Citation: | Huang Aoming, Ma Yanchen, Peng Jian, Li Linlin, Chou Shu-lei, Ramakrishna Seeram, Peng Shengjie. Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology[J]. eScience, 2021, 1(2): 141-162. doi: 10.1016/j.esci.2021.11.006 |
[1] |
Y. Liang, H. Dong, D. Aurbach, et al., Current status and future directions of multivalent metal-ion batteries, Nat. Energy 5 (2020) 646–656. doi: 10.1038/s41560-020-0655-0
|
[2] |
P. Simon, Y. Gogotsi, Perspectives for electrochemical capacitors and related devices, Nat. Mater. 19 (2020) 1151–1163. doi: 10.1038/s41563-020-0747-z
|
[3] |
K. Xu, A long journey of lithium: from the big bang to our smartphones, Energy Environ. Mater. 2 (2019) 229–233. doi: 10.1002/eem2.12057
|
[4] |
B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices, Science 334 (2011) 928–935. doi: 10.1126/science.1212741
|
[5] |
J.B. Goodenough, K.S. Park, The Li-ion rechargeable battery: a perspective, J. Am. Chem. Soc. 135 (2013) 1167–1176. doi: 10.1021/ja3091438
|
[6] |
Y. Chen, L. Liu, J. Xiong, et al., Porous Si nanowires from cheap metallurgical silicon stabilized by a surface oxide layer for lithium ion batteries, Adv. Funct. Mater. 25 (2015) 6701–6709. doi: 10.1002/adfm.201503206
|
[7] |
H. Wu, Y. Cui, Designing nanostructured Si anodes for high energy lithium ion batteries, Nano Today 7 (2012) 414–429. doi: 10.1016/j.nantod.2012.08.004
|
[8] |
B. Zhu, X. Wang, P. Yao, et al., Towards high energy density lithium battery anodes: silicon and lithium, Chem. Sci. 10 (2019) 7132–7148. doi: 10.1039/C9SC01201J
|
[9] |
K. Ogata, S. Jeon, D.S. Ko, et al., Evolving affinity between coulombic reversibility and hysteretic phase transformations in nano-structured silicon-based lithium-ion batteries, Nat. Commun. 9 (2018) 479. doi: 10.1038/s41467-018-02824-w
|
[10] |
K. Stokes, G. Flynn, H. Geaney, et al., Axial Si–Ge heterostructure nanowires as lithium-ion battery anodes, Nano Lett. 18 (2018) 5569–5575. doi: 10.1021/acs.nanolett.8b01988
|
[11] |
H. Kim, M. Seo, M. -H. Park, et al., A critical size of silicon nano-anodes for lithium rechargeable batteries, Angew. Chem. Int. Ed. 49 (2010) 2146–2149. doi: 10.1002/anie.200906287
|
[12] |
M. Aghajamali, H. Xie, M. Javadi, et al., Size and surface effects of silicon nanocrystals in graphene aerogel composite anodes for lithium ion batteries, Chem. Mater. 30 (2018) 7782–7792. doi: 10.1021/acs.chemmater.8b03198
|
[13] |
J.K. Lee, K.B. Smith, C.M. Hayner, et al., Silicon nanoparticles-graphene paper composites for Li ion battery anodes, Chem. Commun. 46 (2010) 2025–2027. doi: 10.1039/b919738a
|
[14] |
B. Liu, P. Soares, C. Checkles, et al., Three-dimensional hierarchical ternary nanostructures for high-performance Li-ion battery anodes, Nano Lett. 13 (2013) 3414–3419. doi: 10.1021/nl401880v
|
[15] |
L.F. Cui, Y. Yang, C.M. Hsu, et al., Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries, Nano Lett. 9 (2009) 3370–3374. doi: 10.1021/nl901670t
|
[16] |
C.K. Chan, H. Peng, G. Liu, et al., High-performance lithium battery anodes using silicon nanowires, Nat. Nanotechnol. 3 (2008) 31–35. doi: 10.1038/nnano.2007.411
|
[17] |
M. -H. Park, M.G. Kim, J. Joo, et al., Silicon nanotube battery anodes, Nano Lett. 9 (2009) 3844–3847. doi: 10.1021/nl902058c
|
[18] |
T. Song, J. Xia, J. -H. Lee, et al., Arrays of sealed silicon nanotubes as anodes for lithium ion batteries, Nano Lett. 10 (2010) 1710–1716. doi: 10.1021/nl100086e
|
[19] |
J. Ryu, D. Hong, S. Choi, et al., Synthesis of ultrathin Si nanosheets from natural clays for lithium-ion battery anodes, ACS Nano 10 (2016) 2843–2851. doi: 10.1021/acsnano.5b07977
|
[20] |
S. Chen, Z. Chen, X. Xu, et al., Scalable 2D mesoporous silicon nanosheets for highperformance lithium-ion battery anode, Small 14 (2018), 1703361. doi: 10.1002/smll.201703361
|
[21] |
J. Deng, H. Ji, C. Yan, et al., Naturally rolled-up C/Si/C trilayer nanomembranes as stable anodes for lithium-ion batteries with remarkable cycling performance, Angew. Chem. Int. Ed. 52 (2013) 2326–2330. doi: 10.1002/anie.201208357
|
[22] |
X. Liu, J. Zhang, W. Si, et al., Sandwich nanoarchitecture of Si/reduced graphene oxide bilayer nanomembranes for Li-Ion batteries with long cycle life, ACS Nano 9 (2015) 1198–1205. doi: 10.1021/nn5048052
|
[23] |
Y. Yao, M.T. McDowell, I. Ryu, et al., Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life, Nano Lett. 11 (2011) 2949–2954. doi: 10.1021/nl201470j
|
[24] |
H. Ma, F. Cheng, J. Chen, et al., Nest-like silicon nanospheres for high-capacity lithium storage, Adv. Mater. 19 (2007) 4067–4070. doi: 10.1002/adma.200700621
|
[25] |
S.R. Gowda, V. Pushparaj, S. Herle, et al., Three-dimensionally engineered porous silicon electrodes for Li Ion batteries, Nano Lett. 12 (2012) 6060–6065. doi: 10.1021/nl302114j
|
[26] |
Y. Zhao, X. Liu, H. Li, et al., Hierarchical micro/nano porous silicon Li-ion battery anodes, Chem. Commun. 48 (2012) 5079–5081. doi: 10.1039/c2cc31476b
|
[27] |
J. Chang, X. Huang, G. Zhou, et al., Multilayered Si nanoparticle/reduced graphene oxide hybrid as a high-performance lithium-ion battery anode, Adv. Mater. 26 (2014) 758–764. doi: 10.1002/adma.201302757
|
[28] |
Y. Wu, X. Huang, L. Huang, et al., Strategies for rational design of high-power lithium-ion batteries, Energy Environ. Mater. 4 (2021) 19–45. doi: 10.1002/eem2.12088
|
[29] |
J. Lee, J.K. Lee, K.Y. Chung, et al., Electrochemical investigations on TiO2-B nanowires as a promising high capacity anode for sodium-ion batteries, Electrochim. Acta 200 (2016) 21–28. doi: 10.1016/j.electacta.2016.03.110
|
[30] |
Y. Jiang, Y. Zhang, X. Yan, et al., A sustainable route from fly ash to silicon nanorods for high performance lithium ion batteries, Chem. Eng. J. 330 (2017) 1052–1059. doi: 10.1016/j.cej.2017.08.061
|
[31] |
J.H. Cho, S.T. Picraux, Enhanced lithium ion battery cycling of silicon nanowire anodes by template growth to eliminate silicon underlayer islands, Nano Lett. 13 (2013) 5740–5747. doi: 10.1021/nl4036498
|
[32] |
X. Zhu, H. Chen, Y. Wang, et al., Growth of silicon/carbon microrods on graphite microspheres as improved anodes for lithium-ion batteries, J. Mater. Chem. A 1 (2013) 4483–4489. doi: 10.1039/c3ta01474f
|
[33] |
C. Huang, N.L. Thomas, Fabrication of porous fibers via electrospinning: strategies and applications, Polym. Rev. 60 (2020) 595–647. doi: 10.1080/15583724.2019.1688830
|
[34] |
X. Kong, Y. Zheng, Y. Wang, et al., Necklace-like Si@C nanofibers as robust anode materials for high performance lithium ion batteries, Sci. Bull. 64 (2019) 261–269. doi: 10.1016/j.scib.2019.01.015
|
[35] |
L. Wang, F. Zhang, Y. Liu, et al., Shape memory polymer fibers: materials, structures, and applications, Adv. Fiber Mater. (2021).
