Volume 1 Issue 2
Dec.  2021
Turn off MathJax
Article Contents
Zhang Shichao, Li Siyuan, Lu Yingying. Designing safer lithium-based batteries with nonflammable electrolytes: A review[J]. eScience, 2021, 1(2): 163-177. doi: 10.1016/j.esci.2021.12.003
Citation: Zhang Shichao, Li Siyuan, Lu Yingying. Designing safer lithium-based batteries with nonflammable electrolytes: A review[J]. eScience, 2021, 1(2): 163-177. doi: 10.1016/j.esci.2021.12.003

Designing safer lithium-based batteries with nonflammable electrolytes: A review

doi: 10.1016/j.esci.2021.12.003
More Information
  • Corresponding author: Yingying Lu, E-mail address: yingyinglu@zju.edu.cn
  • Received Date: 2021-08-27
  • Revised Date: 2021-11-07
  • Accepted Date: 2021-12-06
  • Available Online: 2021-12-14
  • Lithium-based batteries have had a profound impact on modern society through their extensive use in portable electronic devices, electric vehicles, and energy storage systems. However, battery safety issues such as thermal runaway, fire, and explosion hinder their practical application, especially for using metal anode. These problems are closely related to the high flammability of conventional electrolytes and have prompted the study of flame-retardant and nonflammable electrolytes. Here, we review the recent research on nonflammable electrolytes used in lithium-based batteries, including phosphates, fluorides, fluorinated phosphazenes, ionic liquids, deep eutectic solvents, aqueous electrolytes, and solid-state electrolytes. Their flame-retardant mechanisms and efficiency are discussed, as well as their influence on cell electrochemical performance. We conclude with a summary of future prospects for the design of nonflammable electrolytes and the construction of safer lithium-based batteries.
  • ● Radical scavenging mechanism and characterization methods of flammability are summarized.
    ● The characteristic parameters of thermal runaway and their influence are illustrated.
    ● Inspiring further exploration in the design of nonflammable electrolytes toward safer lithium-based batteries.
    ● This review compares the efficiency, stability and compatibility of various flame retardants.
    1 These authors contributed equally to this work.
  • loading
  • [1]
    M. Armand, J.M. Tarascon, Building better batteries, Nature 451 (2008) 652–657. doi: 10.1038/451652a
    [2]
    J.B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater. 22 (2010) 587–603. doi: 10.1021/cm901452z
    [3]
    M. Winter, B. Barnett, K. Xu, Before Li ion batteries, Chem. Rev. 118 (2018) 11433–11456. doi: 10.1021/acs.chemrev.8b00422
    [4]
    M.S. Whittingham, Ultimate limits to intercalation reactions for lithium batteries, Chem. Rev. 114 (2014) 11414–11443. doi: 10.1021/cr5003003
    [5]
    J. Liu, Z. Bao, Y. Cui, et al., Pathways for practical high-energy long-cycling lithium metal batteries, Nat. Energy 4 (2019) 180–186. doi: 10.1038/s41560-019-0338-x
    [6]
    S. Li, W. Zhang, Q. Wu, et al., Synergistic dual-additive electrolyte enables practical lithium-metal batteries, Angew. Chem. Int. Ed. 59 (2020) 14935–14941. doi: 10.1002/anie.202004853
    [7]
    X. Feng, M. Ouyang, X. Liu, et al., Thermal runaway mechanism of lithium ion battery for electric vehicles: a review, Energy Storage Mater. 10 (2018) 246–267. doi: 10.1016/j.ensm.2017.05.013
