Volume 1 Issue 2
Dec.  2021
Turn off MathJax
Article Contents
Huang Aoming, Ma Yanchen, Peng Jian, Li Linlin, Chou Shu-lei, Ramakrishna Seeram, Peng Shengjie. Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology[J]. eScience, 2021, 1(2): 141-162. doi: 10.1016/j.esci.2021.11.006
Citation: Huang Aoming, Ma Yanchen, Peng Jian, Li Linlin, Chou Shu-lei, Ramakrishna Seeram, Peng Shengjie. Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology[J]. eScience, 2021, 1(2): 141-162. doi: 10.1016/j.esci.2021.11.006

Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology

doi: 10.1016/j.esci.2021.11.006
More Information
  • Corresponding author: E-mail address: pengshengjie@nuaa.edu.cn (S. Peng)
  • Received Date: 2021-08-03
  • Revised Date: 2021-10-27
  • Accepted Date: 2021-11-30
  • Available Online: 2021-12-04
  • Silicon (Si) is one of the most promising anode materials for the next generation of lithium-ion battery (LIB) due to its high specific capacity, low lithiation potential, and natural abundance. However, the huge variation in volume during the storage of lithium, along with the low conductivity of element, are the main factors hindering its commercial application. Designing micro–nano structures as well as composites of heterogeneous materials have proven to be effective strategies to overcome these issues. Electrospinning technology is an affordable and scalable method for easily constructing a unique hierarchical micro–nano structure while realizing composites of heterogeneous materials. So far, many efforts have been made to solve the problems of Si-based anodes with general electrospinning. This review considers the technical fundamental and design strategies for electrospun Si-based nanofibers, including preparation processes, structural engineering, and lithium storage performance. The structure–performance relationship of various materials and the effects of compositing with heterogeneous materials are explored in detail. Finally, the remaining challenges are discussed, along with directions for future research. This review will provide inspiration for researchers in the design and manufacture of electrospun Si-based nanofibers for LIBs.
  • ● The application in lithium-ion battery anode is discussed.
    ● The synthetic routes of electrospun silicon-based nanofibers are described.
    ● The challenge and directions for future research is proposed.
    ● The structure design strategy is reviewed.
    Abbreviations: ALD, Atomic layer deposition; CNF, Carbon nanofibers; CNT, Carbon nanotubes; CVD, Chemical vapor deposition; DMF, N, N-dimethylformamide; ICE, Initial Coulombic efficiency; LIB, Lithium-ion battery; NP, Nanoparticles; PAA, Poly(acrylic acid); PAN, Polyacrylonitrile; PLLA, Poly(L-lactic acid); PMMA, Poly(methyl methacrylate); PPy, Polypyrrole; PS, Polystyrene; PVA, Poly(vinyl alcohol); PVP, Poly(vinylpyrrolidone); REF, Reference; SEI, Solid electrolyte interphase; SEM, Scanning electron microscope; TEM, Transmission electron microscope; TEOS, Tetraethoxysilane.
  • loading
  • [1]
    Y. Liang, H. Dong, D. Aurbach, et al., Current status and future directions of multivalent metal-ion batteries, Nat. Energy 5 (2020) 646–656. doi: 10.1038/s41560-020-0655-0
    [2]
    P. Simon, Y. Gogotsi, Perspectives for electrochemical capacitors and related devices, Nat. Mater. 19 (2020) 1151–1163. doi: 10.1038/s41563-020-0747-z
    [3]
    K. Xu, A long journey of lithium: from the big bang to our smartphones, Energy Environ. Mater. 2 (2019) 229–233. doi: 10.1002/eem2.12057
    [4]
    B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices, Science 334 (2011) 928–935. doi: 10.1126/science.1212741
    [5]
    J.B. Goodenough, K.S. Park, The Li-ion rechargeable battery: a perspective, J. Am. Chem. Soc. 135 (2013) 1167–1176. doi: 10.1021/ja3091438
    [6]
    Y. Chen, L. Liu, J. Xiong, et al., Porous Si nanowires from cheap metallurgical silicon stabilized by a surface oxide layer for lithium ion batteries, Adv. Funct. Mater. 25 (2015) 6701–6709. doi: 10.1002/adfm.201503206
    [7]
    H. Wu, Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today 7 (2012) 414–429. doi: 10.1016/j.nantod.2012.08.004
    [8]
    B. Zhu, X. Wang, P. Yao, et al., Towards high energy density lithium battery anodes: silicon and lithium, Chem. Sci. 10 (2019) 7132–7148. doi: 10.1039/C9SC01201J
    [9]
    K. Ogata, S. Jeon, D.S. Ko, et al., Evolving affinity between coulombic reversibility and hysteretic phase transformations in nano-structured silicon-based lithium-ion batteries, Nat. Commun. 9 (2018) 479. doi: 10.1038/s41467-018-02824-w
    [10]
    K. Stokes, G. Flynn, H. Geaney, et al., Axial Si–Ge heterostructure nanowires as lithium-ion battery anodes, Nano Lett. 18 (2018) 5569–5575. doi: 10.1021/acs.nanolett.8b01988
    [11]
    H. Kim, M. Seo, M. -H. Park, et al., A critical size of silicon nano-anodes for lithium rechargeable batteries, Angew. Chem. Int. Ed. 49 (2010) 2146–2149. doi: 10.1002/anie.200906287
    [12]
    M. Aghajamali, H. Xie, M. Javadi, et al., Size and surface effects of silicon nanocrystals in graphene aerogel composite anodes for lithium ion batteries, Chem. Mater. 30 (2018) 7782–7792. doi: 10.1021/acs.chemmater.8b03198
    [13]
    J.K. Lee, K.B. Smith, C.M. Hayner, et al., Silicon nanoparticles-graphene paper composites for Li ion battery anodes, Chem. Commun. 46 (2010) 2025–2027. doi: 10.1039/b919738a
    [14]
    B. Liu, P. Soares, C. Checkles, et al., Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes, Nano Lett. 13 (2013) 3414–3419. doi: 10.1021/nl401880v
    [15]
    L.F. Cui, Y. Yang, C.M. Hsu, et al., Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries, Nano Lett. 9 (2009) 3370–3374. doi: 10.1021/nl901670t
    [16]
    C.K. Chan, H. Peng, G. Liu, et al., High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol. 3 (2008) 31–35. doi: 10.1038/nnano.2007.411
    [17]
    M. -H. Park, M.G. Kim, J. Joo, et al., Silicon nanotube battery anodes, Nano Lett. 9 (2009) 3844–3847. doi: 10.1021/nl902058c
    [18]
    T. Song, J. Xia, J. -H. Lee, et al., Arrays of sealed silicon nanotubes as anodes for lithium ion batteries, Nano Lett. 10 (2010) 1710–1716. doi: 10.1021/nl100086e
    [19]
    J. Ryu, D. Hong, S. Choi, et al., Synthesis of ultrathin Si nanosheets from natural clays for lithium-ion battery anodes, ACS Nano 10 (2016) 2843–2851. doi: 10.1021/acsnano.5b07977
    [20]
    S. Chen, Z. Chen, X. Xu, et al., Scalable 2D mesoporous silicon nanosheets for highperformance lithium-ion battery anode, Small 14 (2018), 1703361. doi: 10.1002/smll.201703361
    [21]
    J. Deng, H. Ji, C. Yan, et al., Naturally rolled-up C/Si/C trilayer nanomembranes as stable anodes for lithium-ion batteries with remarkable cycling performance, Angew. Chem. Int. Ed. 52 (2013) 2326–2330. doi: 10.1002/anie.201208357
