Volume 1 Issue 2
Dec.  2021
Turn off MathJax
Article Contents
Yan Lei, Qi Ya-e, Dong Xiaoli, Wang Yonggang, Xia Yongyao. Ammonium-ion batteries with a wide operating temperature window from −40 to 80 ℃[J]. eScience, 2021, 1(2): 212-218. doi: 10.1016/j.esci.2021.12.002
Citation: Yan Lei, Qi Ya-e, Dong Xiaoli, Wang Yonggang, Xia Yongyao. Ammonium-ion batteries with a wide operating temperature window from −40 to 80 ℃[J]. eScience, 2021, 1(2): 212-218. doi: 10.1016/j.esci.2021.12.002

Ammonium-ion batteries with a wide operating temperature window from −40 to 80 ℃

doi: 10.1016/j.esci.2021.12.002
More Information
  • Corresponding author: Xiaoli Dong, E-mail addresses: xldong@fudan.edu.cn; Yonggang Wang, E-mail addresses: ygwang@fudan.edu.cn
  • Received Date: 2021-09-01
  • Revised Date: 2021-11-15
  • Accepted Date: 2021-12-06
  • Available Online: 2021-12-28
  • Ammonium-ion batteries are promising solutions for large-scale energy storage systems owing to their cost-effectiveness, safety, and sustainability. Herein, we propose an aqueous ammonium-ion battery based on an organic poly(1, 5-naphthalenediamine) anode and an inorganic Prussian blue cathode in 19 M (M: mol kg1) CH3COONH4 electrolyte. Its operation involves a reversible coordination reaction (C=N/C–N– conversion) in the anode and the NH4+ insertion/extraction reaction in the cathode, along with NH4+ acting as the charge carrier in a rocking-chair battery. Benefiting from the fast kinetics and stability of both electrodes, this aqueous ammonium-ion battery shows an excellent rate capability and long cycle stability for 500 cycles. Moreover, an energy density as high as 31.8 Wh kg1 can be achieved, based on the total mass of the cathode and anode. Surprisingly, this aqueous ammonium-ion battery works well over a wide temperature range from −40 to 80 ℃. This work will provide new opportunities to build wide-temperature aqueous batteries and broaden the horizons for large-scale energy storage systems.
  • • For the first time, such an aqueous NH4 -ion full cell can work well within a wide temperature range from -40 to 80 ℃.
    • The structural features of both electrodes enabled the full cell with excellent rate capability and long cycle stability.
    • A new type aqueous ammonium-ion battery was fabricated based on the inorganic NiHCF cathode and organic poly(1,5-NAPD) anode.
    1 Lei Yan and Ya-e Qi contributed equally to this work.
  • loading
  • eScience-2021-1-212-1-s2.0-S2667141721000495-mmc1.docx
  • [1]
    B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices, Science 334 (2011) 928–935. doi: 10.1126/science.1212741
    [2]
    M. Armand, J.M. Tarascon, Building better batteries, Nature 451 (2008) 652–657. doi: 10.1038/451652a
    [3]
    L.M. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X.L. Fan, C. Luo, C.S. Wang, K. Xu, "Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries, Science 350 (2015) 938–943. doi: 10.1126/science.aab1595
    [4]