    [8]
    Y. Chen, Y. Kang, Y. Zhao, et al., A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards, J. Energy Chem. 59 (2021) 83–99. doi: 10.1016/j.jechem.2020.10.017
    [9]
    P. Lyu, X. Liu, J. Qu, et al., Recent advances of thermal safety of lithium ion battery for energy storage, Energy Storage Mater. 31 (2020) 195–220. doi: 10.1016/j.ensm.2020.06.042
    [10]
    M.D. Tikekar, S. Choudhury, Z. Tu, et al., Design principles for electrolytes and interfaces for stable lithium-metal batteries, Nat. Energy 1 (2016) 16114. doi: 10.1038/nenergy.2016.114
    [11]
    S. Li, Q. Liu, J. Zhou, et al., Hierarchical Co3O4 nanofiber–carbon sheet skeleton with superior Na/Li-Philic property enabling highly stable alkali metal batteries, Adv. Funct. Mater. 29 (2019) 1808847. doi: 10.1002/adfm.201808847
    [12]
    X. Feng, D. Ren, X. He, et al., Mitigating thermal runaway of lithium-ion batteries, Joule 4 (2020) 743–770. doi: 10.1016/j.joule.2020.02.010
    [13]
    X. Liu, D. Ren, H. Hsu, et al., Thermal runaway of lithium-ion batteries without internal short circuit, Joule 2 (2018) 2047–2064. doi: 10.1016/j.joule.2018.06.015
    [14]
    Y. Li, X. Liu, L. Wang, et al., Thermal runaway mechanism of lithium-ion battery with LiNi0.8Mn0.1Co0.1O2 cathode materials, Nano Energy 85 (2021) 105878. doi: 10.1016/j.nanoen.2021.105878
    [15]
    G. Xu, L. Huang, C. Lu, et al., Revealing the multilevel thermal safety of lithium batteries, Energy Storage Mater. 31 (2020) 72–86. doi: 10.1016/j.ensm.2020.06.004
    [16]
    D. Ren, X. Feng, L. Liu, et al., Investigating the relationship between internal short circuit and thermal runaway of lithium-ion batteries under thermal abuse condition, Energy Storage Mater. 34 (2021) 563–573. doi: 10.1016/j.ensm.2020.10.020
    [17]
    K. Xu, Electrolytes and interphases in Li-ion batteries and beyond, Chem. Rev. 114 (2014) 11503–11618. doi: 10.1021/cr500003w
    [18]
    S.J. Tan, W.P. Wang, Y.F. Tian, et al., Advanced electrolytes enabling safe and stable rechargeable Li-metal batteries: progress and prospects, Adv. Funct. Mater. 2105253 (2021).
    [19]
    X. Wang, S. Li, W. Zhang, et al., Dual-salt-additive electrolyte enables high-voltage lithium metal full batteries capable of fast-charging ability, Nano Energy 89 (2021) 106353. doi: 10.1016/j.nanoen.2021.106353
    [20]
    K. Deng, Q. Zeng, D. Wang, et al., Nonflammable organic electrolytes for highsafety lithium-ion batteries, Energy Storage Mater. 32 (2020) 425–447. doi: 10.1016/j.ensm.2020.07.018
    [21]
    J. Chen, A. Naveed, Y. Nuli, et al., Designing an intrinsically safe organic electrolyte for rechargeable batteries, Energy Storage Mater. 31 (2020) 382–400. doi: 10.1016/j.ensm.2020.06.027
    [22]
    K. Liu, Y. Liu, D. Lin, et al., Materials for lithium-ion battery safety, Sci. Adv. 4 (2018), eaas9820. doi: 10.1126/sciadv.aas9820
    [23]
    Q. Wang, L. Jiang, Y. Yu, et al., Progress of enhancing the safety of lithium ion battery from the electrolyte aspect, Nano Energy 55 (2019) 93–114. doi: 10.1016/j.nanoen.2018.10.035
    [24]
    Q.K. Zhang, X.Q. Zhang, H. Yuan, et al., Thermally stable and nonflammable electrolytes for lithium metal batteries: progress and perspectives, Small Sci. (2021) 2100058.