    [22]
    X. Liu, J. Zhang, W. Si, et al., Sandwich nanoarchitecture of Si/reduced graphene oxide bilayer nanomembranes for Li-Ion batteries with long cycle life, ACS Nano 9 (2015) 1198–1205. doi: 10.1021/nn5048052
    [23]
    Y. Yao, M.T. McDowell, I. Ryu, et al., Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life, Nano Lett. 11 (2011) 2949–2954. doi: 10.1021/nl201470j
    [24]
    H. Ma, F. Cheng, J. Chen, et al., Nest-like silicon nanospheres for high-capacity lithium storage, Adv. Mater. 19 (2007) 4067–4070. doi: 10.1002/adma.200700621
    [25]
    S.R. Gowda, V. Pushparaj, S. Herle, et al., Three-dimensionally engineered porous silicon electrodes for Li Ion batteries, Nano Lett. 12 (2012) 6060–6065. doi: 10.1021/nl302114j
    [26]
    Y. Zhao, X. Liu, H. Li, et al., Hierarchical micro/nano porous silicon Li-ion battery anodes, Chem. Commun. 48 (2012) 5079–5081. doi: 10.1039/c2cc31476b
    [27]
    J. Chang, X. Huang, G. Zhou, et al., Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode, Adv. Mater. 26 (2014) 758–764. doi: 10.1002/adma.201302757
    [28]
    Y. Wu, X. Huang, L. Huang, et al., Strategies for rational design of high-power lithium-ion batteries, Energy Environ. Mater. 4 (2021) 19–45. doi: 10.1002/eem2.12088
    [29]
    J. Lee, J.K. Lee, K.Y. Chung, et al., Electrochemical investigations on TiO2-B nanowires as a promising high capacity anode for sodium-ion batteries, Electrochim. Acta 200 (2016) 21–28. doi: 10.1016/j.electacta.2016.03.110
    [30]
    Y. Jiang, Y. Zhang, X. Yan, et al., A sustainable route from fly ash to silicon nanorods for high performance lithium ion batteries, Chem. Eng. J. 330 (2017) 1052–1059. doi: 10.1016/j.cej.2017.08.061
    [31]
    J.H. Cho, S.T. Picraux, Enhanced lithium ion battery cycling of silicon nanowire anodes by template growth to eliminate silicon underlayer islands, Nano Lett. 13 (2013) 5740–5747. doi: 10.1021/nl4036498
    [32]
    X. Zhu, H. Chen, Y. Wang, et al., Growth of silicon/carbon microrods on graphite microspheres as improved anodes for lithium-ion batteries, J. Mater. Chem. A 1 (2013) 4483–4489. doi: 10.1039/c3ta01474f
    [33]
    C. Huang, N.L. Thomas, Fabrication of porous fibers via electrospinning: strategies and applications, Polym. Rev. 60 (2020) 595–647. doi: 10.1080/15583724.2019.1688830
    [34]
    X. Kong, Y. Zheng, Y. Wang, et al., Necklace-like Si@C nanofibers as robust anode materials for high performance lithium ion batteries, Sci. Bull. 64 (2019) 261–269. doi: 10.1016/j.scib.2019.01.015
    [35]
    L. Wang, F. Zhang, Y. Liu, et al., Shape memory polymer fibers: materials, structures, and applications, Adv. Fiber Mater. (2021).
    [36]
    A.T. Heitsch, D.D. Fanfair, H.Y. Tuan, et al., Solution-liquid-solid (SLS) growth of silicon nanowires, J. Am. Chem. Soc. 130 (2008) 5436–5437. doi: 10.1021/ja8011353
    [37]
    A.M. Chockla, J.T. Harris, V.A. Akhavan, et al., Silicon nanowire fabric as a lithium ion battery electrode material, J. Am. Chem. Soc. 133 (2011) 20914–20921. doi: 10.1021/ja208232h
    [38]
    M. Ge, J. Rong, X. Fang, et al., Porous doped silicon nanowires for lithium ion battery anode with long cycle life, Nano Lett. 12 (2012) 2318–2323. doi: 10.1021/nl300206e
    [39]
    B. Wang, T. Qiu, X. Li, et al., Synergistically engineered self-standing silicon/carbon composite arrays as high performance lithium battery anodes, J. Mater. Chem. A 3 (2015) 494–498. doi: 10.1039/C4TA06088A
    [40]
    C. -L. Zhang, B. -R. Lu, F. -H. Cao, et al., Electrospun metal-organic framework nanoparticle fibers and their derived electrocatalysts for oxygen reduction reaction, Nano Energy 55 (2019) 226–233. doi: 10.1016/j.nanoen.2018.10.029
    [41]
    C.T. Lim, Nanofiber technology: current status and emerging developments, Prog. Polym. Sci. 70 (2017) 1–17. doi: 10.1016/j.progpolymsci.2017.03.002
    [42]
    J. Zhao, W. Cui, Functional electrospun fibers for local therapy of cancer, Adv. Fiber Mater. 2 (2020) 229–245. doi: 10.1007/s42765-020-00053-9
    [43]
    H. Hou, K.M. Zeinu, S. Gao, et al., Recent advances and perspective on design and synthesis of electrode materials for electrochemical sensing of heavy metals, Energy Environ. Mater. 1 (2018) 113–131. doi: 10.1002/eem2.12011
    [44]
    J. Zhou, Z. Hu, F. Zabihi, et al., Progress and perspective of antiviral protective material, Adv. Fiber Mater. 2 (2020) 123–139. doi: 10.1007/s42765-020-00047-7
    [45]
    S. Peng, L. Li, J. Kong Yoong Lee, et al., Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage, Nano Energy 22 (2016) 361–395. doi: 10.1016/j.nanoen.2016.02.001
    [46]
    Y. Hu, D. Ye, B. Luo, et al., A binder-free and free-standing cobalt sulfide@carbon nanotube cathode material for aluminum-ion batteries, Adv. Mater. 30 (2018), 1703824. doi: 10.1002/adma.201703824
    [47]
    S. Peng, X. Han, L. Li, et al., Electronic and defective engineering of electrospun CaMnO3 nanotubes for enhanced oxygen electrocatalysis in rechargeable zinc–air batteries, Adv. Energy Mater. 8 (2018), 1800612. doi: 10.1002/aenm.201800612
    [48]
    X. Zhou, L.J. Wan, Y.G. Guo, Electrospun silicon nanoparticle/porous carbon hybrid nanofibers for lithium-ion batteries, Small 9 (2013) 2684–2688. doi: 10.1002/smll.201202071
    [49]
    J. Zhu, T. Wang, F. Fan, et al., Atomic-scale control of silicon expansion space as ultrastable battery anodes, ACS Nano 10 (2016) 8243–8251. doi: 10.1021/acsnano.6b04522
    [50]
    Y. Han, J. Zou, Z. Li, et al., Si@void@C nanofibers fabricated using a self-powered electrospinning system for lithium-ion batteries, ACS Nano 12 (2018) 4835–4843. doi: 10.1021/acsnano.8b01558
    [51]
    C. -M. Wang, X. Li, Z. Wang, et al., In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries, Nano Lett. 12 (2012) 1624–1632. doi: 10.1021/nl204559u
    [52]
    J.K. Yoo, J. Kim, Y.S. Jung, et al., Scalable fabrication of silicon nanotubes and their application to energy storage, Adv. Mater. 24 (2012) 5452–5456. doi: 10.1002/adma.201201601
    [53]
    X. Zhang, D. Kong, X. Li, et al., Dimensionally designed carbon-silicon hybrids for lithium storage, Adv. Funct. Mater. 29 (2019), 1806061. doi: 10.1002/adfm.201806061
    [54]
    W. Liu, M.S. Song, B. Kong, et al., Flexible and stretchable energy storage: recent advances and future perspectives, Adv. Mater. 29 (2017), 1603436. doi: 10.1002/adma.201603436
    [55]
    D. Ji, L. Fan, L. Li, et al., Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc-air batteries, Adv. Mater. 31 (2019), 1808267. doi: 10.1002/adma.201808267
    [56]
    D. Ji, L. Fan, L. Li, et al., Hierarchical catalytic electrodes of cobalt-embedded carbon nanotube/carbon flakes arrays for flexible solid-state zinc-air batteries, Carbon 142 (2019) 379–387. doi: 10.1016/j.carbon.2018.10.064
