Volume 1 Issue 2
Dec.  2021
Turn off MathJax
Article Contents
Tang Jiayong, Peng Xiyue, Lin Tongen, Huang Xia, Luo Bin, Wang Lianzhou. Confining ultrafine tin monophosphide in Ti3C2Tx interlayers for rapid and stable sodium ion storage[J]. eScience, 2021, 1(2): 203-211. doi: 10.1016/j.esci.2021.12.004
Citation: Tang Jiayong, Peng Xiyue, Lin Tongen, Huang Xia, Luo Bin, Wang Lianzhou. Confining ultrafine tin monophosphide in Ti3C2Tx interlayers for rapid and stable sodium ion storage[J]. eScience, 2021, 1(2): 203-211. doi: 10.1016/j.esci.2021.12.004

Confining ultrafine tin monophosphide in Ti3C2Tx interlayers for rapid and stable sodium ion storage

doi: 10.1016/j.esci.2021.12.004
More Information
  • Corresponding author: Bin Luo, E-mail addresses: b.luo1@uq.edu.au; Lianzhou Wang, E-mail addresses: l.wang@uq.edu.au
  • Received Date: 2021-10-12
  • Revised Date: 2021-11-22
  • Accepted Date: 2021-12-09
  • Available Online: 2021-12-15
  • Phase separation in conversion/alloying-based anodes easily causes crystal disintegration and leads to bad cycling performance. Tin monophosphide (SnP) is an excellent anode material for sodium ion battery due to its unique three-dimensional crystallographic layered structure. In this work, we report the in situ growth of ultrafine SnP nanocrystals within Ti3C2Tx MXene interlayers. The MXene framework is used as a conductive matrix to provide high ionic/electrical transfer paths and reduce the Na+ diffusion barrier in the electrode. In situ and ex situ measurements reveal that the synergy between small SnP crystal domains and the confinement provided by the MXene host prevents mechanical disintegration and major phase separation during the sodiation and desodiation cycles. The resultant electrode exhibits fast Na+ storage kinetics and excellent cycling stability for over 1000 cycles. A full cell assembled with this new SnP-based anode and a Na3V2(PO4)3 cathode delivers a high energy density of 265.4 Wh kg1 and a power density of 3252.4 W kg–1, outperforming most sodium-ion batteries reported to date.
  • • Full cell based on the SnP/MXene anode and a Na3V2(PO4)3 cathode delivered a high energy density of 265.4 Wh kg-1 and power density of 3252.4 W kg-1, outperforming most of the reported sodium-ion batteries.
    • This strategy presents a new avenue for designing transition metal phosphides for rapid charging and stable sodium-ion storage.
    • MXene interlayer confinement effectively alleviate particle pulverization and irreversible phase separation of SnP anode during cycling.
  • loading
  • eScience-2021-1-203-1-s2.0-S2667141721000513-mmc1.docx
  • [1]
    P.K. Nayak, L. Yang, W. Brehm, et al., From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises, Angew. Chem. Int. Ed. 57 (2018) 102–120. doi: 10.1002/anie.201703772
    [2]
    J. Hwang, S. Myung, Y. Sun, et al., Sodium-ion batteries: present and future, Chem. Soc. Rev. 46 (2017) 3529–3614. doi: 10.1039/C6CS00776G
    [3]
    D. Kundu, E. Talaie, V. Duffort, et al., The emerging chemistry of sodium ion batteries for electrochemical energy storage, Angew. Chem. Int. Ed. 54 (2015) 3431–3448. doi: 10.1002/anie.201410376
    [4]
    Y. Lu, L. Yu, X.W.D. Lou, et al., Nanostructured conversion-type anode materials for advanced lithium-ion batteries, Inside Chem. 4 (2018) 972–996. https://www.cell.com/chem/pdf/S2451-9294(18)30025-1.pdf
    [5]
    G. Chang, Y. Zhao, L. Dong, et al., A review of phosphorus and phosphides as anode materials for advanced sodium-ion batteries, J. Mater. Chem. A 8 (2020) 4996–5048. doi: 10.1039/C9TA12169B
    [6]
    J. Liu, S. Wang, K. Kravchyk, et al., SnP nanocrystals as anode materials for Na-ion batteries, J. Mater. Chem. A 6 (2018) 10958–10966. doi: 10.1039/C8TA01492B
    [7]
    Y. Kim, H. Hwang, C.S. Yoon, et al., Reversible lithium intercalation in teardropshaped ultrafine SnP0.94 particles: an anode material for lithium-ion batteries, Adv. Mater. 19 (2007) 92–96. doi: 10.1002/adma.200600644
    [8]
    J. Liu, M. Yao, A. Wu, et al., Inverse capacity growth and progressive lithiation of SnP-semifilled carbon nanotubes anodes, Appl. Surf. Sci. 568 (2021) 150844. doi: 10.1016/j.apsusc.2021.150844