    D.L. Chao, W.H. Zhou, F.X. Xie, C. Ye, H. Li, M. Jaroniec, S.Z. Qiao, Roadmap for advanced aqueous batteries: from design of materials to applications, Sci. Adv. 6 (2020), eaba4098. doi: 10.1126/sciadv.aba4098
    [5]
    Z.X. Wei, W. Shin, H. Jiang, X.Y. Wu, W.F. Stickle, G. Chen, J. Lu, P.A. Greaney, F. Du, X.L. Ji, Reversible intercalation of methyl viologen as a dicationic charge carrier in aqueous batteries, Nat. Commun. 10 (2019) 3227. doi: 10.1038/s41467-019-11218-5
    [6]
    C.Y. Yang, J. Chen, X. Ji, T.P. Pollard, X.J. Lü, C.J. Sun, S. Hou, Q. Liu, C.M. Liu, T.T. Qing, Y.Q. Wang, O. Borodin, Y. Ren, K. Xu, C.S. Wang, Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite, Nature 569 (2019) 245–250. doi: 10.1038/s41586-019-1175-6
    [7]
    L.W. Jiang, L.L. Liu, J.M. Yue, Q.Q. Zhang, A.X. Zhou, O. Borodin, L.M. Suo, H. Li, L.Q. Chen, K. Xu, Y. -S. Hu, High-Voltage aqueous Na-ion battery enabled by inertcation-assisted water-in-salt electrolyte, Adv. Mater. 32 (2020) 1904427. doi: 10.1002/adma.201904427
    [8]
    L.W. Jiang, Y.X. Lu, C.L. Zhao, L.L. Liu, J.N. Zhang, Q.Q. Zhang, X. Shen, J.M. Zhao, X.Q. Yu, H. Li, X.J. Huang, L.Q. Chen, Y.S. Hu, Building aqueous K-ion batteries for energy storage, Nat. Energy 4 (2019) 495–503. doi: 10.1038/s41560-019-0388-0
    [9]
    F. Wan, Y. Zhang, L.L. Zhang, D.B. Liu, C.D. Wang, L. Song, Z.Q. Niu, J. Chen, Reversible oxygen redox chemistry in aqueous zinc-ion batteries, Angew. Chem. Int. Ed. 58 (2019) 7062–7067. doi: 10.1002/anie.201902679
    [10]
    Y. Zhang, F. Wan, S. Huang, S. Wang, Z.Q. Niu, J. Chen, A chemically self-charging aqueous zinc-ion battery, Nat. Commun. 11 (2020) 2199. doi: 10.1038/s41467-020-16039-5
    [11]
    D.L. Chao, H.J. Fan, Intercalation pseudocapacitive behavior powers aqueous batteries, Inside Chem. 5 (2019) 1357–1370. https://www.sciencedirect.com/science/article/pii/S245192941930230X
    [12]
    X.Y. Wu, Y.K. Xu, H. Jiang, Z.X. Wei, J.J. Hong, A.S. Hernandez, F. Du, X.L. Ji, NH4+ topotactic insertion in berlin green: an exceptionally long-cycling cathode in aqueous ammonium-ion batteries, ACS Appl. Energy Mater. 1 (2018) 3077–3083. doi: 10.1021/acsaem.8b00789
    [13]
    C.D. Wessells, S.V. Peddada, M.T. McDowell, R.A. Huggins, Y. Cui, The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes, J. Electrochem. Soc. 159 (2012) A98–A103. doi: 10.1149/2.060202jes
    [14]
    R. Vittal, K.J. Kim, H. Gomathi, V. Yegnaraman, CTAB-promoted Prussian bluemodified electrode and its cation transport characteristics for K+, Na+, Li+, and NH4+ ions, J. Phys. Chem. B 112 (2008) 1149–1156. doi: 10.1021/jp074994s
    [15]
    Y. Song, Q. Pan, H.Z. Lv, D. Yang, Z.M. Qin, M.Y. Zhang, X.Q. Sun, X.X. Liu, Ammonium-ion storage in electrodeposited manganese oxides, Angew. Chem. Int. Ed. 60 (2021) 5718–5722. doi: 10.1002/anie.202013110
    [16]
    Q. Zhao, L.J. Liu, J.F. Yin, J.X. Zheng, D.H. Zhang, J. Chen, L.A. Archer, Proton intercalation/de-intercalation dynamics in vanadium oxides for aqueous aluminum electrochemical cells, Angew. Chem. Int. Ed. 59 (2020) 3048–3052. doi: 10.1002/anie.201912634
    [17]