    [57]
    Y. Xu, T. Yuan, Z. Bian, et al., Electrospun flexible Si/C@CNF nonwoven anode for high capacity and durable lithium-ion battery, Compos. Commun. 11 (2019) 1–5. doi: 10.1016/j.coco.2018.10.012
    [58]
    O. Yildiz, M. Dirican, X. Fang, et al., Hybrid carbon nanotube fabrics with sacrificial nanofibers for flexible high performance lithium-ion battery anodes, J. Electrochem. Soc. 166 (2019) A473–A479. doi: 10.1149/2.0821902jes
    [59]
    B.S. Lee, H.S. Yang, H. Jung, et al., Novel multi-layered 1-D nanostructure exhibiting the theoretical capacity of silicon for a super-enhanced lithium-ion battery, Nanoscale 6 (2014) 5989–5998. doi: 10.1039/c4nr00318g
    [60]
    G. Shoorideh, B. Ko, A. Berry, et al., Harvesting interconductivity and intraconductivity of graphene nanoribbons for a directly deposited, high-rate silicon-based anode for Li-ion batteries, ACS Appl. Energy Mater. 1 (2018) 1106–1115. doi: 10.1021/acsaem.7b00228
    [61]
    S. Jiang, Y. Chen, G. Duan, et al., Electrospun nanofiber reinforced composites: a review, Polym. Chem. 9 (2018) 2685–2720. doi: 10.1039/C8PY00378E
    [62]
    S. Cavaliere, S. Subianto, I. Savych, et al., Electrospinning: designed architectures for energy conversion and storage devices, Energy Environ. Sci. 4 (2011) 4761–4785. doi: 10.1039/c1ee02201f
    [63]
    Y. Lei, Q. Wang, S. Peng, et al., Electrospun inorganic nanofibers for oxygen electrocatalysis: design, fabrication, and progress, Adv. Energy Mater. 10 (2020), 1902115. doi: 10.1002/aenm.201902115
    [64]
    X. Lu, C. Wang, F. Favier, et al., Electrospun nanomaterials for supercapacitor electrodes: designed architectures and electrochemical performance, Adv. Energy Mater. 7 (2017), 1601301. doi: 10.1002/aenm.201601301
    [65]
    A. Greiner, J.H. Wendorff, Electrospinning: a fascinating method for the preparation of ultrathin fibers, Angew. Chem. Int. Ed. 46 (2007) 5670–5703. doi: 10.1002/anie.200604646
    [66]
    B. Zhang, F. Kang, J.M. Tarascon, et al., Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage, Prog. Mater. Sci. 76 (2016) 319–380. doi: 10.1016/j.pmatsci.2015.08.002
    [67]
    J. Liang, H. Zhao, L. Yue, et al., Recent advances in electrospun nanofibers for supercapacitors, J. Mater. Chem. A 8 (2020) 16747–16789. doi: 10.1039/D0TA05100D
    [68]
    J.K.Y. Lee, N. Chen, S. Peng, et al., Polymer-based composites by electrospinning: preparation & functionalization with nanocarbons, Prog. Polym. Sci. 86 (2018) 40–84. doi: 10.1016/j.progpolymsci.2018.07.002
    [69]
    Y. Li, B. Guo, L. Ji, et al., Structure control and performance improvement of carbon nanofibers containing a dispersion of silicon nanoparticles for energy storage, Carbon 51 (2013) 185–194. doi: 10.1016/j.carbon.2012.08.027
    [70]
    L. Ji, K.H. Jung, A.J. Medford, et al., Electrospun polyacrylonitrile fibers with dispersed Si nanoparticles and their electrochemical behaviors after carbonization, J. Mater. Chem. 19 (2009) 4992–4997. doi: 10.1039/b903165k
    [71]
    X. Fan, L. Zou, Y.P. Zheng, et al., Electrospinning preparation of nanosilicon/disordered carbon composite as anode materials in Li-ion battery, Electrochem. Solid State Lett. 12 (2009) 199–202. doi: 10.1149/1.3186642
    [72]
    Y.S. Kim, K.W. Kim, D. Cho, et al., Silicon-rich carbon hybrid nanofibers from water-based spinning: the synergy between silicon and carbon for Li-ion battery anode application, ChemElectroChem 1 (2014) 220–226. doi: 10.1002/celc.201300103
    [73]
    C. Li, C. Liu, W. Wang, et al., Towards flexible binderless anodes: silicon/carbon fabrics via double-nozzle electrospinning, Chem. Commun. 52 (2016) 11398–11401. doi: 10.1039/C6CC04074H
    [74]
    S. Li, C. Chen, K. Fu, et al., Comparison of Si/C, Ge/C and Sn/C composite nanofiber anodes used in advanced lithium-ion batteries, Solid State Ionics 254 (2014) 17–26. doi: 10.1016/j.ssi.2013.10.063
    [75]
    R. Wang, Y. Sun, K. Xiong, et al., Optimal quantity of nano-silicon for electrospun silicon/carbon fibers as high capacity anodes, Front. Chem. 7 (2020) 867. doi: 10.3389/fchem.2019.00867
    [76]
    B. Jiang, S. Zeng, H. Wang, et al., Dual core-shell structured Si@SiOx@C nanocomposite synthesized via a one-step pyrolysis method as a highly stable anode material for lithium-ion batteries, ACS Appl. Mater. Interfaces 8 (2016) 31611–31616. doi: 10.1021/acsami.6b09775
    [77]
    Y. Chen, Y. Hu, Z. Shen, et al., Hollow core–shell structured silicon@carbon nanoparticles embed in carbon nanofibers as binder-free anodes for lithium-ion batteries, J. Power Sources 342 (2017) 467–475. doi: 10.1016/j.jpowsour.2016.12.089
    [78]
    S.Y. Kim, K.S. Yang, B.H. Kim, Improving the microstructure and electrochemical performance of carbon nanofibers containing graphene-wrapped silicon nanoparticles as a Li-ion battery anode, J. Power Sources 273 (2015) 404–412. doi: 10.1016/j.jpowsour.2014.09.109
    [79]
    Z.L. Xu, B. Zhang, J.K. Kim, Electrospun carbon nanofiber anodes containing monodispersed Si nanoparticles and graphene oxide with exceptional high rate capacities, Nano Energy 6 (2014) 27–35. doi: 10.1016/j.nanoen.2014.03.003
    [80]
    Y. Chen, Y. Hu, Z. Shen, et al., Sandwich structure of graphene-protected silicon/carbon nanofibers for lithium-ion battery anodes, Electrochim. Acta 210 (2016) 53–60. doi: 10.1016/j.electacta.2016.05.086
    [81]
    Y. Liu, K. Huang, Y. Fan, et al., Binder-free Si nanoparticles@carbon nanofiber fabric as energy storage material, Electrochim. Acta 102 (2013) 246–251. doi: 10.1016/j.electacta.2013.04.021
    [82]
    M.S. Wang, W.L. Song, J. Wang, et al., Highly uniform silicon nanoparticle/porous carbon nanofiber hybrids towards free-standing high-performance anodes for lithium-ion batteries, Carbon 82 (2015) 337–345. doi: 10.1016/j.carbon.2014.10.078
    [83]
    S.J. Kim, M.C. Kim, S.B. Han, et al., 3-D Si/carbon nanofiber as a binder/current collector-free anode for lithium-ion batteries, J. Ind. Eng. Chem. 49 (2017) 105–111. doi: 10.1016/j.jiec.2017.01.014
    [84]
    V.G. Ahmadabadi, K. Shirvanimoghaddam, R. Kerr, et al., Structure-rate performance relationship in Si nanoparticles-carbon nanofiber composite as flexible anode for lithium-ion batteries, Electrochim. Acta 330 (2020), 135232. doi: 10.1016/j.electacta.2019.135232
    [85]
    X. Cai, W. Liu, S. Yang, et al., Dual-confined SiO embedded in TiO2 shell and 3D carbon nanofiber web as stable anode material for superior lithium storage, Adv. Mater. Interfaces 6 (2019), 1801800. doi: 10.1002/admi.201801800
    [86]
    X. Du, H. Zhang, X. Lan, et al., Sn alloy and graphite addition to enhance initial coulombic efficiency and cycling stability of SiO anodes for Li-ion batteries, Energy Environ. Mater. (2021).