    [25]
    T. Dagger, B.R. Rad, F.M. Schappacher, et al., Comparative performance evaluation of flame retardant additives for lithium ion batteries – I. Safety, chemical and electrochemical stabilities, Energy Technol. 6 (2018) 2011–2022. doi: 10.1002/ente.201800132
    [26]
    T. Dagger, P. Niehoff, C. Lürenbaum, et al., Comparative performance evaluation of flame retardant additives for lithium ion batteries – Ⅱ. Full cell cycling and postmortem analyses, Energy Technol. 6 (2018) 2023–2035. doi: 10.1002/ente.201800133
    [27]
    J. Wang, Y. Yamada, K. Sodeyama, et al., Fire-extinguishing organic electrolytes for safe batteries, Nat. Energy 3 (2018) 22–29. doi: 10.1038/s41560-017-0033-8
    [28]
    H. Chen, J. Liu, X. Zhou, et al., Rapid leakage responsive and self-healing Li-metal batteries, Chem. Eng. J. 404 (2021) 126470. doi: 10.1016/j.cej.2020.126470
    [29]
    J. Ju, S. Dong, Y. Cui, et al., Leakage-proof electrolyte chemistry for a highperformance lithium–sulfur battery, Angew. Chem. Int. Ed. 60 (2021) 16487–16491. doi: 10.1002/anie.202103209
    [30]
    A. Eftekhari, High-energy aqueous lithium batteries, Adv. Energy Mater. 8 (2018) 1801156. doi: 10.1002/aenm.201801156
    [31]
    M. Balaish, J.C. Gonzalez-Rosillo, K.J. Kim, et al., Processing thin but robust electrolytes for solid-state batteries, Nat. Energy 6 (2021) 227–239. doi: 10.1038/s41560-020-00759-5
    [32]
    J. Xiang, Y. Zhang, B. Zhang, et al., A flame-retardant polymer electrolyte for high performance lithium metal batteries with an expanded operation temperature, Energy Environ. Sci. 14 (2021) 3510–3521. doi: 10.1039/D1EE00049G
    [33]
    X. Zou, Q. Lu, Y. Zhong, et al., Flexible, flame-resistant, and dendrite-impermeable gel-polymer electrolyte for Li-O2/air batteries workable under hurdle conditions, Small 14 (2018) 1801798. doi: 10.1002/smll.201801798
    [34]
    H. Yang, W.R. Leow, X. Chen, Thermal-responsive polymers for enhancing safety of electrochemical storage devices, Adv. Mater. 30 (2018) 1704347. doi: 10.1002/adma.201704347
    [35]
    L. Peng, X. Kong, H. Li, et al., A rational design for a high-safety lithium-ion battery assembled with a heatproof–fireproof bifunctional separator, Adv. Funct. Mater. 31 (2021) 2008537. doi: 10.1002/adfm.202008537
    [36]
    X. Zhang, Q. Sun, C. Zhen, et al., Recent progress in flame-retardant separators for safe lithium-ion batteries, Energy Storage Mater. 37 (2021) 628–647. doi: 10.1016/j.ensm.2021.02.042
    [37]
    L.Y. Chou, Y. Ye, H.K. Lee, et al., Electrolyte-resistant dual materials for the synergistic safety enhancement of lithium-ion batteries, Nano Lett. 21 (2021) 2074–2080. doi: 10.1021/acs.nanolett.0c04568
    [38]
    Z. Liu, Q. Hu, S. Guo, et al., Thermoregulating separators based on phase-change materials for safe lithium-ion batteries, Adv. Mater. 33 (2021) 2008088. doi: 10.1002/adma.202008088
    [39]
    Q. Zhou, S. Dong, Z. Lv, et al., A temperature-responsive electrolyte endowing superior safety characteristic of lithium metal batteries, Adv. Energy Mater. 10 (2020) 1903441. doi: 10.1002/aenm.201903441
    [40]
    Y. Ye, L.Y. Chou, Y. Liu, et al., Ultralight and fire-extinguishing current collectors for high-energy and high-safety lithium-ion batteries, Nat. Energy 5 (2020) 786–793. doi: 10.1038/s41560-020-00702-8
    [41]
    H. Li, L. Peng, D. Wu, et al., Ultrahigh-capacity and fire-resistant LiFePO4-based composite cathodes for advanced lithium-ion batteries, Adv. Energy Mater. 9 (2019) 1802930. doi: 10.1002/aenm.201802930
    [42]