    M.T. Xia, X.K. Zhang, H.X. Yu, Z.W. Yang, S. Chen, L.Y. Zhang, M. Shui, Y. Xie, J. Shu, Hydrogen bond chemistry in Fe4[Fe(CN)6]3 host for aqueous NH4+ batteries, Chem. Eng. J. 421 (2021) 127759. doi: 10.1016/j.cej.2020.127759
    [18]
    Y.D. Zhang, Y.F. An, B. Yin, J.M. Jiang, S.Y. Dong, H. Dou, X.G. Zhang, A novel aqueous ammonium dual-ion battery based on organic polymers, J. Mater. Chem. A 7 (2019) 11314–11320. doi: 10.1039/C9TA00254E
    [19]
    X.K. Zhang, M.T. Xia, T.T. Liu, N. Peng, H.X. Yu, R.T. Zheng, L.Y. Zhang, M. Shui, J. Shu, Copper hexacyanoferrate as ultra-high rate host for aqueous ammonium ion storage, Chem. Eng. J. 421 (2021) 127767. doi: 10.1016/j.cej.2020.127767
    [20]
    Q. Zhang, K.X. Xia, Y.L. Ma, Y. Lu, L. Li, J. Liang, S.L. Chou, J. Chen, Chaotropic anion and fast-kinetics cathode enabling low-temperature aqueous Zn batteries, ACS Energy Lett. 6 (2021) 2704–2712. doi: 10.1021/acsenergylett.1c01054
    [21]
    J. Vatamanu, O. Borodin, Ramifications of water-in-salt interfacial structure at charged electrodes for electrolyte electrochemical stability, J. Phys. Chem. Lett. 8 (2017) 4362–4367. doi: 10.1021/acs.jpclett.7b01879
    [22]
    F. Wang, X.L. Fan, T. Gao, W. Sun, Z.H. Ma, C.Y. Yang, F.D. Han, K. Xu, C.S. Wang, High-Voltage aqueous magnesium ion batteries, ACS Cent. Sci. 3 (2017) 1121–1128. doi: 10.1021/acscentsci.7b00361
    [23]
    L.M. Suo, O. Borodin, Y.S. Wang, X.H. Rong, W. Sun, X.L. Fan, S.Y. Xu, M.A. Schroeder, A.V. Cresce, F. Wang, C.Y. Yang, Y. -S. Hu, K. Xu, C.S. Wang, "Water-in-Salt" electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting, Adv. Energy Mater. 7 (2017) 1701189. doi: 10.1002/aenm.201701189
    [24]
    M.R. Lukatskaya, J.I. Feldblyum, D.G. Mackanic, F. Lissel, D.L. Michels, Y. Cui, Z.N. Bao, Concentrated mixed cation acetate "water-in-salt" solutions as green and low-cost high voltage electrolytes for aqueous batteries, Energy Environ. Sci. 11 (2018) 2876–2883. doi: 10.1039/C8EE00833G
    [25]
    T. Jin, X. Ji, P.F. Wang, K.J. Zhu, J.X. Zhang, L.S. Cao, L. Chen, C.Y. Cui, T. Deng, S.F. Liu, N. Piao, Y.C. Liu, C. Shen, K.Y. Xie, L.F. Jiao, C.S. Wang, High-energy aqueous sodium-ion batteries, Angew. Chem. Int. Ed. 60 (2021) 11943–11948. doi: 10.1002/anie.202017167
    [26]
    Q. Zhang, Y.L. Ma, Y. Lu, L. Li, F. Wan, K. Zhang, J. Chen, Modulating electrolyte structure for ultralow temperature aqueous zinc batteries, Nat. Commun. 11 (2020) 4463. doi: 10.1038/s41467-020-18284-0
    [27]
    F. Wang, O. Borodin, T. Gao, X.L. Fan, W. Sun, F.D. Han, A. Faraone, J.A. Dura, K. Xu, C.S. Wang, Highly reversible zinc metal anode for aqueous batteries, Nat. Mater. 17 (2018) 543–549. doi: 10.1038/s41563-018-0063-z
    [28]
    J.J. Holoubek, H. Jiang, D. Leonard, Y.T. Qi, G.C. Bustamante, X.L. Ji, Amorphous titanic acid electrode: its electrochemical storage of ammonium in a new water-insalt electrolyte, Chem. Commun. 54 (2018) 9805–9808. doi: 10.1039/C8CC04713H
    [29]