|
[36] |
A.T. Heitsch, D.D. Fanfair, H.Y. Tuan, et al., Solution-liquid-solid (SLS) growth of silicon nanowires, J. Am. Chem. Soc. 130 (2008) 5436–5437. doi: 10.1021/ja8011353
|
[37] |
A.M. Chockla, J.T. Harris, V.A. Akhavan, et al., Silicon nanowire fabric as a lithium ion battery electrode material, J. Am. Chem. Soc. 133 (2011) 20914–20921. doi: 10.1021/ja208232h
|
[38] |
M. Ge, J. Rong, X. Fang, et al., Porous doped silicon nanowires for lithium ion battery anode with long cycle life, Nano Lett. 12 (2012) 2318–2323. doi: 10.1021/nl300206e
|
[39] |
B. Wang, T. Qiu, X. Li, et al., Synergistically engineered self-standing silicon/carbon composite arrays as high performance lithium battery anodes, J. Mater. Chem. A 3 (2015) 494–498. doi: 10.1039/C4TA06088A
|
[40] |
C. -L. Zhang, B. -R. Lu, F. -H. Cao, et al., Electrospun metal-organic framework nanoparticle fibers and their derived electrocatalysts for oxygen reduction reaction, Nano Energy 55 (2019) 226–233. doi: 10.1016/j.nanoen.2018.10.029
|
[41] |
C.T. Lim, Nanofiber technology: current status and emerging developments, Prog. Polym. Sci. 70 (2017) 1–17. doi: 10.1016/j.progpolymsci.2017.03.002
|
[42] |
J. Zhao, W. Cui, Functional electrospun fibers for local therapy of cancer, Adv. Fiber Mater. 2 (2020) 229–245. doi: 10.1007/s42765-020-00053-9
|
[43] |
H. Hou, K.M. Zeinu, S. Gao, et al., Recent advances and perspective on design and synthesis of electrode materials for electrochemical sensing of heavy metals, Energy Environ. Mater. 1 (2018) 113–131. doi: 10.1002/eem2.12011
|
[44] |
J. Zhou, Z. Hu, F. Zabihi, et al., Progress and perspective of antiviral protective material, Adv. Fiber Mater. 2 (2020) 123–139. doi: 10.1007/s42765-020-00047-7
|
[45] |
S. Peng, L. Li, J. Kong Yoong Lee, et al., Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage, Nano Energy 22 (2016) 361–395. doi: 10.1016/j.nanoen.2016.02.001
|
[46] |
Y. Hu, D. Ye, B. Luo, et al., A binder-free and free-standing cobalt sulfide@carbon nanotube cathode material for aluminum-ion batteries, Adv. Mater. 30 (2018), 1703824. doi: 10.1002/adma.201703824
|
[47] |
S. Peng, X. Han, L. Li, et al., Electronic and defective engineering of electrospun CaMnO3 nanotubes for enhanced oxygen electrocatalysis in rechargeable zinc–air batteries, Adv. Energy Mater. 8 (2018), 1800612. doi: 10.1002/aenm.201800612
|
[48] |
X. Zhou, L.J. Wan, Y.G. Guo, Electrospun silicon nanoparticle/porous carbon hybrid nanofibers for lithium-ion batteries, Small 9 (2013) 2684–2688. doi: 10.1002/smll.201202071
|
[49] |
J. Zhu, T. Wang, F. Fan, et al., Atomic-scale control of silicon expansion space as ultrastable battery anodes, ACS Nano 10 (2016) 8243–8251. doi: 10.1021/acsnano.6b04522
|
[50] |
Y. Han, J. Zou, Z. Li, et al., Si@void@C nanofibers fabricated using a self-powered electrospinning system for lithium-ion batteries, ACS Nano 12 (2018) 4835–4843. doi: 10.1021/acsnano.8b01558
|
[51] |
C. -M. Wang, X. Li, Z. Wang, et al., In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries, Nano Lett. 12 (2012) 1624–1632. doi: 10.1021/nl204559u
|
[52] |
J.K. Yoo, J. Kim, Y.S. Jung, et al., Scalable fabrication of silicon nanotubes and their application to energy storage, Adv. Mater. 24 (2012) 5452–5456. doi: 10.1002/adma.201201601
|
[53] |
X. Zhang, D. Kong, X. Li, et al., Dimensionally designed carbon-silicon hybrids for lithium storage, Adv. Funct. Mater. 29 (2019), 1806061. doi: 10.1002/adfm.201806061
|
[54] |
W. Liu, M.S. Song, B. Kong, et al., Flexible and stretchable energy storage: recent advances and future perspectives, Adv. Mater. 29 (2017), 1603436. doi: 10.1002/adma.201603436
|
[55] |
D. Ji, L. Fan, L. Li, et al., Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc-air batteries, Adv. Mater. 31 (2019), 1808267. doi: 10.1002/adma.201808267
|
[56] |
D. Ji, L. Fan, L. Li, et al., Hierarchical catalytic electrodes of cobalt-embedded carbon nanotube/carbon flakes arrays for flexible solid-state zinc-air batteries, Carbon 142 (2019) 379–387. doi: 10.1016/j.carbon.2018.10.064
|
[57] |
Y. Xu, T. Yuan, Z. Bian, et al., Electrospun flexible Si/C@CNF nonwoven anode for high capacity and durable lithium-ion battery, Compos. Commun. 11 (2019) 1–5. doi: 10.1016/j.coco.2018.10.012
|
[58] |
O. Yildiz, M. Dirican, X. Fang, et al., Hybrid carbon nanotube fabrics with sacrificial nanofibers for flexible high performance lithium-ion battery anodes, J. Electrochem. Soc. 166 (2019) A473–A479. doi: 10.1149/2.0821902jes
|
[59] |
B.S. Lee, H.S. Yang, H. Jung, et al., Novel multi-layered 1-D nanostructure exhibiting the theoretical capacity of silicon for a super-enhanced lithium-ion battery, Nanoscale 6 (2014) 5989–5998. doi: 10.1039/c4nr00318g
|
[60] |
G. Shoorideh, B. Ko, A. Berry, et al., Harvesting interconductivity and intraconductivity of graphene nanoribbons for a directly deposited, high-rate silicon-based anode for Li-ion batteries, ACS Appl. Energy Mater. 1 (2018) 1106–1115. doi: 10.1021/acsaem.7b00228
|
[61] |
S. Jiang, Y. Chen, G. Duan, et al., Electrospun nanofiber reinforced composites: a review, Polym. Chem. 9 (2018) 2685–2720. doi: 10.1039/C8PY00378E
|
[62] |
S. Cavaliere, S. Subianto, I. Savych, et al., Electrospinning: designed architectures for energy conversion and storage devices, Energy Environ. Sci. 4 (2011) 4761–4785. doi: 10.1039/c1ee02201f
|
[63] |
Y. Lei, Q. Wang, S. Peng, et al., Electrospun inorganic nanofibers for oxygen electrocatalysis: design, fabrication, and progress, Adv. Energy Mater. 10 (2020), 1902115. doi: 10.1002/aenm.201902115
|
[64] |
X. Lu, C. Wang, F. Favier, et al., Electrospun nanomaterials for supercapacitor electrodes: designed architectures and electrochemical performance, Adv. Energy Mater. 7 (2017), 1601301. doi: 10.1002/aenm.201601301
|
[65] |
A. Greiner, J.H. Wendorff, Electrospinning: a fascinating method for the preparation of ultrathin fibers, Angew. Chem. Int. Ed. 46 (2007) 5670–5703. doi: 10.1002/anie.200604646
|
[66] |
B. Zhang, F. Kang, J.M. Tarascon, et al., Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage, Prog. Mater. Sci. 76 (2016) 319–380. doi: 10.1016/j.pmatsci.2015.08.002
|
[67] |
J. Liang, H. Zhao, L. Yue, et al., Recent advances in electrospun nanofibers for supercapacitors, J. Mater. Chem. A 8 (2020) 16747–16789. doi: 10.1039/D0TA05100D
|
[68] |
J.K.Y. Lee, N. Chen, S. Peng, et al., Polymer-based composites by electrospinning: preparation & functionalization with nanocarbons, Prog. Polym. Sci. 86 (2018) 40–84. doi: 10.1016/j.progpolymsci.2018.07.002
|
[69] |
Y. Li, B. Guo, L. Ji, et al., Structure control and performance improvement of carbon nanofibers containing a dispersion of silicon nanoparticles for energy storage, Carbon 51 (2013) 185–194. doi: 10.1016/j.carbon.2012.08.027
|
[70] |
L. Ji, K.H. Jung, A.J. Medford, et al., Electrospun polyacrylonitrile fibers with dispersed Si nanoparticles and their electrochemical behaviors after carbonization, J. Mater. Chem. 19 (2009) 4992–4997. doi: 10.1039/b903165k