    K. Xu, M.S. Ding, S.S. Zhang, et al., An attempt to formulate nonflammable lithium ion electrolytes with alkyl phosphates and phosphazenes, J. Electrochem. Soc. 149 (2002) A622–A626. doi: 10.1149/1.1467946
    [43]
    X. Wang, E. Yasukawa, S. Kasuya, Nonflammable trimethyl phosphate solventcontaining electrolytes for lithium-ion batteries: I. fundamental properties, J. Electrochem. Soc. 148 (2001) A1058. doi: 10.1149/1.1397773
    [44]
    X. Wang, E. Yasukawa, S. Kasuya, Nonflammable trimethyl phosphate solventcontaining electrolytes for lithium-ion batteries: Ⅱ. the use of an amorphous carbon anode, J. Electrochem. Soc. 148 (2001) A1066. doi: 10.1149/1.1397774
    [45]
    X. Wang, C. Yamada, H. Naito, et al., High-concentration trimethyl phosphatebased nonflammable electrolytes with improved charge–discharge performance of a graphite anode for lithium-ion cells, J. Electrochem. Soc. 153 (2006) A135. doi: 10.1149/1.2136078
    [46]
    K. Takada, Y. Yamada, A. Yamada, Optimized nonflammable concentrated electrolytes by introducing a low-dielectric diluent, ACS Appl. Mater. Interfaces 11 (2019) 35770–35776. doi: 10.1021/acsami.9b12709
    [47]
    H. Jia, Y. Xu, X. Zhang, et al., Advanced low-flammable electrolytes for stable operation of high-voltage lithium-ion batteries, Angew. Chem. Int. Ed. 60 (2021) 12999–13006. doi: 10.1002/anie.202102403
    [48]
    T. Zhang, Y. Li, N. Chen, et al., Regulating the solvation structure of nonflammable electrolyte for dendrite-free Li-metal batteries, ACS Appl. Mater. Interfaces 13 (2021) 681–687. doi: 10.1021/acsami.0c19075
    [49]
    P. Shi, H. Zheng, X. Liang, et al., A highly concentrated phosphate-based electrolyte for high-safety rechargeable lithium batteries, Chem. Commun. 54 (2018) 4453–4456. doi: 10.1039/C8CC00994E
    [50]
    H. Nakagawa, M. Ochida, Y. Domi, et al., Electrochemical Raman study of edge plane graphite negative-electrodes in electrolytes containing trialkyl phosphoric ester, J. Power Sources 212 (2012) 148–153. doi: 10.1016/j.jpowsour.2012.04.013
    [51]
    Z. Zeng, V. Murugesan, K.S. Han, et al., Non-flammable electrolytes with high saltto-solvent ratios for Li-ion and Li-metal batteries, Nat. Energy 3 (2018) 674–681. doi: 10.1038/s41560-018-0196-y
    [52]
    X. Cao, Y. Xu, L. Zhang, et al., Nonflammable electrolytes for lithium ion batteries enabled by ultraconformal passivation interphases, ACS Energy Lett. 4 (2019) 2529–2534. doi: 10.1021/acsenergylett.9b01926
    [53]
    H. Jia, L. Zou, P. Gao, et al., High-performance silicon anodes enabled by nonflammable localized high-concentration electrolytes, Adv. Energy Mater. 9 (2019) 1900784. doi: 10.1002/aenm.201900784
    [54]
    H. Yang, Q. Li, C. Guo, et al., Safer lithium–sulfur battery based on nonflammable electrolyte with sulfur composite cathode, Chem. Commun. 54 (2018) 4132–4135. doi: 10.1039/C7CC09942H
    [55]
    H. Yang, C. Guo, J. Chen, et al., An intrinsic flame-retardant organic electrolyte for safe lithium-sulfur batteries, Angew. Chem. Int. Ed. 58 (2019) 791–795. doi: 10.1002/anie.201811291
    [56]
    S. Chen, J. Zheng, L. Yu, et al., High-efficiency lithium metal batteries with fireretardant electrolytes, Joule 2 (2018) 1548–1558. doi: 10.1016/j.joule.2018.05.002
    [57]
    S. Li, S. Zhang, S. Chai, et al., Structured solid electrolyte interphase enable reversible Li electrodeposition in flame-retardant phosphate-based electrolyte, Energy Storage Mater. 42 (2021) 628–635. doi: 10.1016/j.ensm.2021.08.015
    [58]