    [87]
    H. Wu, G. Chan, J.W. Choi, et al., Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control, Nat. Nanotechnol. 7 (2012) 310–315. doi: 10.1038/nnano.2012.35
    [88]
    L. Qiao, X. Sun, Z. Yang, et al., Network structures of fullerene-like carbon core/nano-crystalline silicon shell nanofibers as anode material for lithium-ion batteries, Carbon 54 (2013) 29–35. doi: 10.1016/j.carbon.2012.10.066
    [89]
    X. Ma, G. Hou, Q. Ai, et al., A heart-coronary arteries structure of carbon nanofibers/graphene/silicon composite anode for high performance lithium ion batteries, Sci. Rep. 7 (2017) 9642. doi: 10.1038/s41598-017-09658-4
    [90]
    A. Moscatelli, From an idea to a technology, Nat. Nanotechnol. 13 (2018) 528–530. doi: 10.1038/s41565-018-0206-z
    [91]
    W. Stober, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci. 26 (1968) 62–69. doi: 10.1016/0021-9797(68)90272-5
    [92]
    Y. Cai, S.M. Allan, K.H. Sandhage, et al., Three-dimensional magnesia-based nanocrystal assemblies via low-temperature magnesiothermic reaction of diatom microshells, J. Am. Ceram. Soc. 88 (2005) 2005–2010. doi: 10.1111/j.1551-2916.2005.00388.x
    [93]
    Q. Xiao, M. Gu, H. Yang, et al., Inward lithium-ion breathing of hierarchically porous silicon anodes, Nat. Commun. 6 (2015) 8844. doi: 10.1038/ncomms9844
    [94]
    S. Chen, L. Shen, P.A. van Aken, et al., Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries, Adv. Mater. 29 (2017), 1605650. doi: 10.1002/adma.201605650
    [95]
    Z.L. Xu, Y. Gang, M.A. Garakani, et al., Carbon-coated mesoporous silicon microsphere anodes with greatly reduced volume expansion, J. Mater. Chem. A 4 (2016) 6098–6106. doi: 10.1039/C6TA01344A
    [96]
    J. Ryu, S. Choi, T. Bok, et al., Nanotubular structured Si-based multicomponent anodes for high-performance lithium-ion batteries with controllable pore size via coaxial electro-spinning, Nanoscale 7 (2015) 6126–6135. doi: 10.1039/C5NR00224A
    [97]
    J.K. Yoo, J. Kim, H. Lee, et al., Porous silicon nanowires for lithium rechargeable batteries, Nanotechnology 24 (2013), 424008. doi: 10.1088/0957-4484/24/42/424008
    [98]
    Y. Qi, G. Wang, S. Li, et al., Recent progress of structural designs of silicon for performance-enhanced lithium-ion batteries, Chem. Eng. J. 397 (2020), 125380. doi: 10.1016/j.cej.2020.125380
    [99]
    Q. Xia, A. Xu, C. Huang, et al., Porous Si@SiOx@N-rich carbon nanofibers as anode in lithium-ion batteries under high temperature, ChemElectroChem 6 (2019) 4402–4410. doi: 10.1002/celc.201901111
    [100]
    D.J. Lee, H. Lee, M.H. Ryou, et al., Electrospun three-dimensional mesoporous silicon nanofibers as an anode material for high-performance lithium secondary batteries, ACS Appl. Mater. Interfaces 5 (2013) 12005–12010. doi: 10.1021/am403798a
    [101]
    Y. Ouyang, X. Zhu, F. Li, et al., Silicon@nitrogen-doped porous carbon fiber composite anodes synthesized by an in-situ reaction collection strategy for highperformance lithium-ion batteries, Appl. Surf. Sci. 475 (2019) 211–218. doi: 10.1016/j.apsusc.2018.12.172
    [102]
    C. Li, M. Qiu, R. Li, et al., Electrospinning engineering enables high-performance sodium-ion batteries, Adv. Fiber Mater. (2021).
    [103]
    F. Shi, C. Chen, Z. -L. Xu, Recent advances on electrospun nanofiber materials for post-lithium ion batteries, Adv. Fiber Mater. (2021).
    [104]
    S.V. Fridrikh, J.H. Yu, M.P. Brenner, et al., Controlling the fiber diameter during electrospinning, Phys. Rev. Lett. 90 (2003) 144502. doi: 10.1103/PhysRevLett.90.144502
    [105]
    P. Katta, M. Alessandro, R.D. Ramsier, et al., Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector, Nano Lett. 4 (2004) 2215–2218. doi: 10.1021/nl0486158
    [106]
    J. Wang, Y. Yu, L. Gu, et al., Highly reversible lithium storage in Si (core)-hollow carbon nanofibers (sheath) nanocomposites, Nanoscale 5 (2013) 2647–2650. doi: 10.1039/c3nr00322a
    [107]
    J.T. McCann, M. Marquez, Y. Xia, Melt coaxial electrospinning: a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers, Nano Lett. 6 (2006) 2868–2872. doi: 10.1021/nl0620839
    [108]
    L. Ji, X. Zhang, Electrospun carbon nanofibers containing silicon particles as an energy-storage medium, Carbon 47 (2009) 3219–3226. doi: 10.1016/j.carbon.2009.07.039
    [109]
    L. Wang, Y. Yu, P.C. Chen, et al., Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries, J. Power Sources 183 (2008) 717–723. doi: 10.1016/j.jpowsour.2008.05.079
    [110]
    E. Qu, T. Chen, Q. Xiao, et al., Freestanding silicon/carbon nanofibers composite membrane as a flexible anode for Li-Ion battery, J. Power Sources 403 (2018) 103–108. doi: 10.1016/j.jpowsour.2018.09.086
    [111]
    L. Wang, C.X. Ding, L.C. Zhang, et al., A novel carbon-silicon composite nanofiber prepared via electrospinning as anode material for high energy-density lithium ion batteries, J. Power Sources 195 (2010) 5052–5056. doi: 10.1016/j.jpowsour.2010.01.088
    [112]
    M. Gu, Y. Li, X. Li, et al., In situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix, ACS Nano 6 (2012) 8439–8447. doi: 10.1021/nn303312m
    [113]
    H.S. Choi, J.G. Lee, H.Y. Lee, et al., Effects of surrounding confinements of Si nanoparticles on Si-based anode performance for lithium ion batteries, Electrochim. Acta 56 (2010) 790–796. doi: 10.1016/j.electacta.2010.09.101
    [114]
    Y. Lee, Y.U. Heo, D. Song, et al., Si-carbon composite nanofibers with good scalability and favorable architecture for highly reversible lithium storage and superb kinetics, Electrochim. Acta 118 (2014) 100–105. doi: 10.1016/j.electacta.2013.12.009
    [115]
    G. Hu, X. Zhang, X. Liu, et al., Strategies in precursors and post treatments to strengthen carbon nanofibers, Adv. Fiber Mater 2 (2020) 46–63. doi: 10.1007/s42765-020-00035-x
    [116]
    Y. Sun, N. Liu, Y. Cui, Promises and challenges of nanomaterials for lithium-based rechargeable batteries, Nat. Energy 1 (2016), 16071. doi: 10.1038/nenergy.2016.71
    [117]
    Y. He, X. Yu, Y. Wang, et al., Alumina-coated patterned amorphous silicon as the anode for a Lithium-Ion battery with high Coulombic efficiency, Adv. Mater. 23 (2011) 4938–4941. doi: 10.1002/adma.201102568
    [118]
    M. Yoshio, H. Wang, K. Fukuda, et al., Carbon-coated Si as a lithium-ion battery anode material, J. Electrochem. Soc. 149 (2002) A1598–A1603. doi: 10.1149/1.1518988
    [119]
    N. Dimov, S. Kugino, M. Yoshio, Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations, Electrochim. Acta 48 (2003) 1579–1587. doi: 10.1016/S0013-4686(03)00030-6
    [120]
    X. Zhou, Y.G. Guo, A PEO-assisted electrospun silicon-graphene composite as an anode material for lithium-ion batteries, J. Mater. Chem. A 1 (2013) 9019–9023. doi: 10.1039/c3ta11720k
    [121]
    Z. He, X. Wu, Z. Yi, et al., Silicon/graphene/carbon hierarchical structure nanofibers for high performance lithium ion batteries, Mater. Lett. 200 (2017) 128–131. doi: 10.1016/j.matlet.2017.04.118
    [122]
    L. Xue, K. Fu, Y. Li, et al., Si/C composite nanofibers with stable electric conductive network for use as durable lithium-ion battery anode, Nano Energy 2 (2013) 361–367. doi: 10.1016/j.nanoen.2012.11.001
    [123]
    J.W. Jung, W.H. Ryu, J. Shin, Glassy metal alloy nanofiber anodes employing graphene wrapping layer: toward ultralong-cycle-life lithium-ion batteries, ACS Nano 9 (2015) 6717–6727. doi: 10.1021/acsnano.5b01402
    [124]
    Y. Li, Y. Sun, G. Xu, et al., Tuning electrochemical performance of Si-based anodes for lithium-ion batteries by employing atomic layer deposition alumina coating, J. Mater. Chem. A 2 (2014) 11417–11425. doi: 10.1039/C4TA01562B
    [125]
    Y. Chen, Y. Hu, J. Shao, et al., Pyrolytic carbon-coated silicon/carbon nanofiber composite anodes for high-performance lithium-ion batteries, J. Power Sources 298 (2015) 130–137. doi: 10.1016/j.jpowsour.2015.08.058
    [126]
    K. Fu, L. Xue, O. Yildiz, et al., Effect of CVD carbon coatings on Si@CNF composite as anode for lithium-ion batteries, Nano Energy 2 (2013) 976–986. doi: 10.1016/j.nanoen.2013.03.019
    [127]
    X.H. Liu, L.Q. Zhang, L. Zhong, et al., Ultrafast electrochemical lithiation of individual Si nanowire anodes, Nano Lett. 11 (2011) 2251–2258. doi: 10.1021/nl200412p
    [128]
    N. Liu, H. Wu, M.T. McDowell, et al., A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes, Nano Lett. 12 (2012) 3315–3321. doi: 10.1021/nl3014814
    [129]
    M.T. McDowell, S. Woo Lee, C. Wang, et al., The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation, Nano Energy 1 (2012) 401–410. doi: 10.1016/j.nanoen.2012.03.004
    [130]
    L. Ji, X. Zhang, Fabrication of porous carbon/Si composite nanofibers as highcapacity battery electrodes, Electrochem. Commun. 11 (2009) 1146–1149.
