Joule 3 (4) (2019) 911–914. doi: 10.1016/j.joule.2019.03.028
    [23]
    H. Chen, H.Y. Xu, S.Y. Wang, et al., Ultrafast all-climate aluminum-graphene battery with quarter-million cycle life, Sci. Adv. 3 (2017) eaao7233. doi: 10.1126/sciadv.aao7233
    [24]
    T. Janoschka, M.D. Hager, U.S. Schubert, Powering up the future: radical polymers for battery applications, Adv. Mater. 24 (2012) 6397–6409. doi: 10.1002/adma.201203119
    [25]
    Y.L. Liang, Y. Yao, Positioning organic electrode materials in the battery landscape, Joule 2 (9) (2018) 1690–1706. https://www.sciencedirect.com/science/article/pii/S2542435118302940
    [26]
    Z.P. Song, H.S. Zhou, Towards sustainable and versatile energy storage devices: an overview of organic electrode materials, Energy Environ. Sci. 6 (2013) 2280–2301. doi: 10.1039/c3ee40709h
    [27]
    L. Qie, L. -X. Yuan, W. -X. Zhang, et al., Revisit of polypyrrole as cathode material for lithium-ion battery, J. Electrochem. Soc. 159 (2012) A1624–A1629. doi: 10.1149/2.042210jes
    [28]
    T. Fukutsuka, F. Yamane, K. Miyazaki, et al., Electrochemical intercalation of bis(fluorosul fonyl)amide anion into graphite, J. Electrochem. Soc. 163 (2016) A499–A503. doi: 10.1149/2.0881603jes
    [29]
    A. Heckmann, P. Meister, L. -Y. Kuo, et al., A route towards understanding the kinetic processes of bis(triflfluoromethanesulfonyl) imide anion intercalation into graphite for dual-ion batteries, Electrochim. Acta 284 (2018) 669–680. doi: 10.1016/j.electacta.2018.07.181
    [30]
    J. Tian, D.P. Cao, X.J. Zhou, et al., High-capacity Mg–organic batteries based on nanostructured rhodizonate salts activated by Mg–Li dual-salt electrolyte, ACS Nano 12 (4) (2018) 3424–3435. doi: 10.1021/acsnano.7b09177
    [31]
    N. Patil, A. Mavrandonakis, C. Jérôme, et al., Polymers bearing catechol pendants as. universal hosts for aqueous rechargeable H+, Li-Ion, and post-Li-ion (mono-, di-, and trivalent) batteries, ACS Appl. Energy Mater. 2 (2019) 3035–3041.
    [32]
    N. Patil, A. Aqil, F. Ouhib, et al., Bioinspired redox-active catechol-bearing polymers as ultra robust organic cathodes for lithium storage, Adv. Mater. 29 (2017), 1703373. doi: 10.1002/adma.201703373
    [33]
    K. Xu, A. von Cresce, U. Lee, Differentiating contributions to "Ion transfer" barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface, Langmuir 26 (13) (2010) 11538–11543. doi: 10.1021/la1009994
    [34]
    K. Xu, A. von Cresce, Interfacing electrolytes with electrodes in Li ion batteries, J. Mater. Chem. A 21 (2011) 9849–9864. doi: 10.1039/c0jm04309e
    [35]
    M. Li, C.S. Wang, Z.W. Chen, et al., New concepts in electrolytes, Chem. Rev. 120 (14) (2020) 6783–6819. doi: 10.1021/acs.chemrev.9b00531
    [36]
    S. Iwasa, T. Nishi, S. Nakamura, Enhancement of rapid charging capability of organic radical battery using ethylene carbonate-based electrolyte containing LiFSI, J. Power Sources 402 (2018) 157–162. doi: 10.1016/j.jpowsour.2018.09.025
    [37]
    L.J. Zhang, H.T. Wang, X.M. Zhang, et al., A review of emerging dual-ion batteries: fundamentals and recent advances, Adv. Funct. Mater. 31 (2021), 2010958. doi: 10.1002/adfm.202010958
    [38]
    J.J. Shea, C. Luo, Organic electrode materials for metal ion batteries, ACS Appl. Mater. Interfaces 12 (2020) 5361–5380. doi: 10.1021/acsami.9b20384
    [39]
    A. Kumar, R.K. Singh, K. Agarwal, et al., Effect of p-toluenesulfonate on inhibition of overoxidation of polypyrrole, J. Appl. Polym. Sci. 130 (2013) 434–442. doi: 10.1002/app.39182
    [40]
    M. Omastova, M. Trchova, J. Kovarova, et al., Synthesis and structural study of polypyrroles prepared in the presence of surfactants, Synth. Met. 138 (2003) 447–455. doi: 10.1016/S0379-6779(02)00498-8
    [41]
    L. -X. Wang, X. -G. Li, Y. -L. Yang, Preparation, properties and applications of polypyr roles, React. Funct. Polym. 47 (2001) 125–139. doi: 10.1016/S1381-5148(00)00079-1
    [42]
    Y. Kudoh, Properties of polypyrrole prepared by chemical polymerization using aqueous solution containing Fe2(SO4)3 and anionic surfactant, Synth. Met. 79 (1996) 17–22. doi: 10.1016/0379-6779(96)80124-X
    [43]