|
[71] |
X. Fan, L. Zou, Y.P. Zheng, et al., Electrospinning preparation of nanosilicon/disordered carbon composite as anode materials in Li-ion battery, Electrochem. Solid State Lett. 12 (2009) 199–202. doi: 10.1149/1.3186642
|
[72] |
Y.S. Kim, K.W. Kim, D. Cho, et al., Silicon-rich carbon hybrid nanofibers from water-based spinning: the synergy between silicon and carbon for Li-ion battery anode application, ChemElectroChem 1 (2014) 220–226. doi: 10.1002/celc.201300103
|
[73] |
C. Li, C. Liu, W. Wang, et al., Towards flexible binderless anodes: silicon/carbon fabrics via double-nozzle electrospinning, Chem. Commun. 52 (2016) 11398–11401. doi: 10.1039/C6CC04074H
|
[74] |
S. Li, C. Chen, K. Fu, et al., Comparison of Si/C, Ge/C and Sn/C composite nanofiber anodes used in advanced lithium-ion batteries, Solid State Ionics 254 (2014) 17–26. doi: 10.1016/j.ssi.2013.10.063
|
[75] |
R. Wang, Y. Sun, K. Xiong, et al., Optimal quantity of nano-silicon for electrospun silicon/carbon fibers as high capacity anodes, Front. Chem. 7 (2020) 867. doi: 10.3389/fchem.2019.00867
|
[76] |
B. Jiang, S. Zeng, H. Wang, et al., Dual core-shell structured Si@SiOx@C nanocomposite synthesized via a one-step pyrolysis method as a highly stable anode material for lithium-ion batteries, ACS Appl. Mater. Interfaces 8 (2016) 31611–31616. doi: 10.1021/acsami.6b09775
|
[77] |
Y. Chen, Y. Hu, Z. Shen, et al., Hollow core–shell structured silicon@carbon nanoparticles embed in carbon nanofibers as binder-free anodes for lithium-ion batteries, J. Power Sources 342 (2017) 467–475. doi: 10.1016/j.jpowsour.2016.12.089
|
[78] |
S.Y. Kim, K.S. Yang, B.H. Kim, Improving the microstructure and electrochemical performance of carbon nanofibers containing graphene-wrapped silicon nanoparticles as a Li-ion battery anode, J. Power Sources 273 (2015) 404–412. doi: 10.1016/j.jpowsour.2014.09.109
|
[79] |
Z.L. Xu, B. Zhang, J.K. Kim, Electrospun carbon nanofiber anodes containing monodispersed Si nanoparticles and graphene oxide with exceptional high rate capacities, Nano Energy 6 (2014) 27–35. doi: 10.1016/j.nanoen.2014.03.003
|
[80] |
Y. Chen, Y. Hu, Z. Shen, et al., Sandwich structure of graphene-protected silicon/carbon nanofibers for lithium-ion battery anodes, Electrochim. Acta 210 (2016) 53–60. doi: 10.1016/j.electacta.2016.05.086
|
[81] |
Y. Liu, K. Huang, Y. Fan, et al., Binder-free Si nanoparticles@carbon nanofiber fabric as energy storage material, Electrochim. Acta 102 (2013) 246–251. doi: 10.1016/j.electacta.2013.04.021
|
[82] |
M.S. Wang, W.L. Song, J. Wang, et al., Highly uniform silicon nanoparticle/porous carbon nanofiber hybrids towards free-standing high-performance anodes for lithium-ion batteries, Carbon 82 (2015) 337–345. doi: 10.1016/j.carbon.2014.10.078
|
[83] |
S.J. Kim, M.C. Kim, S.B. Han, et al., 3-D Si/carbon nanofiber as a binder/current collector-free anode for lithium-ion batteries, J. Ind. Eng. Chem. 49 (2017) 105–111. doi: 10.1016/j.jiec.2017.01.014
|
[84] |
V.G. Ahmadabadi, K. Shirvanimoghaddam, R. Kerr, et al., Structure-rate performance relationship in Si nanoparticles-carbon nanofiber composite as flexible anode for lithium-ion batteries, Electrochim. Acta 330 (2020), 135232. doi: 10.1016/j.electacta.2019.135232
|
[85] |
X. Cai, W. Liu, S. Yang, et al., Dual-confined SiO embedded in TiO2 shell and 3D carbon nanofiber web as stable anode material for superior lithium storage, Adv. Mater. Interfaces 6 (2019), 1801800. doi: 10.1002/admi.201801800
|
[86] |
X. Du, H. Zhang, X. Lan, et al., Sn alloy and graphite addition to enhance initial coulombic efficiency and cycling stability of SiO anodes for Li-ion batteries, Energy Environ. Mater. (2021).
|
[87] |
H. Wu, G. Chan, J.W. Choi, et al., Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control, Nat. Nanotechnol. 7 (2012) 310–315. doi: 10.1038/nnano.2012.35
|
[88] |
L. Qiao, X. Sun, Z. Yang, et al., Network structures of fullerene-like carbon core/nano-crystalline silicon shell nanofibers as anode material for lithium-ion batteries, Carbon 54 (2013) 29–35. doi: 10.1016/j.carbon.2012.10.066
|
[89] |
X. Ma, G. Hou, Q. Ai, et al., A heart-coronary arteries structure of carbon nanofibers/graphene/silicon composite anode for high performance lithium ion batteries, Sci. Rep. 7 (2017) 9642. doi: 10.1038/s41598-017-09658-4
|
[90] |
A. Moscatelli, From an idea to a technology, Nat. Nanotechnol. 13 (2018) 528–530. doi: 10.1038/s41565-018-0206-z
|
[91] |
W. Stober, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci. 26 (1968) 62–69. doi: 10.1016/0021-9797(68)90272-5
|
[92] |
Y. Cai, S.M. Allan, K.H. Sandhage, et al., Three-dimensional magnesia-based nanocrystal assemblies via low-temperature magnesiothermic reaction of diatom microshells, J. Am. Ceram. Soc. 88 (2005) 2005–2010. doi: 10.1111/j.1551-2916.2005.00388.x
|
[93] |
Q. Xiao, M. Gu, H. Yang, et al., Inward lithium-ion breathing of hierarchically porous silicon anodes, Nat. Commun. 6 (2015) 8844. doi: 10.1038/ncomms9844
|
[94] |
S. Chen, L. Shen, P.A. van Aken, et al., Dual-functionalized double carbon shells coated silicon nanoparticles for high performance lithium-ion batteries, Adv. Mater. 29 (2017), 1605650. doi: 10.1002/adma.201605650
|
[95] |
Z.L. Xu, Y. Gang, M.A. Garakani, et al., Carbon-coated mesoporous silicon microsphere anodes with greatly reduced volume expansion, J. Mater. Chem. A 4 (2016) 6098–6106. doi: 10.1039/C6TA01344A
|
[96] |
J. Ryu, S. Choi, T. Bok, et al., Nanotubular structured Si-based multicomponent anodes for high-performance lithium-ion batteries with controllable pore size via coaxial electro-spinning, Nanoscale 7 (2015) 6126–6135. doi: 10.1039/C5NR00224A
|
[97] |
J.K. Yoo, J. Kim, H. Lee, et al., Porous silicon nanowires for lithium rechargeable batteries, Nanotechnology 24 (2013), 424008. doi: 10.1088/0957-4484/24/42/424008
|
[98] |
Y. Qi, G. Wang, S. Li, et al., Recent progress of structural designs of silicon for performance-enhanced lithium-ion batteries, Chem. Eng. J. 397 (2020), 125380. doi: 10.1016/j.cej.2020.125380
|
[99] |
Q. Xia, A. Xu, C. Huang, et al., Porous Si@SiOx@N-rich carbon nanofibers as anode in lithium-ion batteries under high temperature, ChemElectroChem 6 (2019) 4402–4410. doi: 10.1002/celc.201901111
|
[100] |
D.J. Lee, H. Lee, M.H. Ryou, et al., Electrospun three-dimensional mesoporous silicon nanofibers as an anode material for high-performance lithium secondary batteries, ACS Appl. Mater. Interfaces 5 (2013) 12005–12010. doi: 10.1021/am403798a
|
[101] |
Y. Ouyang, X. Zhu, F. Li, et al., Silicon@nitrogen-doped porous carbon fiber composite anodes synthesized by an in-situ reaction collection strategy for highperformance lithium-ion batteries, Appl. Surf. Sci. 475 (2019) 211–218. doi: 10.1016/j.apsusc.2018.12.172
|
[102] |
C. Li, M. Qiu, R. Li, et al., Electrospinning engineering enables high-performance sodium-ion batteries, Adv. Fiber Mater. (2021).