    S.J. Tan, J. Yue, X.C. Hu, et al., Nitriding-interface-regulated lithium plating enables flame-retardant electrolytes for high-voltage lithium metal batteries, Angew. Chem. Int. Ed. 58 (2019) 7802–7807. doi: 10.1002/anie.201903466
    [59]
    H. Zhang, J. Luo, M. Qi, et al., Enabling lithium metal anode in nonflammable phosphate electrolyte with electrochemically induced chemical reactions, Angew. Chem. Int. Ed. 133 (2021) 19332–19339. doi: 10.1002/ange.202103909
    [60]
    H.F. Xiang, H.Y. Xu, Z.Z. Wang, et al., Dimethyl methylphosphonate (DMMP) as an efficient flame retardant additive for the lithium-ion battery electrolytes, J. Power Sources 173 (2007) 562–564. doi: 10.1016/j.jpowsour.2007.05.001
    [61]
    J. Feng, P. Ma, H. Yang, et al., Understanding the interactions of phosphonatebased flame-retarding additives with graphitic anode for lithium ion batteries, Electrochim. Acta 114 (2013) 688–692. doi: 10.1016/j.electacta.2013.10.104
    [62]
    Z. Zeng, B. Wu, L. Xiao, et al., Safer lithium ion batteries based on nonflammable electrolyte, J. Power Sources 279 (2015) 6–12. doi: 10.1016/j.jpowsour.2014.12.150
    [63]
    Y.E. Hyung, D.R. Vissers, K. Amine, Flame-retardant additives for lithium-ion batteries, J. Power Sources 119–121 (2003) 383–387. doi: 10.1016/S0378-7753(03)00225-8
    [64]
    X. Liu, X. Shen, F. Zhong, et al., Enabling electrochemical compatibility of nonflammable phosphate electrolytes for lithium-ion batteries by tuning their molar ratios of salt to solvent, Chem. Commun. 56 (2020) 6559–6562. doi: 10.1039/D0CC02940H
    [65]
    S. Chen, Z. Wang, H. Zhao, et al., A novel flame retardant and film-forming electrolyte additive for lithium ion batteries, J. Power Sources 187 (2009) 229–232. doi: 10.1016/j.jpowsour.2008.10.091
    [66]
    Z. Yu, J. Zhang, C. Wang, et al., Flame-retardant concentrated electrolyte enabling a LiF-rich solid electrolyte interface to improve cycle performance of wide-temperature lithium–sulfur batteries, J. Energy Chem. 51 (2020) 154–160. doi: 10.1016/j.jechem.2020.03.034
    [67]
    G.J. Chung, J. Han, S.W. Song, Fire-preventing LiPF6 and ethylene carbonatebased organic liquid electrolyte system for safer and outperforming lithium-ion batteries, ACS Appl. Mater. Interfaces 12 (2020) 42868–42879. doi: 10.1021/acsami.0c12702
    [68]
    T. Yang, S. Li, W. Wang, et al., Nonflammable functional electrolytes with allfluorinated solvents matching rechargeable high-voltage Li-metal batteries with Ni-rich ternary cathode, J. Power Sources 505 (2021) 230055. doi: 10.1016/j.jpowsour.2021.230055
    [69]
    L. Chen, X. Fan, E. Hu, et al., Achieving high energy density through increasing the output voltage: a highly reversible 5.3 V battery, Chemistry 5 (2019) 896–912. doi: 10.1016/j.chempr.2019.02.003
    [70]
    X. Fan, L. Chen, O. Borodin, et al., Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries, Nat. Nanotechnol. 13 (2018) 715–722. doi: 10.1038/s41565-018-0183-2
    [71]
    Q. Zheng, Y. Yamada, R. Shang, et al., A cyclic phosphate-based battery electrolyte for high voltage and safe operation, Nat. Energy 5 (2020) 291–298. doi: 10.1038/s41560-020-0567-z
    [72]
    Z. Zeng, X. Liu, X. Jiang, et al., Enabling an intrinsically safe and high-energydensity 4.5 V-class Li-ion battery with nonflammable electrolyte, InfoMat 2 (2020) 984–992. doi: 10.1002/inf2.12089
    [73]
    Y. Gu, S. Fang, L. Yang, et al., Tris(2, 2, 2-trifluoroethyl) phosphate as a cosolvent for a nonflammable electrolyte in lithium-ion batteries, ACS Appl. Energ. Mater. 4 (2021) 4919–4927.