    [131]
    L. Ji, X. Zhang, Evaluation of Si/carbon composite nanofiber-based insertion anodes for new-generation rechargeable lithium-ion batteries, Energy Environ. Sci. 3 (2010) 124–129. doi: 10.1039/B912188A
    [132]
    K. McCormac, I. Byrd, R. Brannen, et al., Preparation of porous Si and TiO2 nanofibres using a sulphur-templating method for lithium storage, Phys. Status Solidi A 212 (2015) 877–881. doi: 10.1002/pssa.201431834
    [133]
    Z.L. Xu, B. Zhang, Z.Q. Zhou, et al., Carbon nanofibers containing Si nanoparticles and graphene-covered Ni for high performance anodes in Li ion batteries, RSC Adv. 4 (2014) 22359–22366. doi: 10.1039/C4RA03066D
    [134]
    Y. Wang, X. Wen, J. Chen, et al., Foamed mesoporous carbon/silicon composite nanofiber anode for lithium ion batteries, J. Power Sources 281 (2015) 285–292. doi: 10.1016/j.jpowsour.2015.01.184
    [135]
    Z.L. Xu, B. Zhang, S. Abouali, et al., Nanocavity-engineered Si/multi-functional carbon nanofiber composite anodes with exceptional high-rate capacities, J. Mater. Chem. A 2 (2014) 17944–17951. doi: 10.1039/C4TA04257C
    [136]
    Y. Zeng, Y. Huang, N. Liu, et al., N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites as free-standing anodes for lithium-ion batteries, J. Energy Chem. 54 (2021) 727–735. doi: 10.1016/j.jechem.2020.06.022
    [137]
    B.S. Lee, S.B. Son, J.H. Seo, et al., Facile conductive bridges formed between silicon nanoparticles inside hollow carbon nanofibers, Nanoscale 5 (2013) 4790–4796. doi: 10.1039/c3nr00982c
    [138]
    B.S. Lee, H.S. Yang, K.H. Lee, et al., Rational design of a Si–Sn–C ternary anode having exceptional rate performance, Energy Storage Mater. 17 (2019) 62–69. doi: 10.1016/j.ensm.2018.08.001
    [139]
    H. Zhang, L. Zhou, O. Noonan, et al., Tailoring the void size of iron oxide@carbon yolk–shell structure for optimized lithium storage, Adv. Funct. Mater. 24 (2014) 4337–4342. doi: 10.1002/adfm.201400178
    [140]
    J. Yang, Y. -X. Wang, S. -L. Chou, et al., Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries, Nano Energy 18 (2015) 133–142. doi: 10.1016/j.nanoen.2015.09.016
    [141]
    L. Li, S. Peng, J.K.Y. Lee, et al., Electrospun hollow nanofibers for advanced secondary batteries, Nano Energy 39 (2017) 111–139. doi: 10.1016/j.nanoen.2017.06.050
    [142]
    J. Liu, N. Li, M.D. Goodman, et al., Mechanically and chemically robust sandwichstructured C@Si@C nanotube array Li-ion battery anodes, ACS Nano 9 (2015) 1985–1994. doi: 10.1021/nn507003z
    [143]
    H.M. Fahad, C.E. Smith, J.P. Rojas, et al., Silicon nanotube field effect transistor with core-shell gate stacks for enhanced high-performance operation and area scaling benefits, Nano Lett. 11 (2011) 4393–4399. doi: 10.1021/nl202563s
    [144]
    X. Su, Q. Wu, J. Li, et al., Silicon-based nanomaterials for lithium-ion batteries: a review, Adv. Energy Mater. 4 (2014), 1300882. doi: 10.1002/aenm.201300882
    [145]
    H. Wu, G. Zheng, N. Liu, et al., Engineering empty space between Si nanoparticles for lithium-ion battery anodes, Nano Lett. 12 (2012) 904–909. doi: 10.1021/nl203967r
    [146]
    Y. Son, S. Sim, H. Ma, et al., Exploring critical factors affecting strain distribution in 1D silicon-based nanostructures for lithium-ion battery anodes, Adv. Mater. 30 (2018), 1705430. doi: 10.1002/adma.201705430
    [147]
    T.H. Hwang, Y.M. Lee, B.S. Kong, et al., Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes, Nano Lett. 12 (2012) 802–807. doi: 10.1021/nl203817r
    [148]
    B.S. Lee, S.B. Son, K.M. Park, et al., Fabrication of Si core/C shell nanofibers and their electrochemical performances as a lithium-ion battery anode, J. Power Sources 206 (2012) 267–273. doi: 10.1016/j.jpowsour.2012.01.120
    [149]
    A.L. Yarin, Coaxial electrospinning and emulsion electrospinning of core–shell fibers, Polym. Adv. Technol. 22 (2011) 310–317. doi: 10.1002/pat.1781
    [150]
    T. Chen, Q. Zhang, J. Pan, et al., Low-temperature treated lignin as both binder and conductive additive for silicon nanoparticle composite electrodes in lithiumion batteries, ACS Appl. Mater. Interfaces 8 (2016) 32341–32348. doi: 10.1021/acsami.6b11500
    [151]
    W. Luo, Y. Wang, L. Wang, et al., Silicon/mesoporous carbon/crystalline TiO2 nanoparticles for highly stable lithium storage, ACS Nano 10 (2016) 10524–10532. doi: 10.1021/acsnano.6b06517
    [152]
    N.T. Hieu, J. Suk, D.W. Kim, et al., Electrospun nanofibers with a core-shell structure of silicon nanoparticles and carbon nanotubes in carbon for use as lithium-ion battery anodes, J. Mater. Chem. A 2 (2014) 15094–15101. doi: 10.1039/C4TA02348J
    [153]
    Y. -Z. Zhang, Y. Wang, T. Cheng, et al., Printed supercapacitors: materials, printing and applications, Chem. Soc. Rev. 48 (2019) 3229–3264. doi: 10.1039/C7CS00819H
    [154]
    Y. Yan, X. Liu, J. Yan, et al., Electrospun nanofibers for new generation flexible energy storage, Energy Environ. Mater. (2020).