|
[103] |
F. Shi, C. Chen, Z. -L. Xu, Recent advances on electrospun nanofiber materials for post-lithium ion batteries, Adv. Fiber Mater. (2021).
|
[104] |
S.V. Fridrikh, J.H. Yu, M.P. Brenner, et al., Controlling the fiber diameter during electrospinning, Phys. Rev. Lett. 90 (2003) 144502. doi: 10.1103/PhysRevLett.90.144502
|
[105] |
P. Katta, M. Alessandro, R.D. Ramsier, et al., Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector, Nano Lett. 4 (2004) 2215–2218. doi: 10.1021/nl0486158
|
[106] |
J. Wang, Y. Yu, L. Gu, et al., Highly reversible lithium storage in Si (core)-hollow carbon nanofibers (sheath) nanocomposites, Nanoscale 5 (2013) 2647–2650. doi: 10.1039/c3nr00322a
|
[107] |
J.T. McCann, M. Marquez, Y. Xia, Melt coaxial electrospinning: a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers, Nano Lett. 6 (2006) 2868–2872. doi: 10.1021/nl0620839
|
[108] |
L. Ji, X. Zhang, Electrospun carbon nanofibers containing silicon particles as an energy-storage medium, Carbon 47 (2009) 3219–3226. doi: 10.1016/j.carbon.2009.07.039
|
[109] |
L. Wang, Y. Yu, P.C. Chen, et al., Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries, J. Power Sources 183 (2008) 717–723. doi: 10.1016/j.jpowsour.2008.05.079
|
[110] |
E. Qu, T. Chen, Q. Xiao, et al., Freestanding silicon/carbon nanofibers composite membrane as a flexible anode for Li-Ion battery, J. Power Sources 403 (2018) 103–108. doi: 10.1016/j.jpowsour.2018.09.086
|
[111] |
L. Wang, C.X. Ding, L.C. Zhang, et al., A novel carbon-silicon composite nanofiber prepared via electrospinning as anode material for high energy-density lithium ion batteries, J. Power Sources 195 (2010) 5052–5056. doi: 10.1016/j.jpowsour.2010.01.088
|
[112] |
M. Gu, Y. Li, X. Li, et al., In situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix, ACS Nano 6 (2012) 8439–8447. doi: 10.1021/nn303312m
|
[113] |
H.S. Choi, J.G. Lee, H.Y. Lee, et al., Effects of surrounding confinements of Si nanoparticles on Si-based anode performance for lithium ion batteries, Electrochim. Acta 56 (2010) 790–796. doi: 10.1016/j.electacta.2010.09.101
|
[114] |
Y. Lee, Y.U. Heo, D. Song, et al., Si-carbon composite nanofibers with good scalability and favorable architecture for highly reversible lithium storage and superb kinetics, Electrochim. Acta 118 (2014) 100–105. doi: 10.1016/j.electacta.2013.12.009
|
[115] |
G. Hu, X. Zhang, X. Liu, et al., Strategies in precursors and post treatments to strengthen carbon nanofibers, Adv. Fiber Mater 2 (2020) 46–63. doi: 10.1007/s42765-020-00035-x
|
[116] |
Y. Sun, N. Liu, Y. Cui, Promises and challenges of nanomaterials for lithium-based rechargeable batteries, Nat. Energy 1 (2016), 16071. doi: 10.1038/nenergy.2016.71
|
[117] |
Y. He, X. Yu, Y. Wang, et al., Alumina-coated patterned amorphous silicon as the anode for a Lithium-Ion battery with high Coulombic efficiency, Adv. Mater. 23 (2011) 4938–4941. doi: 10.1002/adma.201102568
|
[118] |
M. Yoshio, H. Wang, K. Fukuda, et al., Carbon-coated Si as a lithium-ion battery anode material, J. Electrochem. Soc. 149 (2002) A1598–A1603. doi: 10.1149/1.1518988
|
[119] |
N. Dimov, S. Kugino, M. Yoshio, Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations, Electrochim. Acta 48 (2003) 1579–1587. doi: 10.1016/S0013-4686(03)00030-6
|
[120] |
X. Zhou, Y.G. Guo, A PEO-assisted electrospun silicon-graphene composite as an anode material for lithium-ion batteries, J. Mater. Chem. A 1 (2013) 9019–9023. doi: 10.1039/c3ta11720k
|
[121] |
Z. He, X. Wu, Z. Yi, et al., Silicon/graphene/carbon hierarchical structure nanofibers for high performance lithium ion batteries, Mater. Lett. 200 (2017) 128–131. doi: 10.1016/j.matlet.2017.04.118
|
[122] |
L. Xue, K. Fu, Y. Li, et al., Si/C composite nanofibers with stable electric conductive network for use as durable lithium-ion battery anode, Nano Energy 2 (2013) 361–367. doi: 10.1016/j.nanoen.2012.11.001
|
[123] |
J.W. Jung, W.H. Ryu, J. Shin, Glassy metal alloy nanofiber anodes employing graphene wrapping layer: toward ultralong-cycle-life lithium-ion batteries, ACS Nano 9 (2015) 6717–6727. doi: 10.1021/acsnano.5b01402
|
[124] |
Y. Li, Y. Sun, G. Xu, et al., Tuning electrochemical performance of Si-based anodes for lithium-ion batteries by employing atomic layer deposition alumina coating, J. Mater. Chem. A 2 (2014) 11417–11425. doi: 10.1039/C4TA01562B
|
[125] |
Y. Chen, Y. Hu, J. Shao, et al., Pyrolytic carbon-coated silicon/carbon nanofiber composite anodes for high-performance lithium-ion batteries, J. Power Sources 298 (2015) 130–137. doi: 10.1016/j.jpowsour.2015.08.058
|
[126] |
K. Fu, L. Xue, O. Yildiz, et al., Effect of CVD carbon coatings on Si@CNF composite as anode for lithium-ion batteries, Nano Energy 2 (2013) 976–986. doi: 10.1016/j.nanoen.2013.03.019
|
[127] |
X.H. Liu, L.Q. Zhang, L. Zhong, et al., Ultrafast electrochemical lithiation of individual Si nanowire anodes, Nano Lett. 11 (2011) 2251–2258. doi: 10.1021/nl200412p
|
[128] |
N. Liu, H. Wu, M.T. McDowell, et al., A yolk-shell design for stabilized and scalable Li-ion battery alloy anodes, Nano Lett. 12 (2012) 3315–3321. doi: 10.1021/nl3014814
|
[129] |
M.T. McDowell, S. Woo Lee, C. Wang, et al., The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation, Nano Energy 1 (2012) 401–410. doi: 10.1016/j.nanoen.2012.03.004
|
[130] |
L. Ji, X. Zhang, Fabrication of porous carbon/Si composite nanofibers as highcapacity battery electrodes, Electrochem. Commun. 11 (2009) 1146–1149.