    [74]
    S. Yang, Y. Zhang, Z. Li, et al., Rational electrolyte design to form inorganic–polymeric interphase on silicon-based anodes, ACS Energy Lett. 6 (2021) 1811–1820. doi: 10.1021/acsenergylett.1c00514
    [75]
    H.W. Rollins, M.K. Harrup, E.J. Dufek, et al., Fluorinated phosphazene co-solvents for improved thermal and safety performance in lithium-ion battery electrolytes, J. Power Sources 263 (2014) 66–74. doi: 10.1016/j.jpowsour.2014.04.015
    [76]
    M.K. Harrup, H.W. Rollins, D.K. Jamison, et al., Unsaturated phosphazenes as cosolvents for lithium-ion battery electrolytes, J. Power Sources 278 (2015) 794–801. doi: 10.1016/j.jpowsour.2014.07.109
    [77]
    Y. Li, Y. An, Y. Tian, et al., High-safety and high-voltage lithium metal batteries enabled by a nonflammable ether-based electrolyte with phosphazene as a cosolvent, ACS Appl. Mater. Interfaces 13 (2021) 10141–10148. doi: 10.1021/acsami.1c00661
    [78]
    L. Xia, Y. Xia, Z. Liu, A novel fluorocyclophosphazene as bifunctional additive for safer lithium-ion batteries, J. Power Sources 278 (2015) 190–196. doi: 10.1016/j.jpowsour.2014.11.140
    [79]
    X. Li, W. Li, L. Chen, et al., Ethoxy (pentafluoro) cyclotriphosphazene (PFPN) as a multi-functional flame retardant electrolyte additive for lithium-ion batteries, J. Power Sources 378 (2018) 707–716. doi: 10.1016/j.jpowsour.2017.12.085
    [80]
    J. Liu, X. Song, L. Zhou, et al., Fluorinated phosphazene derivative – a promising electrolyte additive for high voltage lithium ion batteries: from electrochemical performance to corrosion mechanism, Nano Energy 46 (2018) 404–414. doi: 10.1016/j.nanoen.2018.02.029
    [81]
    Q. Liu, Z. Chen, Y. Liu, et al., Cooperative stabilization of bi-electrodes with robust interphases for high-voltage lithium-metal batteries, Energy Storage Mater. 37 (2021) 521–529. doi: 10.1016/j.ensm.2021.02.039
    [82]
    Y. Li, Y. An, Y. Tian, et al., Stable and safe lithium metal batteries with Ni-rich cathodes enabled by a high efficiency flame retardant additive, J. Electrochem. Soc. 166 (2019) A2736–A2740. doi: 10.1149/2.0081913jes
    [83]
    T. Dagger, C. Lürenbaum, F.M. Schappacher, et al., Electrochemical performance evaluations and safety investigations of pentafluoro(phenoxy)cyclotriphosphazene as a flame retardant electrolyte additive for application in lithium ion battery systems using a newly designed apparatus for improved self-extinguishing time measurements, J. Power Sources 342 (2017) 266–272. doi: 10.1016/j.jpowsour.2016.12.007
    [84]
    Y. Ji, P. Zhang, M. Lin, et al., Toward a stable electrochemical interphase with enhanced safety on high-voltage LiCoO2 cathode: a case of phosphazene additives, J. Power Sources 359 (2017) 391–399. doi: 10.1016/j.jpowsour.2017.05.091
    [85]
    Y. Gu, S. Fang, L. Yang, et al., A non-flammable electrolyte for long-life lithium ion batteries operating over a wide-temperature range, J. Mater. Chem. A 9 (2021) 15363–15372. doi: 10.1039/D1TA01088C
    [86]
    J. Feng, X. Gao, L. Ci, et al., A novel bifunctional additive for 5 V-class, highvoltage lithium ion batteries, RSC Adv. 6 (2016) 7224–7228. doi: 10.1039/C5RA22547G
    [87]
    M. Armand, F. Endres, D.R. MacFarlane, et al., Ionic-liquid materials for the electrochemical challenges of the future, Nat. Mater. 8 (2009) 621–629. doi: 10.1038/nmat2448
    [88]