    [155]
    C. Yu, J. An, Q. Chen, et al., Recent advances in design of flexible electrodes for miniaturized supercapacitors, Small Methods 4 (2020), 1900824. doi: 10.1002/smtd.201900824
    [156]
    K. Chen, Q. Wang, Z. Niu, et al., Graphene-based materials for flexible energy storage devices, J. Energy Chem. 27 (2018) 12–24. doi: 10.1016/j.jechem.2017.08.015
    [157]
    J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics, Science 327 (2010) 1603–1607. doi: 10.1126/science.1182383
    [158]
    Y. Wang, S. Gong, S.J. Wang, et al., Volume-invariant ionic liquid microbands as highly durable wearable biomedical sensors, Mater. Horiz. 3 (2016) 208–213. doi: 10.1039/C5MH00284B
    [159]
    S. Yao, Y. Zhu, Nanomaterial-enabled stretchable conductors: strategies, materials and devices, Adv. Mater. 27 (2015) 1480–1511. doi: 10.1002/adma.201404446
    [160]
    S. Yao, P. Swetha, Y. Zhu, Nanomaterial-enabled wearable sensors for healthcare, Adv. Healthcare Mater. 7 (2018), 1700889. doi: 10.1002/adhm.201700889
    [161]
    V. Aravindan, J. Sundaramurthy, P. Suresh Kumar, et al., Electrospun nanofibers: a prospective electro-active material for constructing high performance Li-ion batteries, Chem. Commun. 51 (2015) 2225–2234. doi: 10.1039/C4CC07824A
    [162]
    Q. Zhai, F. Xiang, F. Cheng, et al., Recent advances in flexible/stretchable batteries and integrated devices, Energy Storage Mater 33 (2020) 116–138. doi: 10.1016/j.ensm.2020.07.003
    [163]
    J. Ding, J. Zhang, J. Li, et al., Electrospun polymer biomaterials, Prog. Polym. Sci. 90 (2019) 1–34. doi: 10.1016/j.progpolymsci.2019.01.002
    [164]
    T. Wu, M. Ding, C. Shi, et al., Resorbable polymer electrospun nanofibers: history, shapes and application for tissue engineering, Chin. Chem. Lett. 31 (2020) 617–625. doi: 10.1016/j.cclet.2019.07.033
    [165]
    Y. Li, Y. Hu, Y. Lu, et al., One-dimensional SiOC/C composite nanofibers as binderfree anodes for lithium-ion batteries, J. Power Sources 254 (2014) 33–38. doi: 10.1016/j.jpowsour.2013.12.044
    [166]
    M. Dirican, M. Yanilmaz, K. Fu, et al., Carbon-confined PVA-derived silicon/silica/carbon nanofiber composites as anode for lithium-ion batteries, J. Electrochem. Soc. 161 (2014) A2197–A2203. doi: 10.1149/2.0811414jes
    [167]
    Z. Zhu, J. Hao, H. Zhu, et al., In situ fabrication of electrospun carbon nanofibers–binary metal sulfides as freestanding electrode for electrocatalytic water splitting, Adv. Fiber Mater. 3 (2021) 117–127. doi: 10.1007/s42765-020-00063-7
    [168]
    T. Zhang, W. Zong, Y. Ouyang, et al., Carbon fiber supported binary metal sulfide catalysts with multi-dimensional structures for electrocatalytic nitrogen reduction reactions over a wide pH range, Adv. Fiber Mater. 3 (2021) 229–238. doi: 10.1007/s42765-021-00072-0
    [169]
    M.S.A. Rahaman, A.F. Ismail, A. Mustafa, A review of heat treatment on polyacrylonitrile fiber, Polym. Degrad. Stabil. 92 (2007) 1421–1432. doi: 10.1016/j.polymdegradstab.2007.03.023
    [170]
    M. Dirican, O. Yildiz, Y. Lu, et al., Flexible binder-free silicon/silica/carbon nanofiber composites as anode for lithium-ion batteries, Electrochim. Acta 169 (2015) 52–60. doi: 10.1016/j.electacta.2015.04.035
    [171]
    C. Zhang, R. Yu, T. Zhou, et al., Mass production of three-dimensional hierarchical microfibers constructed from silicon-carbon core-shell architectures with highperformance lithium storage, Carbon 72 (2014) 169–175. doi: 10.1016/j.carbon.2014.01.069
    [172]
    K. -B. Kim, N.A. Dunlap, S.S. Han, et al., Nanostructured Si/C fibers as a highly reversible anode material for all-solid-state lithium-ion batteries, J. Electrochem. Soc. 165 (2018) A1903–A1908. doi: 10.1149/2.1491809jes
    [173]
    K. Shen, H. Chen, X. Hou, et al., Mechanistic insight into the role of N-doped carbon matrix in electrospun binder-free Si@C composite anode for lithium-ion batteries, Ionics 26 (2020) 3297–3305. doi: 10.1007/s11581-020-03484-x
    [174]
    Y. An, Y. Tian, H. Wei, et al., Porosity- and graphitization-controlled fabrication of nanoporous silicon@carbon for lithium storage and its conjugation with Mxene for lithium-metal anode, Adv. Funct. Mater. 30 (2019), 1908721.
    [175]
    D. Wang, C. Zhou, B. Cao, et al., One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries, Energy Storage Mater. 24 (2020) 312–318. doi: 10.1016/j.ensm.2019.07.045
    [176]
    Y. Xu, Y. Zhu, F. Han, et al., 3D Si/C fiber paper electrodes fabricated using a combined electrospray/electrospinning technique for Li-ion batteries, Adv. Energy Mater. 5 (2015), 1400753. doi: 10.1002/aenm.201400753
    [177]
    O. Park, J. -I. Lee, M. -J. Chun, et al., High-performance Si anodes with a highly conductive and thermally stable titanium silicide coating layer, RSC Adv. 3 (2013) 2538–2542. doi: 10.1039/c2ra23365g
    [178]
    Q. Xu, J. -K. Sun, Z. -L. Yu, et al., SiOx encapsulated in graphene bubble film: an ultrastable Li-ion battery anode, Adv. Mater. 30 (2018), 1707430. doi: 10.1002/adma.201707430
    [179]
    C. Huang, A. Kim, D.J. Chung, et al., Multiscale engineered Si/SiOx nanocomposite electrodes for lithium-ion batteries using layer-by-layer spray deposition, ACS Appl. Mater. Interfaces 10 (2018) 15624–15633. doi: 10.1021/acsami.8b00370
    [180]
    A. Tolosa, M. Widmaier, B. Krüner, et al., Continuous silicon oxycarbide fiber mats with tin nanoparticles as a high capacity anode for lithium-ion batteries, Sustain. Energy Fuels 2 (2018) 215–228. doi: 10.1039/C7SE00431A
    [181]
    S.H. Min, M.R. Jo, D.H. Song, et al., High crystalline carbon network of Si/C nanofibers obtained from the embedded pitch and its contribution to Li ion kinetics, Electrochim. Acta 220 (2016) 511–516. doi: 10.1016/j.electacta.2016.10.111
    [182]
    J. Kong, W.A. Yee, Y. Wei, et al., Silicon nanoparticles encapsulated in hollow graphitized carbon nanofibers for lithium ion battery anodes, Nanoscale 5 (2013) 2967–2973. doi: 10.1039/c3nr34024d
    [183]
    E.C. Self, M. Naguib, R.E. Ruther, et al., High areal capacity Si/LiCoO2 batteries from electrospun composite fiber mats, ChemSusChem 10 (2017) 1823–1831. doi: 10.1002/cssc.201700096
    [184]
    Q. Liu, Y. Gao, P. He, et al., Facile fabrication of hollow structured Si-Ni-C nanofabric anode for Li-ion battery, Mater. Lett. 231 (2018) 205–208. doi: 10.1016/j.matlet.2018.08.044
    [185]
    H. Wang, H. Huang, L. Chen, et al., Preparation of Si/Sn-based nanoparticles composited with carbon fibers and improved electrochemical performance as anode materials, ACS Sustain. Chem. Eng. 2 (2014) 2310–2317. doi: 10.1021/sc500290x
    [186]
    D. Lee, B. Kim, J. Kim, et al., Salami-like electrospun Si nanoparticle-ITO composite nanofibers with internal conductive pathways for use as anodes for Li-ion batteries, ACS Appl. Mater. Interfaces 7 (2015) 27234–27241. doi: 10.1021/acsami.5b08401