|
[131] |
L. Ji, X. Zhang, Evaluation of Si/carbon composite nanofiber-based insertion anodes for new-generation rechargeable lithium-ion batteries, Energy Environ. Sci. 3 (2010) 124–129. doi: 10.1039/B912188A
|
[132] |
K. McCormac, I. Byrd, R. Brannen, et al., Preparation of porous Si and TiO2 nanofibres using a sulphur-templating method for lithium storage, Phys. Status Solidi A 212 (2015) 877–881. doi: 10.1002/pssa.201431834
|
[133] |
Z.L. Xu, B. Zhang, Z.Q. Zhou, et al., Carbon nanofibers containing Si nanoparticles and graphene-covered Ni for high performance anodes in Li ion batteries, RSC Adv. 4 (2014) 22359–22366. doi: 10.1039/C4RA03066D
|
[134] |
Y. Wang, X. Wen, J. Chen, et al., Foamed mesoporous carbon/silicon composite nanofiber anode for lithium ion batteries, J. Power Sources 281 (2015) 285–292. doi: 10.1016/j.jpowsour.2015.01.184
|
[135] |
Z.L. Xu, B. Zhang, S. Abouali, et al., Nanocavity-engineered Si/multi-functional carbon nanofiber composite anodes with exceptional high-rate capacities, J. Mater. Chem. A 2 (2014) 17944–17951. doi: 10.1039/C4TA04257C
|
[136] |
Y. Zeng, Y. Huang, N. Liu, et al., N-doped porous carbon nanofibers sheathed pumpkin-like Si/C composites as free-standing anodes for lithium-ion batteries, J. Energy Chem. 54 (2021) 727–735. doi: 10.1016/j.jechem.2020.06.022
|
[137] |
B.S. Lee, S.B. Son, J.H. Seo, et al., Facile conductive bridges formed between silicon nanoparticles inside hollow carbon nanofibers, Nanoscale 5 (2013) 4790–4796. doi: 10.1039/c3nr00982c
|
[138] |
B.S. Lee, H.S. Yang, K.H. Lee, et al., Rational design of a Si–Sn–C ternary anode having exceptional rate performance, Energy Storage Mater. 17 (2019) 62–69. doi: 10.1016/j.ensm.2018.08.001
|
[139] |
H. Zhang, L. Zhou, O. Noonan, et al., Tailoring the void size of iron oxide@carbon yolk–shell structure for optimized lithium storage, Adv. Funct. Mater. 24 (2014) 4337–4342. doi: 10.1002/adfm.201400178
|
[140] |
J. Yang, Y. -X. Wang, S. -L. Chou, et al., Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries, Nano Energy 18 (2015) 133–142. doi: 10.1016/j.nanoen.2015.09.016
|
[141] |
L. Li, S. Peng, J.K.Y. Lee, et al., Electrospun hollow nanofibers for advanced secondary batteries, Nano Energy 39 (2017) 111–139. doi: 10.1016/j.nanoen.2017.06.050
|
[142] |
J. Liu, N. Li, M.D. Goodman, et al., Mechanically and chemically robust sandwichstructured C@Si@C nanotube array Li-ion battery anodes, ACS Nano 9 (2015) 1985–1994. doi: 10.1021/nn507003z
|
[143] |
H.M. Fahad, C.E. Smith, J.P. Rojas, et al., Silicon nanotube field effect transistor with core-shell gate stacks for enhanced high-performance operation and area scaling benefits, Nano Lett. 11 (2011) 4393–4399. doi: 10.1021/nl202563s
|
[144] |
X. Su, Q. Wu, J. Li, et al., Silicon-based nanomaterials for lithium-ion batteries: a review, Adv. Energy Mater. 4 (2014), 1300882. doi: 10.1002/aenm.201300882
|
[145] |
H. Wu, G. Zheng, N. Liu, et al., Engineering empty space between Si nanoparticles for lithium-ion battery anodes, Nano Lett. 12 (2012) 904–909. doi: 10.1021/nl203967r
|
[146] |
Y. Son, S. Sim, H. Ma, et al., Exploring critical factors affecting strain distribution in 1D silicon-based nanostructures for lithium-ion battery anodes, Adv. Mater. 30 (2018), 1705430. doi: 10.1002/adma.201705430
|
[147] |
T.H. Hwang, Y.M. Lee, B.S. Kong, et al., Electrospun core-shell fibers for robust silicon nanoparticle-based lithium ion battery anodes, Nano Lett. 12 (2012) 802–807. doi: 10.1021/nl203817r
|
[148] |
B.S. Lee, S.B. Son, K.M. Park, et al., Fabrication of Si core/C shell nanofibers and their electrochemical performances as a lithium-ion battery anode, J. Power Sources 206 (2012) 267–273. doi: 10.1016/j.jpowsour.2012.01.120
|
[149] |
A.L. Yarin, Coaxial electrospinning and emulsion electrospinning of core–shell fibers, Polym. Adv. Technol. 22 (2011) 310–317. doi: 10.1002/pat.1781
|
[150] |
T. Chen, Q. Zhang, J. Pan, et al., Low-temperature treated lignin as both binder and conductive additive for silicon nanoparticle composite electrodes in lithiumion batteries, ACS Appl. Mater. Interfaces 8 (2016) 32341–32348. doi: 10.1021/acsami.6b11500
|
[151] |
W. Luo, Y. Wang, L. Wang, et al., Silicon/mesoporous carbon/crystalline TiO2 nanoparticles for highly stable lithium storage, ACS Nano 10 (2016) 10524–10532. doi: 10.1021/acsnano.6b06517
|
[152] |
N.T. Hieu, J. Suk, D.W. Kim, et al., Electrospun nanofibers with a core-shell structure of silicon nanoparticles and carbon nanotubes in carbon for use as lithium-ion battery anodes, J. Mater. Chem. A 2 (2014) 15094–15101. doi: 10.1039/C4TA02348J
|
[153] |
Y. -Z. Zhang, Y. Wang, T. Cheng, et al., Printed supercapacitors: materials, printing and applications, Chem. Soc. Rev. 48 (2019) 3229–3264. doi: 10.1039/C7CS00819H
|
[154] |
Y. Yan, X. Liu, J. Yan, et al., Electrospun nanofibers for new generation flexible energy storage, Energy Environ. Mater. (2020).