    N. Wang, R.K. Zhou, H. Li, Z.L. Zheng, W.X. Song, T. Xin, M.J. Hu, J.Z. Liu, New insights into the electrochemistry of carbonyl- and amino-containing polymers for rechargeable zinc-organic batteries, ACS Energy Lett. 6 (2021) 1141–1147. doi: 10.1021/acsenergylett.1c00139
    [30]
    Y. Zhao, Y.N. Wang, Z.M. Zhao, J.W. Zhao, T. Xin, N. Wang, J.Z. Liu, Achieving high capacity and long life of aqueous rechargeable zinc battery by using nanoporouscarbon-supported poly(1, 5-naphthalenediamine) nanorods as cathode, Energy Storage Mater. 28 (2020) 64–72. doi: 10.1016/j.ensm.2020.03.001
    [31]
    C. Li, D. Zhang, F. Ma, T. Ma, J. Wang, Y. Chen, Y. Zhu, L. Fu, Y. Wu, W. Huang, A high-rate and long-life aqueous rechargeable ammonium zinc hybrid battery, ChemSusChem 12 (2019) 3732–3736. doi: 10.1002/cssc.201901622
    [32]
    X.Y. Wu, Y.T. Qi, J.J. Hong, Z.F. Li, A.S. Hernandez, X.L. Ji, Rocking-chair ammonium-ion battery: a highly reversible aqueous energy storage system, Angew. Chem. Int. Ed. 56 (2017) 13026–13030. doi: 10.1002/anie.201707473
    [33]
    C.D. Wessells, S.V. Peddada, M.T. McDowell, R.A. Huggins, Y. i. Cui, The effect of insertion species on nanostructured open framework hexacyanoferrate battery electrodes, J. Electrochem. Soc. 159 (2011) A98–A103. doi: 10.1149/2.060202jes
    [34]
    C.Y. Li, Y.Q. Yan, W. Yan, S.S. Liang, P. Wang, J. Wang, L.J. Fu, Y.S. Zhu, Y.H. Chen, Y.P. Wu, W. Huang, Achieving a high-performance Prussian blue analogue cathode with an ultra-stable redox reaction for ammonium ion storage, Nanoscale Horiz. 4 (2019) 991–998. doi: 10.1039/C8NH00484F
    [35]
    Y.B. Yuan, D. Bin, X.L. Dong, Y.G. Wang, C.X. Wang, Y.Y. Xia, Intercalation pseudocapacitive nanoscale nickel Hexacyanoferrate@Carbon nanotubes as a high-rate cathode material for aqueous sodium-ion battery, ACS Sustain. Chem. Eng. 8 (2020) 3655–3663. doi: 10.1021/acssuschemeng.9b06588
    [36]
    S.T. Senthilkumar, M. Abirami, J. Kim, W. Go, S.M. Hwang, Y. Kim, Sodium-ion hybrid electrolyte battery for sustainable energy storage applications, J. Power Sources 341 (2017) 404–410. doi: 10.1016/j.jpowsour.2016.12.015
    [37]
    Y. Xu, M. Chang, C. Fang, Y. Liu, Y.G. Qiu, M.Y. Ou, J. Peng, P. Wei, Z. Deng, S.X. Sun, X.P. Sun, Q. Li, J.T. Han, Y.H. Huang, In situ FTIR-assisted synthesis of nickel hexacyanoferrate cathodes for long-life sodium-ion batteries, ACS Appl. Mater. Interfaces 11 (2019) 29985–29992. doi: 10.1021/acsami.9b10312
    [38]
    R. Rehman, J. Peng, H.C. Yi, Y. Shen, J.W. Yin, C. Li, C. Fang, Q. Li, J.T. Han, Highly crystalline nickel hexacyanoferrate as a long-life cathode material for sodium-ion batteries, RSC Adv. 10 (2020) 27033–27041. doi: 10.1039/D0RA03490H
    [40]
    H. Li, J. Yang, J.L. Cheng, T. He, B. Wang, Flexible aqueous ammonium-ion full cell with high rate capability and long cycle life, Nano Energy 68 (2020) 104369. doi: 10.1016/j.nanoen.2019.104369
    [41]
    S.Y. Dong, W. Shin, H. Jiang, X.Y. Wu, Z.F. Li, J. Holoubek, W.F. Stickle, B. Key, C. Liu, J. Lu, P.A. Greaney, X.G. Zhang, X.L. Ji, Ultra-fast NH4+ storage: strong H bonding between NH4+ and Bi-layered V2O5, Inside Chem. 5 (2019) 1537–1551.