    [187]
    J. Zeng, C. q. Peng, R. c. Wang, et al., Preparation of dual-shell Si/TiO2/CFs composite and its lithium storage performance, Trans. Nonferrous Metals Soc. China 29 (2019) 2384–2391. doi: 10.1016/S1003-6326(19)65144-7
    [188]
    L. Wang, G. Yang, S. Peng, et al., One-dimensional nanomaterials toward electrochemical sodium-ion storage applications via electrospinning, Energy Storage Mater. 25 (2020) 443–476. doi: 10.1016/j.ensm.2019.09.036
    [189]
    A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183–191. doi: 10.1038/nmat1849
    [190]
    D.A. Dikin, S. Stankovich, E.J. Zimney, et al., Preparation and characterization of graphene oxide paper, Nature 448 (2007) 457–460. doi: 10.1038/nature06016
    [191]
    Q. Shi, J. Sun, C. Hou, et al., Advanced functional fiber and smart textile, Adv. Fiber Mater. 1 (2019) 3–31. doi: 10.1007/s42765-019-0002-z
    [192]
    F. Schwierz, The rise and rise of graphene, Nat. Nanotechnol. 5 (2010) 755. doi: 10.1038/nnano.2010.224
    [193]
    K.S. Novoselov, A.K. Geim, S.V. Morozov, et al., Electric field in atomically thin carbon films, Science 306 (2004) 666–669. doi: 10.1126/science.1102896
    [194]
    S. Li, J. Qiu, C. Lai, et al., Surface capacitive contributions: towards high rate anode materials for sodium ion batteries, Nano Energy 12 (2015) 224–230. doi: 10.1016/j.nanoen.2014.12.032
    [195]
    A.R. Kamali, H.K. Kim, K.B. Kim, et al., Large scale green production of ultra-high capacity anode consisting of graphene encapsulated silicon nanoparticles, J. Mater. Chem. A 5 (2017) 19126–19135. doi: 10.1039/C7TA04335J
    [196]
    X. Zhou, Y.X. Yin, L.J. Wan, et al., Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries, Chem. Commun. 48 (2012) 2198–2200. doi: 10.1039/c2cc17061b
    [197]
    L. David, R. Bhandavat, U. Barrera, et al., Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries, Nat. Commun. 7 (2016) 10998. doi: 10.1038/ncomms10998
    [198]
    C. Gao, C. Fang, H. Zhao, et al., Rational design of multi-functional CoS@rGO composite for performance enhanced Li-S cathode, J. Power Sources 421 (2019) 132–138. doi: 10.1016/j.jpowsour.2019.03.015
    [199]
    M. Shao, Y. Cheng, T. Zhang, et al., Designing MOFs-derived FeS2@carbon composites for high-rate sodium ion storage with capacitive contributions, ACS Appl. Mater. Interfaces 10 (2018) 33097–33104. doi: 10.1021/acsami.8b10110
    [200]
    M.R. Al Hassan, A. Sen, T. Zaman, et al., Emergence of graphene as a promising anode material for rechargeable batteries: a review, Mater. Today Chem. 11 (2019) 225–243. doi: 10.1016/j.mtchem.2018.11.006
    [201]
    J. Shin, K. Park, W.H. Ryu, et al., Graphene wrapping as a protective clamping layer anchored to carbon nanofibers encapsulating Si nanoparticles for a Li-ion battery anode, Nanoscale 6 (2014) 12718–12726. doi: 10.1039/C4NR03173C
    [202]
    D. Cho, M. Kim, J. Hwang, et al., Facile synthesis of porous silicon nanofibers by magnesium reduction for application in lithium ion batteries, Nanoscale Res. Lett. 10 (2015) 424. doi: 10.1186/s11671-015-1132-8
    [203]
    Y.S. Kim, G. Shoorideh, Y. Zhmayev, et al., The critical contribution of unzipped graphene nanoribbons to scalable silicon-carbon fiber anodes in rechargeable Liion batteries, Nano Energy 16 (2015) 446–457. doi: 10.1016/j.nanoen.2015.07.017
    [204]
    J. Wu, X. Qin, C. Miao, et al., A honeycomb-cobweb inspired hierarchical coreshell structure design for electrospun silicon/carbon fibers as lithium-ion battery anodes, Carbon 98 (2016) 582–591. doi: 10.1016/j.carbon.2015.11.048
    [205]
    X.M. Liu, Z. d. Huang, S. w. Oh, et al., Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: a review, Compos. Sci. Technol. 72 (2012) 121–144. doi: 10.1016/j.compscitech.2011.11.019
    [206]
    C. De Las Casas, W. Li, A review of application of carbon nanotubes for lithium ion battery anode material, J. Power Sources 208 (2012) 74–85. doi: 10.1016/j.jpowsour.2012.02.013
    [207]
    Z. Xiong, Y.S. Yun, H.J. Jin, Applications of carbon nanotubes for lithium ion battery anodes, Materials 6 (2013) 1138–1158. doi: 10.3390/ma6031138
    [208]
    Y. Li, G. Xu, L. Xue, et al., Enhanced rate capability by employing carbon nanotube-loaded electrospun Si/C composite nanofibers as binder-free anodes, J. Electrochem. Soc. 160 (2013) A528–A534. doi: 10.1149/2.031304jes
    [209]
    A. Magasinski, P. Dixon, B. Hertzberg, et al., High-performance lithium-ion anodes using a hierarchical bottom-up approach, Nat. Mater. 9 (2010) 353–358. doi: 10.1038/nmat2725
    [210]
    N. Liu, Z. Lu, J. Zhao, et al., A pomegranate-inspired nanoscale design for largevolume-change lithium battery anodes, Nat. Nanotechnol. 9 (2014) 187–192. doi: 10.1038/nnano.2014.6
    [211]
    Y. Li, R. Wang, J. Zhang, et al., Sandwich structure of carbon-coated silicon/carbon nanofiber anodes for lithium-ion batteries, Ceram. Int. 45 (2019) 16195–16201. doi: 10.1016/j.ceramint.2019.05.141
    [212]
    S. Liu, W. Xu, C. Ding, et al., Boosting electrochemical performance of electrospun silicon-based anode materials for lithium-ion battery by surface coating a second layer of carbon, Appl. Surf. Sci. 494 (2019) 94–100. doi: 10.1016/j.apsusc.2019.07.193
    [213]
    C. Du, M. Chen, L. Wang, et al., Covalently-functionalizing synthesis of Si@C coreshell nanocomposites as high-capacity anode materials for lithium-ion batteries, J. Mater. Chem. 21 (2011) 15692–15697. doi: 10.1039/c1jm12368h
    [214]
    R.A. Messing, H.R. Stinson, Covalent coupling of alkaline bacillus subtilis protease to controlledpore silica with a new simplified coupling technique, Mol. Cell. Biochem. 4 (1974) 217–220. doi: 10.1007/BF01731484
    [215]
    M. Thakur, M. Isaacson, S.L. Sinsabaugh, et al., Gold-coated porous silicon films as anodes for lithium ion batteries, J. Power Sources 205 (2012) 426–432. doi: 10.1016/j.jpowsour.2012.01.058
    [216]
    D. Chen, X. Mei, G. Ji, et al., Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles, Angew. Chem. Int. Ed. 51 (2012) 2409–2413. doi: 10.1002/anie.201107885
    [217]
    H. Zhang, P. Zong, M. Chen, et al., In situ synthesis of multilayer carbon matrix decorated with copper particles: enhancing the performance of Si as anode for Li-ion batteries, ACS Nano 13 (2019) 3054–3062. doi: 10.1021/acsnano.8b08088
    [218]
    K. Karki, Y. Zhu, Y. Liu, et al., Hoop-strong nanotubes for battery electrodes, ACS Nano 7 (2013) 8295–8302. doi: 10.1021/nn403895h
    [219]
    A. Thess, R. Lee, P. Nikolaev, et al., Crystalline ropes of metallic carbon nanotubes, Science 273 (1996) 483–487. doi: 10.1126/science.273.5274.483
    [220]
    Y. Chen, X. Li, K. Park, et al., Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries, J. Am. Chem. Soc. 135 (2013) 16280–16283. doi: 10.1021/ja408421n
    [221]