|
[155] |
C. Yu, J. An, Q. Chen, et al., Recent advances in design of flexible electrodes for miniaturized supercapacitors, Small Methods 4 (2020), 1900824. doi: 10.1002/smtd.201900824
|
[156] |
K. Chen, Q. Wang, Z. Niu, et al., Graphene-based materials for flexible energy storage devices, J. Energy Chem. 27 (2018) 12–24. doi: 10.1016/j.jechem.2017.08.015
|
[157] |
J.A. Rogers, T. Someya, Y. Huang, Materials and mechanics for stretchable electronics, Science 327 (2010) 1603–1607. doi: 10.1126/science.1182383
|
[158] |
Y. Wang, S. Gong, S.J. Wang, et al., Volume-invariant ionic liquid microbands as highly durable wearable biomedical sensors, Mater. Horiz. 3 (2016) 208–213. doi: 10.1039/C5MH00284B
|
[159] |
S. Yao, Y. Zhu, Nanomaterial-enabled stretchable conductors: strategies, materials and devices, Adv. Mater. 27 (2015) 1480–1511. doi: 10.1002/adma.201404446
|
[160] |
S. Yao, P. Swetha, Y. Zhu, Nanomaterial-enabled wearable sensors for healthcare, Adv. Healthcare Mater. 7 (2018), 1700889. doi: 10.1002/adhm.201700889
|
[161] |
V. Aravindan, J. Sundaramurthy, P. Suresh Kumar, et al., Electrospun nanofibers: a prospective electro-active material for constructing high performance Li-ion batteries, Chem. Commun. 51 (2015) 2225–2234. doi: 10.1039/C4CC07824A
|
[162] |
Q. Zhai, F. Xiang, F. Cheng, et al., Recent advances in flexible/stretchable batteries and integrated devices, Energy Storage Mater 33 (2020) 116–138. doi: 10.1016/j.ensm.2020.07.003
|
[163] |
J. Ding, J. Zhang, J. Li, et al., Electrospun polymer biomaterials, Prog. Polym. Sci. 90 (2019) 1–34. doi: 10.1016/j.progpolymsci.2019.01.002
|
[164] |
T. Wu, M. Ding, C. Shi, et al., Resorbable polymer electrospun nanofibers: history, shapes and application for tissue engineering, Chin. Chem. Lett. 31 (2020) 617–625. doi: 10.1016/j.cclet.2019.07.033
|
[165] |
Y. Li, Y. Hu, Y. Lu, et al., One-dimensional SiOC/C composite nanofibers as binderfree anodes for lithium-ion batteries, J. Power Sources 254 (2014) 33–38. doi: 10.1016/j.jpowsour.2013.12.044
|
[166] |
M. Dirican, M. Yanilmaz, K. Fu, et al., Carbon-confined PVA-derived silicon/silica/carbon nanofiber composites as anode for lithium-ion batteries, J. Electrochem. Soc. 161 (2014) A2197–A2203. doi: 10.1149/2.0811414jes
|
[167] |
Z. Zhu, J. Hao, H. Zhu, et al., In situ fabrication of electrospun carbon nanofibers–binary metal sulfides as freestanding electrode for electrocatalytic water splitting, Adv. Fiber Mater. 3 (2021) 117–127. doi: 10.1007/s42765-020-00063-7
|
[168] |
T. Zhang, W. Zong, Y. Ouyang, et al., Carbon fiber supported binary metal sulfide catalysts with multi-dimensional structures for electrocatalytic nitrogen reduction reactions over a wide pH range, Adv. Fiber Mater. 3 (2021) 229–238. doi: 10.1007/s42765-021-00072-0
|
[169] |
M.S.A. Rahaman, A.F. Ismail, A. Mustafa, A review of heat treatment on polyacrylonitrile fiber, Polym. Degrad. Stabil. 92 (2007) 1421–1432. doi: 10.1016/j.polymdegradstab.2007.03.023
|
[170] |
M. Dirican, O. Yildiz, Y. Lu, et al., Flexible binder-free silicon/silica/carbon nanofiber composites as anode for lithium-ion batteries, Electrochim. Acta 169 (2015) 52–60. doi: 10.1016/j.electacta.2015.04.035
|
[171] |
C. Zhang, R. Yu, T. Zhou, et al., Mass production of three-dimensional hierarchical microfibers constructed from silicon-carbon core-shell architectures with highperformance lithium storage, Carbon 72 (2014) 169–175. doi: 10.1016/j.carbon.2014.01.069
|
[172] |
K. -B. Kim, N.A. Dunlap, S.S. Han, et al., Nanostructured Si/C fibers as a highly reversible anode material for all-solid-state lithium-ion batteries, J. Electrochem. Soc. 165 (2018) A1903–A1908. doi: 10.1149/2.1491809jes
|
[173] |
K. Shen, H. Chen, X. Hou, et al., Mechanistic insight into the role of N-doped carbon matrix in electrospun binder-free Si@C composite anode for lithium-ion batteries, Ionics 26 (2020) 3297–3305. doi: 10.1007/s11581-020-03484-x
|
[174] |
Y. An, Y. Tian, H. Wei, et al., Porosity- and graphitization-controlled fabrication of nanoporous silicon@carbon for lithium storage and its conjugation with Mxene for lithium-metal anode, Adv. Funct. Mater. 30 (2019), 1908721.
|
[175] |
D. Wang, C. Zhou, B. Cao, et al., One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries, Energy Storage Mater. 24 (2020) 312–318. doi: 10.1016/j.ensm.2019.07.045
|
[176] |
Y. Xu, Y. Zhu, F. Han, et al., 3D Si/C fiber paper electrodes fabricated using a combined electrospray/electrospinning technique for Li-ion batteries, Adv. Energy Mater. 5 (2015), 1400753. doi: 10.1002/aenm.201400753
|
[177] |
O. Park, J. -I. Lee, M. -J. Chun, et al., High-performance Si anodes with a highly conductive and thermally stable titanium silicide coating layer, RSC Adv. 3 (2013) 2538–2542. doi: 10.1039/c2ra23365g
|
[178] |
Q. Xu, J. -K. Sun, Z. -L. Yu, et al., SiOx encapsulated in graphene bubble film: an ultrastable Li-ion battery anode, Adv. Mater. 30 (2018), 1707430. doi: 10.1002/adma.201707430
|
[179] |
C. Huang, A. Kim, D.J. Chung, et al., Multiscale engineered Si/SiOx nanocomposite electrodes for lithium-ion batteries using layer-by-layer spray deposition, ACS Appl. Mater. Interfaces 10 (2018) 15624–15633. doi: 10.1021/acsami.8b00370
|
[180] |
A. Tolosa, M. Widmaier, B. Krüner, et al., Continuous silicon oxycarbide fiber mats with tin nanoparticles as a high capacity anode for lithium-ion batteries, Sustain. Energy Fuels 2 (2018) 215–228. doi: 10.1039/C7SE00431A
|
[181] |
S.H. Min, M.R. Jo, D.H. Song, et al., High crystalline carbon network of Si/C nanofibers obtained from the embedded pitch and its contribution to Li ion kinetics, Electrochim. Acta 220 (2016) 511–516. doi: 10.1016/j.electacta.2016.10.111
|
[182] |
J. Kong, W.A. Yee, Y. Wei, et al., Silicon nanoparticles encapsulated in hollow graphitized carbon nanofibers for lithium ion battery anodes, Nanoscale 5 (2013) 2967–2973. doi: 10.1039/c3nr34024d
|
[183] |
E.C. Self, M. Naguib, R.E. Ruther, et al., High areal capacity Si/LiCoO2 batteries from electrospun composite fiber mats, ChemSusChem 10 (2017) 1823–1831. doi: 10.1002/cssc.201700096
|
[184] |
Q. Liu, Y. Gao, P. He, et al., Facile fabrication of hollow structured Si-Ni-C nanofabric anode for Li-ion battery, Mater. Lett. 231 (2018) 205–208. doi: 10.1016/j.matlet.2018.08.044
|
[185] |
H. Wang, H. Huang, L. Chen, et al., Preparation of Si/Sn-based nanoparticles composited with carbon fibers and improved electrochemical performance as anode materials, ACS Sustain. Chem. Eng. 2 (2014) 2310–2317. doi: 10.1021/sc500290x
|
[186] |
D. Lee, B. Kim, J. Kim, et al., Salami-like electrospun Si nanoparticle-ITO composite nanofibers with internal conductive pathways for use as anodes for Li-ion batteries, ACS Appl. Mater. Interfaces 7 (2015) 27234–27241. doi: 10.1021/acsami.5b08401