    A. Kumar, R.K. Singh, H.K. Singh, et al., Enhanced capacitance and stability of p-toluenesulfonate doped polypyrrole/carbon composite for electrode application in electrochemical capacitors, J. Power Sources 246 (2014) 800–807. doi: 10.1016/j.jpowsour.2013.07.121
    [44]
    K. Kanamura, Y. Kawai, S. Yonezawa, et al., Diffusion behavior of anions in polyaniline during electrochemical undoping. 2. Effect of the preparation conditions of polyaniline on the diffusion coefficient of BF4, J. Phys. Chem. 98 (1994) 2174–2179. doi: 10.1021/j100059a034
    [45]
    T. y. V. Vernitskaya, O.N. Efimov, Polypyrrole: a conducting polymer; its synthesis, properties and applications, Russ. Chem. Rev. 66 (1997) 443–457. doi: 10.1070/RC1997v066n05ABEH000261
    [46]
    G.L. Dai, Y. Liu, Z.H. Niu, et al., The design of quaternary nitrogen redox center for high-performance organic battery materials, Matter 1 (2019) 945–958. doi: 10.1016/j.matt.2019.05.009
    [47]
    Z.H. Niu, H.X. Wu, L. Liu, et al., Chain rigidity modification to promote the electro chemical performance of polymeric battery electrode materials, J. Mater. Chem. 7 (2019) 10581–10588. doi: 10.1039/C9TA01553A
    [48]
    W. -H. Li, H. -J. Liang, X. -K. Hou, et al., Feasible engineering of cathode electrolyte interphase enables the profoundly improved electrochemical properties in dual-ion battery, J. Energy Chem. 50 (2020) 416–423. doi: 10.1016/j.jechem.2020.03.043
    [49]
    X.K. Hou, W.H. Li, Y.Y. Wang, et al., Sodium-based dual ion batteries via coupling high-capacity selenium/graphene anode with high voltage graphite cathode, Chin. Chem. Lett. 31 (2020) 2314–2318. doi: 10.1016/j.cclet.2020.04.021
    [50]
    W.H. Li, Q.L. Ning, X.T. Xi, et al., Highly improved cycling stability of anion de-/ intercalation in the graphite cathode for dual-ion batteries, Adv. Mater. 31 (2019), 1804766. doi: 10.1002/adma.201804766
    [51]
    S. Fleischmann, J.B. Mitchell, R.C. Wang, et al., Pseudocapacitance: from funda mental understanding to high power energy storage materials, Chem. Rev. 120 (14) (2020) 6738–6782. doi: 10.1021/acs.chemrev.0c00170
    [52]
    Z.H. Wang, C. Xu, P. Tammela, et al., Conducting polymer paper-based cathodes for high-areal-capacity lithium–organic batteries, Energy Technol. 3 (2015) 563–569. doi: 10.1002/ente.201402224
    [53]
    S.H. Liu, F.X. Wang, R.H. Dong, et al., Soft template construction of 3D macroporous polypyrrole scaffolds, Small 13 (2017), 1604099. doi: 10.1002/smll.201604099
    [54]
    X.J. Li, D. Fang, Y.H. Cao, et al., Template-sacrificed synthesis of polypyrrole nano fibers for lithium battery, J. Mater. Sci. 51 (2016) 9526–9533. doi: 10.1007/s10853-016-0199-7
    [55]
    S.F. Xu, H.C. Dai, S.L. Zhu, et al., A branched dihydrophenazine-based polymer as a cathode material to achieve dual ion batteries with high energy and power density, eScience 1 (2021) 60–68. doi: 10.1016/j.esci.2021.08.002
    [56]
    S.H. Liu, F.X. Wang, R.H. Dong, et al., Dual template synthesis of 2D mesoporous polypyrrole nanosheets with controlled pore size, Adv. Mater. 28 (2016) 8365–8370. doi: 10.1002/adma.201603036
    [57]
    J. Duan, D.G. Zou, J.L. Li, et al., One-dimensional PPy@CNT based on reversible anions doping/dedoping as a novel high performance cathode for potassium based double ion batteries, Electrochim. Acta 376 (2021), 138047. doi: 10.1016/j.electacta.2021.138047
    [58]
    Y. Yang, K.C. He, P. Yan, et al., Enhanced capacity of polypyrrole/anthraquinone sulfonate/graphene composite as cathode in lithium batteries, Electrochim. Acta 138 (2014) 481–485. doi: 10.1016/j.electacta.2014.06.125
    [59]
    M. Zhou, Y. Xiong, Y.L. Cao, et al., Electroactive organic anion-doped polypyrrole as a low cost and renewable cathode for sodium-ion batteries, J. Polym. Sci., Part B: Polym. Phys. 51 (2013) 114–118. doi: 10.1002/polb.23184
    [60]
    Y. Yang, C.Y. Wang, B.B. Yue, et al., Electrochemically synthesized polypyrrole/graphene composite film for lithium batteries, Adv. Energy Mater. 2 (2012) 266–272. doi: 10.1002/aenm.201100449
    [61]
    D.W. Su, J.Q. Zhang, S.X. Dou, et al., Polypyrrole hollow nanospheres: stable cathode materials for sodium-ion batteries, Chem. Commun. 51 (2015), 16092. doi: 10.1039/C5CC04229A
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (210) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return