    [42]
    G.J. Liang, Y.L. Wang, Z.D. Huang, F.N. Mo, X.L. Li, Q. Yang, D.H. Wang, H.F. Li, S.M. Chen, C.Y. Zhi, Initiating hexagonal MoO3 for superb-stable and fast NH4+ storage based on hydrogen bond chemistry, Adv. Mater. 32 (2020) 1907802. doi: 10.1002/adma.201907802
    [43]
    W.H. Ren, X.J. Chen, C. Zhao, Ultrafast aqueous potassium-ion batteries cathode for stable intermittent grid-scale energy storage, Adv. Energy Mater. 8 (2018) 1801413. doi: 10.1002/aenm.201801413
    [44]
    C. Wu, S.C. Gu, Q.H. Zhang, Y. Bai, M. Li, Y.F. Yuan, H.L. Wang, X.Y. Liu, Y.X. Yuan, N. Zhu, F. Wu, H. Li, L. Gu, J. Lu, Electrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery, Nat. Commun. 10 (2019) 73. doi: 10.1038/s41467-018-07980-7
    [45]
    M.T. Xia, X.K. Zhang, T.T. Liu, H.X. Yu, S. Chen, N. Peng, R.T. Zheng, J.D. Zhang, J. Shu, Commercially available Prussian blue get energetic in aqueous K-ion batteries, Chem. Eng. J. 394 (2020) 124923. doi: 10.1016/j.cej.2020.124923
    [46]
    N.N. Chang, T.Y. Li, R. Li, S.N. Wang, Y.B. Yin, H.M. Zhang, X.F. Li, An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices, Energy Environ. Sci. 13 (2020) 3527–3535. doi: 10.1039/D0EE01538E
    [47]
    Q. Zhao, W.W. Huang, Z.Q. Luo, L.J. Liu, Y. Lu, Y.X. Li, L. Li, J.Y. Hu, H. Ma, J. Chen, High-capacity aqueous zinc batteries using sustainable quinone electrodes, Sci. Adv. 4 (2018), eaao1761. doi: 10.1126/sciadv.aao1761
    [48]
    Z.W. Guo, Y.Y. Ma, X.L. Dong, J.H. Huang, Y.G. Wang, Y.Y. Xia, An environmentally friendly and flexible aqueous zinc battery using an organic cathode, Angew. Chem. Int. Ed. 57 (2018) 11737–11741. doi: 10.1002/anie.201807121
    [49]
    L. Chen, J.L. Bao, X.L. Dong, D.G. Truhlar, Y.G. Wang, C.X. Wang, Y.Y. Xia, Aqueous Mg-ion battery based on polyimide anode and prussian blue cathode, ACS Energy Lett. 2 (2017) 1115–1121. doi: 10.1021/acsenergylett.7b00040
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (186) PDF downloads(34) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return