|
[187] |
J. Zeng, C. q. Peng, R. c. Wang, et al., Preparation of dual-shell Si/TiO2/CFs composite and its lithium storage performance, Trans. Nonferrous Metals Soc. China 29 (2019) 2384–2391. doi: 10.1016/S1003-6326(19)65144-7
|
[188] |
L. Wang, G. Yang, S. Peng, et al., One-dimensional nanomaterials toward electrochemical sodium-ion storage applications via electrospinning, Energy Storage Mater. 25 (2020) 443–476. doi: 10.1016/j.ensm.2019.09.036
|
[189] |
A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183–191. doi: 10.1038/nmat1849
|
[190] |
D.A. Dikin, S. Stankovich, E.J. Zimney, et al., Preparation and characterization of graphene oxide paper, Nature 448 (2007) 457–460. doi: 10.1038/nature06016
|
[191] |
Q. Shi, J. Sun, C. Hou, et al., Advanced functional fiber and smart textile, Adv. Fiber Mater. 1 (2019) 3–31. doi: 10.1007/s42765-019-0002-z
|
[192] |
F. Schwierz, The rise and rise of graphene, Nat. Nanotechnol. 5 (2010) 755. doi: 10.1038/nnano.2010.224
|
[193] |
K.S. Novoselov, A.K. Geim, S.V. Morozov, et al., Electric field in atomically thin carbon films, Science 306 (2004) 666–669. doi: 10.1126/science.1102896
|
[194] |
S. Li, J. Qiu, C. Lai, et al., Surface capacitive contributions: towards high rate anode materials for sodium ion batteries, Nano Energy 12 (2015) 224–230. doi: 10.1016/j.nanoen.2014.12.032
|
[195] |
A.R. Kamali, H.K. Kim, K.B. Kim, et al., Large scale green production of ultra-high capacity anode consisting of graphene encapsulated silicon nanoparticles, J. Mater. Chem. A 5 (2017) 19126–19135. doi: 10.1039/C7TA04335J
|
[196] |
X. Zhou, Y.X. Yin, L.J. Wan, et al., Facile synthesis of silicon nanoparticles inserted into graphene sheets as improved anode materials for lithium-ion batteries, Chem. Commun. 48 (2012) 2198–2200. doi: 10.1039/c2cc17061b
|
[197] |
L. David, R. Bhandavat, U. Barrera, et al., Silicon oxycarbide glass-graphene composite paper electrode for long-cycle lithium-ion batteries, Nat. Commun. 7 (2016) 10998. doi: 10.1038/ncomms10998
|
[198] |
C. Gao, C. Fang, H. Zhao, et al., Rational design of multi-functional CoS@rGO composite for performance enhanced Li-S cathode, J. Power Sources 421 (2019) 132–138. doi: 10.1016/j.jpowsour.2019.03.015
|
[199] |
M. Shao, Y. Cheng, T. Zhang, et al., Designing MOFs-derived FeS2@carbon composites for high-rate sodium ion storage with capacitive contributions, ACS Appl. Mater. Interfaces 10 (2018) 33097–33104. doi: 10.1021/acsami.8b10110
|
[200] |
M.R. Al Hassan, A. Sen, T. Zaman, et al., Emergence of graphene as a promising anode material for rechargeable batteries: a review, Mater. Today Chem. 11 (2019) 225–243. doi: 10.1016/j.mtchem.2018.11.006
|
[201] |
J. Shin, K. Park, W.H. Ryu, et al., Graphene wrapping as a protective clamping layer anchored to carbon nanofibers encapsulating Si nanoparticles for a Li-ion battery anode, Nanoscale 6 (2014) 12718–12726. doi: 10.1039/C4NR03173C
|
[202] |
D. Cho, M. Kim, J. Hwang, et al., Facile synthesis of porous silicon nanofibers by magnesium reduction for application in lithium ion batteries, Nanoscale Res. Lett. 10 (2015) 424. doi: 10.1186/s11671-015-1132-8
|
[203] |
Y.S. Kim, G. Shoorideh, Y. Zhmayev, et al., The critical contribution of unzipped graphene nanoribbons to scalable silicon-carbon fiber anodes in rechargeable Liion batteries, Nano Energy 16 (2015) 446–457. doi: 10.1016/j.nanoen.2015.07.017
|
[204] |
J. Wu, X. Qin, C. Miao, et al., A honeycomb-cobweb inspired hierarchical coreshell structure design for electrospun silicon/carbon fibers as lithium-ion battery anodes, Carbon 98 (2016) 582–591. doi: 10.1016/j.carbon.2015.11.048
|
[205] |
X.M. Liu, Z. d. Huang, S. w. Oh, et al., Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: a review, Compos. Sci. Technol. 72 (2012) 121–144. doi: 10.1016/j.compscitech.2011.11.019
|
[206] |
C. De Las Casas, W. Li, A review of application of carbon nanotubes for lithium ion battery anode material, J. Power Sources 208 (2012) 74–85. doi: 10.1016/j.jpowsour.2012.02.013
|
[207] |
Z. Xiong, Y.S. Yun, H.J. Jin, Applications of carbon nanotubes for lithium ion battery anodes, Materials 6 (2013) 1138–1158. doi: 10.3390/ma6031138
|
[208] |
Y. Li, G. Xu, L. Xue, et al., Enhanced rate capability by employing carbon nanotube-loaded electrospun Si/C composite nanofibers as binder-free anodes, J. Electrochem. Soc. 160 (2013) A528–A534. doi: 10.1149/2.031304jes
|
[209] |
A. Magasinski, P. Dixon, B. Hertzberg, et al., High-performance lithium-ion anodes using a hierarchical bottom-up approach, Nat. Mater. 9 (2010) 353–358. doi: 10.1038/nmat2725
|
[210] |
N. Liu, Z. Lu, J. Zhao, et al., A pomegranate-inspired nanoscale design for largevolume-change lithium battery anodes, Nat. Nanotechnol. 9 (2014) 187–192. doi: 10.1038/nnano.2014.6
|
[211] |
Y. Li, R. Wang, J. Zhang, et al., Sandwich structure of carbon-coated silicon/carbon nanofiber anodes for lithium-ion batteries, Ceram. Int. 45 (2019) 16195–16201. doi: 10.1016/j.ceramint.2019.05.141
|
[212] |
S. Liu, W. Xu, C. Ding, et al., Boosting electrochemical performance of electrospun silicon-based anode materials for lithium-ion battery by surface coating a second layer of carbon, Appl. Surf. Sci. 494 (2019) 94–100. doi: 10.1016/j.apsusc.2019.07.193
|
[213] |
C. Du, M. Chen, L. Wang, et al., Covalently-functionalizing synthesis of Si@C coreshell nanocomposites as high-capacity anode materials for lithium-ion batteries, J. Mater. Chem. 21 (2011) 15692–15697. doi: 10.1039/c1jm12368h
|
[214] |
R.A. Messing, H.R. Stinson, Covalent coupling of alkaline bacillus subtilis protease to controlledpore silica with a new simplified coupling technique, Mol. Cell. Biochem. 4 (1974) 217–220. doi: 10.1007/BF01731484
|
[215] |
M. Thakur, M. Isaacson, S.L. Sinsabaugh, et al., Gold-coated porous silicon films as anodes for lithium ion batteries, J. Power Sources 205 (2012) 426–432. doi: 10.1016/j.jpowsour.2012.01.058
|
[216] |
D. Chen, X. Mei, G. Ji, et al., Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles, Angew. Chem. Int. Ed. 51 (2012) 2409–2413. doi: 10.1002/anie.201107885
|
[217] |
H. Zhang, P. Zong, M. Chen, et al., In situ synthesis of multilayer carbon matrix decorated with copper particles: enhancing the performance of Si as anode for Li-ion batteries, ACS Nano 13 (2019) 3054–3062. doi: 10.1021/acsnano.8b08088
|
[218] |
K. Karki, Y. Zhu, Y. Liu, et al., Hoop-strong nanotubes for battery electrodes, ACS Nano 7 (2013) 8295–8302. doi: 10.1021/nn403895h
|
[219] |
A. Thess, R. Lee, P. Nikolaev, et al., Crystalline ropes of metallic carbon nanotubes, Science 273 (1996) 483–487. doi: 10.1126/science.273.5274.483
|
[220] |
Y. Chen, X. Li, K. Park, et al., Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries, J. Am. Chem. Soc. 135 (2013) 16280–16283. doi: 10.1021/ja408421n