    C.F.J. Francis, I.L. Kyratzis, A.S. Best, Lithium-ion battery separators for ionicliquid electrolytes: a review, Adv. Mater. 32 (2020) 1904205. doi: 10.1002/adma.201904205
    [89]
    S. Fang, L. Qu, D. Luo, et al., Novel mixtures of ether-functionalized ionic liquids and non-flammable methylperfluorobutylether as safe electrolytes for lithium metal batteries, RSC Adv. 5 (2015) 33897–33904. doi: 10.1039/C5RA01713K
    [90]
    Z. Wang, Y. Sun, Y. Mao, et al., Highly concentrated dual-anion electrolyte for non-flammable high-voltage Li-metal batteries, Energy Storage Mater. 30 (2020) 228–237. doi: 10.1016/j.ensm.2020.05.020
    [91]
    F. Wu, S. Fang, M. Kuenzel, et al., Dual-anion ionic liquid electrolyte enables stable Ni-rich cathodes in lithium-metal batteries, Joule (2021), https://doi.org/10.1016/j.joule.2021.06.014. doi: 10.1016/j.joule.2021.06.014
    [92]
    S. Lee, K. Park, B. Koo, et al., Safe, stable cycling of lithium metal batteries with low-viscosity, fire-retardant locally concentrated ionic liquid electrolytes, Adv. Funct. Mater. 30 (2020) 2003132. doi: 10.1002/adfm.202003132
    [93]
    Z. Wang, F. Zhang, Y. Sun, et al., Intrinsically nonflammable ionic liquid-based localized highly concentrated electrolytes enable high-performance Li-metal batteries, Adv. Energy Mater. 11 (2021) 2003752. doi: 10.1002/aenm.202003752
    [94]
    Q. Zhang, K. De Oliveira Vigier, S. Royer, et al., Deep eutectic solvents: syntheses, properties and applications, Chem. Soc. Rev. 41 (2012) 7108–7146. doi: 10.1039/c2cs35178a
    [95]
    J. Wu, Q. Liang, X. Yu, et al., Deep eutectic solvents for boosting electrochemical energy storage and conversion: a review and perspective, Adv. Funct. Mater. 31 (2021) 2011102. doi: 10.1002/adfm.202011102
    [96]
    B.B. Hansen, S. Spittle, B. Chen, et al., Deep eutectic solvents: a review of fundamentals and applications, Chem. Rev. 121 (2021) 1232–1285. doi: 10.1021/acs.chemrev.0c00385
    [97]
    Z. Hu, F. Xian, Z. Guo, et al., Nonflammable nitrile deep eutectic electrolyte enables high-voltage lithium metal batteries, Chem. Mater. 32 (2020) 3405–3413. doi: 10.1021/acs.chemmater.9b05003
    [98]
    J. Song, Y. Si, W. Guo, et al., Organosulfide-based deep eutectic electrolyte for lithium batteries, Angew. Chem. Int. Ed. 60 (2021) 9881–9885. doi: 10.1002/anie.202016875
    [99]
    P. Jiang, L. Chen, H. Shao, et al., Methylsulfonylmethane-based deep eutectic solvent as a new type of green electrolyte for a high-energy-density aqueous lithium-ion battery, ACS Energy Lett. 4 (2019) 1419–1426. doi: 10.1021/acsenergylett.9b00968
    [100]
    W. Li, J.R. Dahn, D.S. Wainwright, Rechargeable lithium batteries with aqueouselectrolytes, Science 264 (1994) 1115–1118. doi: 10.1126/science.264.5162.1115
    [101]
    F. Wang, L. Suo, Y. Liang, et al., Spinel LiNi0.5Mn1.5O4 cathode for high-energy aqueous lithium-ion batteries, Adv. Energy Mater. 7 (2017) 1600922. doi: 10.1002/aenm.201600922
    [102]
    F. Wang, Y. Lin, L. Suo, et al., Stabilizing high voltage LiCoO2 cathode in aqueous electrolyte with interphase-forming additive, Energy Environ. Sci. 9 (2016) 3666–3673. doi: 10.1039/C6EE02604D
    [103]
    Y. Shen, B. Liu, X. Liu, et al., Water-in-salt electrolyte for safe and high-energy aqueous battery, Energy Storage Mater. 34 (2021) 461–474. doi: 10.1016/j.ensm.2020.10.011
    [104]