    Y. Chen, Z. Lu, L. Zhou, et al., Triple-coaxial electrospun amorphous carbon nanotubes with hollow graphitic carbon nanospheres for high-performance Li ion batteries, Energy Environ. Sci. 5 (2012) 7898–7902. doi: 10.1039/c2ee22085g
    [222]
    S. Helveg, C. López-Cartes, J. Sehested, et al., Atomic-scale imaging of carbon nanofibre growth, Nature 427 (2004) 426–429. doi: 10.1038/nature02278
    [223]
    R. Anton, On the reaction kinetics of Ni with amorphous carbon, Carbon 46 (2008) 656–662. doi: 10.1016/j.carbon.2008.01.021
    [224]
    A. Kohandehghan, K. Cui, M. Kupsta, et al., Nanometer-scale Sn coatings improve the performance of silicon nanowire LIB anodes, J. Mater. Chem. A 2 (2014) 11261–11279. doi: 10.1039/c4ta00993b
    [225]
    X. Lu, T.D. Bogart, M. Gu, et al., In situ TEM observations of Sn-containing silicon nanowires undergoing reversible pore formation due to fast lithiation/delithiation kinetics, J. Phys. Chem. C 119 (2015) 21889–21895. doi: 10.1021/acs.jpcc.5b06386
    [226]
    G. Jeong, J.G. Kim, M.S. Park, et al., Core-shell structured silicon nanoparticles@ TiO2-x/carbon mesoporous microfiber composite as a safe and high-performance lithium-ion battery anode, ACS Nano 8 (2014) 2977–2985. doi: 10.1021/nn500278q
    [227]
    S. Peng, L. Li, Y. Hu, et al., Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications, ACS Nano 9 (2015) 1945–1954. doi: 10.1021/nn506851x
    [228]
    R. Mazzaro, M. Locritani, J.K. Molloy, et al., Photoinduced processes between pyrene-functionalized silicon nanocrystals and carbon allotropes, Chem. Mater. 27 (2015) 4390–4397. doi: 10.1021/acs.chemmater.5b01769
    [229]
    S. Sadhu, P. Poddar, Template-free fabrication of highly-oriented single-crystalline 1D-rutile TiO2-MWCNT composite for enhanced photoelectrochemical activity, J. Phys. Chem. C 118 (2014) 19363–19373. doi: 10.1021/jp5023983
    [230]
    W. Li, F. Wang, Y. Liu, et al., General strategy to synthesize uniform mesoporous TiO2/graphene/mesoporous TiO2 sandwich-like nanosheets for highly reversible lithium storage, Nano Lett. 15 (2015) 2186–2193. doi: 10.1021/acs.nanolett.5b00291
    [231]
    D.Y. Rhee, J. Kim, J. Moon, et al., Off-stoichiometric TiO2-x-decorated graphite anode for high-power lithium-ion batteries, J. Alloys Compd. 843 (2020), 156042. doi: 10.1016/j.jallcom.2020.156042
    [232]
    J. Li, Z. Li, W. Huang, et al., A facile strategy to construct silver-modified, ZnOincorporated and carbon-coated silicon/porous-carbon nanofibers with enhanced lithium storage, Small 15 (2019), 1900436. doi: 10.1002/smll.201900436
    [233]
    L. Wu, J. Yang, X. Zhou, et al., Enhanced electrochemical performance of heterogeneous Si/MoSi2 anodes prepared by a magnesiothermic reduction, ACS Appl. Mater. Interfaces 8 (2016) 16862–16868. doi: 10.1021/acsami.6b04448
    [234]
    X. Hui, R. Zhao, P. Zhang, et al., Low-temperature reduction strategy synthesized Si/Ti3C2 mxene composite anodes for high-performance Li-ion batteries, Adv. Energy Mater. 9 (2019), 1901065. doi: 10.1002/aenm.201901065
    [235]
    H. Park, S. Lee, S. Yoo, et al., Control of interfacial layers for high-performance porous Si lithium-ion battery anode, ACS Appl. Mater. Interfaces 6 (2014) 16360–16367. doi: 10.1021/am5046197
    [236]
    J.W. Yeh, S.K. Chen, S.J. Lin, et al., Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299–303. doi: 10.1002/adem.200300567
    [237]
    A. Sarkar, L. Velasco, D. Wang, et al., High entropy oxides for reversible energy storage, Nat. Commun. 9 (2018) 3400. doi: 10.1038/s41467-018-05774-5
    [238]
    N. Qiu, H. Chen, Z. Yang, et al., A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance, J. Alloys Compd. 777 (2019) 767–774. doi: 10.1016/j.jallcom.2018.11.049
    [239]
    G. Yoon, D.H. Kim, I. Park, et al., Using first-principles calculations for the advancement of materials for rechargeable batteries, Adv. Funct. Mater. 27 (2017), 1702887. doi: 10.1002/adfm.201702887
    [240]
    S. Shi, J. Gao, Y. Liu, et al., Multi-scale computation methods: their applications in lithium-ion battery research and development, Chin. Phys. B 25 (2016), 18212. doi: 10.1088/1674-1056/25/1/018212
    [241]
    T. Gao, W. Lu, Mechanism and effect of thermal degradation on electrolyte ionic diffusivity in Li-ion batteries: a molecular dynamics study, Electrochim. Acta 323 (2019), 134791. doi: 10.1016/j.electacta.2019.134791
    [242]
    Y. Liu, B. Guo, X. Zou, et al., Machine learning assisted materials design and discovery for rechargeable batteries, Energy Storage Mater 31 (2020) 434–450. doi: 10.1016/j.ensm.2020.06.033
    [243]
    F. Yang, X. Feng, Y.S. Liu, et al., J. Guo, in situ/operando (soft) X-ray spectroscopy study of beyond lithium-ion batteries, Energy Environ. Mater. 4 (2021) 139–157. doi: 10.1002/eem2.12172
    [244]
    J. Hu, B. Wu, S. Chae, et al., Achieving highly reproducible results in graphitebased Li-ion full coin cells, Joule 5 (2021) 1011–1015. doi: 10.1016/j.joule.2021.03.016
    [245]
    V. Murray, D.S. Hall, J.R. Dahn, A guide to full coin cell making for academic researchers, J. Electrochem. Soc. 166 (2019) A329–A333. doi: 10.1149/2.1171902jes
    [246]
    Y. Wu, L. Xie, H. Ming, et al., An empirical model for the design of batteries with high energy density, ACS Energy Lett. 5 (2020) 807–816. doi: 10.1021/acsenergylett.0c00211
    [247]
    X. Li, Y. Chen, H. Huang, et al., Electrospun carbon-based nanostructured electrodes for advanced energy storage - a review, Energy Storage Mater. 5 (2016) 58–92. doi: 10.1016/j.ensm.2016.06.002
    [248]
    H. He, D. Sun, Y. Tang, et al., Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries, Energy Storage Mater. 23 (2019) 233–251. doi: 10.1016/j.ensm.2019.05.008
    [249]
    W. Guo, Y. Fu, A perspective on energy densities of rechargeable Li-S batteries and alternative sulfur-based cathode materials, Energy Environ. Mater. 1 (2018) 20–27. doi: 10.1002/eem2.12003
    [250]
    J. Lin, L. Lin, S. Qu, et al., Promising electrode and electrolyte materials for highenergy-density thin-film lithium batteries, Energy Environ. Mater. (2021).
    [251]
    X. Chen, P. Hu, J. Xiang, et al., Confining silicon nanoparticles within freestanding multichannel carbon fibers for high-performance Li-ion batteries, ACS Appl. Energy Mater. 2 (2019) 5214–5218.
    [252]
    G. Shoorideh, Y.S. Kim, Y.L. Joo, Facile, water-based, direct–deposit fabrication of hybrid silicon assemblies for scalable and high–performance Li–ion battery anodes, Electrochim. Acta 222 (2016) 946–955. doi: 10.1016/j.electacta.2016.11.062
    [253]
    Q. Wu, T. Tran, W. Lu, et al., Electrospun silicon/carbon/titanium oxide composite nanofibers for lithium ion batteries, J. Power Sources 258 (2014) 39–45. doi: 10.1016/j.jpowsour.2014.02.047
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views (330) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return