|
[221] |
Y. Chen, Z. Lu, L. Zhou, et al., Triple-coaxial electrospun amorphous carbon nanotubes with hollow graphitic carbon nanospheres for high-performance Li ion batteries, Energy Environ. Sci. 5 (2012) 7898–7902. doi: 10.1039/c2ee22085g
|
[222] |
S. Helveg, C. López-Cartes, J. Sehested, et al., Atomic-scale imaging of carbon nanofibre growth, Nature 427 (2004) 426–429. doi: 10.1038/nature02278
|
[223] |
R. Anton, On the reaction kinetics of Ni with amorphous carbon, Carbon 46 (2008) 656–662. doi: 10.1016/j.carbon.2008.01.021
|
[224] |
A. Kohandehghan, K. Cui, M. Kupsta, et al., Nanometer-scale Sn coatings improve the performance of silicon nanowire LIB anodes, J. Mater. Chem. A 2 (2014) 11261–11279. doi: 10.1039/c4ta00993b
|
[225] |
X. Lu, T.D. Bogart, M. Gu, et al., In situ TEM observations of Sn-containing silicon nanowires undergoing reversible pore formation due to fast lithiation/delithiation kinetics, J. Phys. Chem. C 119 (2015) 21889–21895. doi: 10.1021/acs.jpcc.5b06386
|
[226] |
G. Jeong, J.G. Kim, M.S. Park, et al., Core-shell structured silicon nanoparticles@ TiO2-x/carbon mesoporous microfiber composite as a safe and high-performance lithium-ion battery anode, ACS Nano 8 (2014) 2977–2985. doi: 10.1021/nn500278q
|
[227] |
S. Peng, L. Li, Y. Hu, et al., Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications, ACS Nano 9 (2015) 1945–1954. doi: 10.1021/nn506851x
|
[228] |
R. Mazzaro, M. Locritani, J.K. Molloy, et al., Photoinduced processes between pyrene-functionalized silicon nanocrystals and carbon allotropes, Chem. Mater. 27 (2015) 4390–4397. doi: 10.1021/acs.chemmater.5b01769
|
[229] |
S. Sadhu, P. Poddar, Template-free fabrication of highly-oriented single-crystalline 1D-rutile TiO2-MWCNT composite for enhanced photoelectrochemical activity, J. Phys. Chem. C 118 (2014) 19363–19373. doi: 10.1021/jp5023983
|
[230] |
W. Li, F. Wang, Y. Liu, et al., General strategy to synthesize uniform mesoporous TiO2/graphene/mesoporous TiO2 sandwich-like nanosheets for highly reversible lithium storage, Nano Lett. 15 (2015) 2186–2193. doi: 10.1021/acs.nanolett.5b00291
|
[231] |
D.Y. Rhee, J. Kim, J. Moon, et al., Off-stoichiometric TiO2-x-decorated graphite anode for high-power lithium-ion batteries, J. Alloys Compd. 843 (2020), 156042. doi: 10.1016/j.jallcom.2020.156042
|
[232] |
J. Li, Z. Li, W. Huang, et al., A facile strategy to construct silver-modified, ZnOincorporated and carbon-coated silicon/porous-carbon nanofibers with enhanced lithium storage, Small 15 (2019), 1900436. doi: 10.1002/smll.201900436
|
[233] |
L. Wu, J. Yang, X. Zhou, et al., Enhanced electrochemical performance of heterogeneous Si/MoSi2 anodes prepared by a magnesiothermic reduction, ACS Appl. Mater. Interfaces 8 (2016) 16862–16868. doi: 10.1021/acsami.6b04448
|
[234] |
X. Hui, R. Zhao, P. Zhang, et al., Low-temperature reduction strategy synthesized Si/Ti3C2 mxene composite anodes for high-performance Li-ion batteries, Adv. Energy Mater. 9 (2019), 1901065. doi: 10.1002/aenm.201901065
|
[235] |
H. Park, S. Lee, S. Yoo, et al., Control of interfacial layers for high-performance porous Si lithium-ion battery anode, ACS Appl. Mater. Interfaces 6 (2014) 16360–16367. doi: 10.1021/am5046197
|
[236] |
J.W. Yeh, S.K. Chen, S.J. Lin, et al., Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004) 299–303. doi: 10.1002/adem.200300567
|
[237] |
A. Sarkar, L. Velasco, D. Wang, et al., High entropy oxides for reversible energy storage, Nat. Commun. 9 (2018) 3400. doi: 10.1038/s41467-018-05774-5
|
[238] |
N. Qiu, H. Chen, Z. Yang, et al., A high entropy oxide (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O) with superior lithium storage performance, J. Alloys Compd. 777 (2019) 767–774. doi: 10.1016/j.jallcom.2018.11.049
|
[239] |
G. Yoon, D.H. Kim, I. Park, et al., Using first-principles calculations for the advancement of materials for rechargeable batteries, Adv. Funct. Mater. 27 (2017), 1702887. doi: 10.1002/adfm.201702887
|
[240] |
S. Shi, J. Gao, Y. Liu, et al., Multi-scale computation methods: their applications in lithium-ion battery research and development, Chin. Phys. B 25 (2016), 18212. doi: 10.1088/1674-1056/25/1/018212
|
[241] |
T. Gao, W. Lu, Mechanism and effect of thermal degradation on electrolyte ionic diffusivity in Li-ion batteries: a molecular dynamics study, Electrochim. Acta 323 (2019), 134791. doi: 10.1016/j.electacta.2019.134791
|
[242] |
Y. Liu, B. Guo, X. Zou, et al., Machine learning assisted materials design and discovery for rechargeable batteries, Energy Storage Mater 31 (2020) 434–450. doi: 10.1016/j.ensm.2020.06.033
|
[243] |
F. Yang, X. Feng, Y.S. Liu, et al., J. Guo, in situ/operando (soft) X-ray spectroscopy study of beyond lithium-ion batteries, Energy Environ. Mater. 4 (2021) 139–157. doi: 10.1002/eem2.12172
|
[244] |
J. Hu, B. Wu, S. Chae, et al., Achieving highly reproducible results in graphitebased Li-ion full coin cells, Joule 5 (2021) 1011–1015. doi: 10.1016/j.joule.2021.03.016
|
[245] |
V. Murray, D.S. Hall, J.R. Dahn, A guide to full coin cell making for academic researchers, J. Electrochem. Soc. 166 (2019) A329–A333. doi: 10.1149/2.1171902jes
|
[246] |
Y. Wu, L. Xie, H. Ming, et al., An empirical model for the design of batteries with high energy density, ACS Energy Lett. 5 (2020) 807–816. doi: 10.1021/acsenergylett.0c00211
|
[247] |
X. Li, Y. Chen, H. Huang, et al., Electrospun carbon-based nanostructured electrodes for advanced energy storage - a review, Energy Storage Mater. 5 (2016) 58–92. doi: 10.1016/j.ensm.2016.06.002
|
[248] |
H. He, D. Sun, Y. Tang, et al., Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries, Energy Storage Mater. 23 (2019) 233–251. doi: 10.1016/j.ensm.2019.05.008
|
[249] |
W. Guo, Y. Fu, A perspective on energy densities of rechargeable Li-S batteries and alternative sulfur-based cathode materials, Energy Environ. Mater. 1 (2018) 20–27. doi: 10.1002/eem2.12003
|
[250] |
J. Lin, L. Lin, S. Qu, et al., Promising electrode and electrolyte materials for highenergy-density thin-film lithium batteries, Energy Environ. Mater. (2021).
|
[251] |
X. Chen, P. Hu, J. Xiang, et al., Confining silicon nanoparticles within freestanding multichannel carbon fibers for high-performance Li-ion batteries, ACS Appl. Energy Mater. 2 (2019) 5214–5218.
|
[252] |
G. Shoorideh, Y.S. Kim, Y.L. Joo, Facile, water-based, direct–deposit fabrication of hybrid silicon assemblies for scalable and high–performance Li–ion battery anodes, Electrochim. Acta 222 (2016) 946–955. doi: 10.1016/j.electacta.2016.11.062
|
[253] |
Q. Wu, T. Tran, W. Lu, et al., Electrospun silicon/carbon/titanium oxide composite nanofibers for lithium ion batteries, J. Power Sources 258 (2014) 39–45. doi: 10.1016/j.jpowsour.2014.02.047
|