    L.M. Suo, O. Borodin, T. Gao, et al., Water-in-salt" electrolyte enables high-voltage aqueous lithium-ion chemistries, Science 350 (2015) 938–943. doi: 10.1126/science.aab1595
    [105]
    Y. Shang, N. Chen, Y. Li, et al., An "ether-in-water" electrolyte boosts stable interfacial chemistry for aqueous lithium-ion batteries, Adv. Mater. 32 (2020) 2004017. doi: 10.1002/adma.202004017
    [106]
    L. Suo, O. Borodin, W. Sun, et al., Advanced high -voltageaqueous lithium -ionbattery enabled by " water-in-bisalt"electrolyte, Angew. Chem. Int. Ed. 55 (2016) 7136–7141. doi: 10.1002/anie.201602397
    [107]
    J. Xie, Z. Liang, Y.C. Lu, Molecular crowding electrolytes for high-voltage aqueous batteries, Nat. Mater. 19 (2020) 1006–1011. doi: 10.1038/s41563-020-0667-y
    [108]
    A. Banerjee, X.F. Wang, C.C. Fang, et al., Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes, Chem. Rev. 120 (2020) 6878–6933. doi: 10.1021/acs.chemrev.0c00101
    [109]
    A.K. Mishra, H.A. Chaliyawala, R. Patel, et al., Review-inorganic solid state electrolytes: insights on current and future scope, J. Electrochem. Soc. 168 (2021), 080536. doi: 10.1149/1945-7111/ac1dcc
    [110]
    R. Chen, A.M. Nolan, J. Lu, et al., The thermal stability of lithium solid electrolytes with metallic lithium, Joule 4 (2020) 812–821. doi: 10.1016/j.joule.2020.03.012
    [111]
    J. Li, Y. Cai, H. Wu, et al., Polymers in lithium-ion and lithium metal batteries, Adv. Energy Mater. 11 (2021) 2003239. doi: 10.1002/aenm.202003239
    [112]
    L. Han, C. Liao, X. Mu, et al., Flame-retardant ADP/PEO solid polymer electrolyte for dendrite-free and long-life lithium battery by generating Al, P-rich SEI layer, Nano Lett. 21 (2021) 4447–4453. doi: 10.1021/acs.nanolett.1c01137
    [113]
    Y. Cui, J.Y. Wan, Y.S. Ye, et al., A fireproof, lightweight, polymer-polymer solidstate electrolyte for safe lithium batteries, Nano Lett. 20 (2020) 1686–1692. doi: 10.1021/acs.nanolett.9b04815
    [114]
    J. Guo, Y. Chen, Y. Xiao, et al., Flame-retardant composite gel polymer electrolyte with a dual acceleration conduction mechanism for lithium ion batteries, Chem. Eng. J. 422 (2021) 130526. doi: 10.1016/j.cej.2021.130526
    [115]
    C. Li, G. Liu, K. Wang, et al., Electrochemically-matched and nonflammable janus solid electrolyte for lithium-metal batteries, ACS Appl. Mater. Interfaces 13 (2021) 39271–39281. doi: 10.1021/acsami.1c08687
    [116]
    S. Wang, L. Zhou, M.K. Tufail, et al., In-situ synthesized non-flammable gel polymer electrolyte enable highly safe and dendrite-free lithium metal batteries, Chem. Eng. J. 415 (2021) 128846. doi: 10.1016/j.cej.2021.128846
    [117]
    L. Li, C. Xu, R. Chang, et al., Thermal-responsive, super-strong, ultrathin firewalls for quenching thermal runaway in high-energy battery modules, Energy Storage Mater. 40 (2021) 329–336. doi: 10.1016/j.ensm.2021.05.018
    [118]
    Z. Deng, X. Lin, Z. Huang, et al., Recent progress on advanced imaging techniques for lithium-ion batteries, Adv. Energy Mater. 11 (2021) 2000806. doi: 10.1002/aenm.202000806
    [119]
    Z. Deng, Z. Huang, Y. Shen, et al., Ultrasonic scanning to observe wetting and "unwetting" in Li-ion pouch cells, Joule 4 (2020) 2017–2029. doi: 10.1016/j.joule.2020.07.014
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (396) PDF downloads(64) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return