    [9]
    X. Zhao, W. Wang, Z. Hou, et al., SnP0.94 nanoplates/graphene oxide composite for novel potassium-ion battery anode, Chem. Eng. J. 370 (2019) 677–683. doi: 10.1016/j.cej.2019.03.250
    [10]
    C. Tsai, C. Chang, T. Kao, et al., Shape matters: SnP0.94 teardrop nanorods with boosted performance for potassium ion storage, Chem. Eng. J. 417 (2021) 128552. doi: 10.1016/j.cej.2021.128552
    [11]
    M. Wang, G. Weng, G. Yasin, et al., A high-performance tin phosphide/carbon composite anode for lithium-ion batteries, Dalton Trans. 49 (2020) 17026–17032. doi: 10.1039/D0DT03139A
    [12]
    M. Zhang, H. Wang, J. Feng, et al., Controllable synthesis of 3D nitrogen-doped carbon networks supported SnxPy nanoparticles as high-performance anode for lithium ion batteries, Appl. Surf. Sci. 484 (2019) 899–905. doi: 10.1016/j.apsusc.2019.04.161
    [13]
    K. Ma, H. Jiang, Y. Hu, et al., 2D nanospace confined synthesis of pseudocapacitance-dominated MoS2-in-Ti3C2 superstructure for ultrafast and stable Li/Na-ion batteries, Adv. Funct. Mater. 28 (2018) 1804306. doi: 10.1002/adfm.201804306
    [14]
    M.R. Lukatskaya, S. Kota, Z. Lin, et al., Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides, Nat. Energy 2 (2017) 1–6. https://www.nature.com/articles/nenergy2017105
    [15]
    M. Naguib, M. Kurtoglu, V. Presser, et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater. 23 (2011) 4248–4253. doi: 10.1002/adma.201102306
    [16]
    M. Shang, X. Chen, B. Li, et al., A fast charge/discharge and wide-temperature battery with a germanium oxide layer on a Ti3C2 Mxene matrix as anode, ACS Nano 14 (2020) 3678–3686. doi: 10.1021/acsnano.0c00556
    [17]
    J. Li, L. Han, Y. Li, et al., MXene-decorated SnS2/Sn3S4 hybrid as anode material for high-rate lithium-ion batteries, Chem. Eng. J. 380 (2020) 122590. doi: 10.1016/j.cej.2019.122590
    [18]
    J. Ai, Y. Lei, S. Yang, et al., SnS nanoparticles anchored on Ti3C2 nanosheets matrix via electrostatic attraction method as novel anode for lithium ion batteries, Chem. Eng. J. 357 (2019) 150–158. doi: 10.1016/j.cej.2018.09.109
    [19]
    S. Supothina, R. Rattanakam, S. Vichaphund, et al., Effect of synthesis condition on morphology and yield of hydrothermally grown SnO2 nanorod clusters, J. Eur. Ceram. Soc. 31 (2011) 2453–2458. doi: 10.1016/j.jeurceramsoc.2011.02.018
    [20]
    Y. Xia, S. Han, Y. Zhu, et al., Stable cycling of mesoporous Sn4P3/SnO2@C nanosphere anode with high initial coulombic efficiency for Li-ion batteries, Energy Storage Mater. 18 (2019) 125–132. doi: 10.1016/j.ensm.2019.01.021
    [21]
    L. Ran, B. Luo, I.R. Gentle, et al., Biomimetic Sn4P3 anchored on carbon nanotubes as an anode for high-performance sodium-ion batteries, ACS Nano 14 (2020) 8826–8837. doi: 10.1021/acsnano.0c03432
    [22]
    B. Li, S. Shang, J. Zhao, et al., Metastable trigonal SnP: a promising anode material for potassium-ion battery, Carbon 168 (2020) 468–474. doi: 10.1016/j.carbon.2020.03.048
    [23]
    D. Zuo, S. Song, C. An, et al., Synthesis of sandwich-like structured Sn/SnOx@Mxene composite through in-situ growth for highly reversible lithium storage, Nano Energy 62 (2019) 401–409. doi: 10.1016/j.nanoen.2019.05.062
    [24]
    A. Sarycheva, Y. Gogotsi, Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx Mxene, Chem. Mater. 32 (2020) 3480–3488. doi: 10.1021/acs.chemmater.0c00359
    [25]
    S.O. Kucheyev, T. Van Buuren, T.F. Baumann, et al., Electronic structure of titania aerogels from soft x-ray absorption spectroscopy, Phys. Rev. B 69 (2004) 245102. doi: 10.1103/PhysRevB.69.245102
    [26]
    Y.T. Liu, P. Zhang, N. Sun, et al., Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage, Adv. Mater. 30 (2018) 1707334. doi: 10.1002/adma.201707334
    [27]
    J.V. Zaikina, K.A. Kovnir, A.N. Sobolev, et al., Highly disordered crystal structure and thermoelectric properties of Sn3P4, Chem. Mater. 20 (2008) 2476–2483. doi: 10.1021/cm702655g
    [28]
    L. Häggström, J. Gullman, T. Ericsson, et al., Mössbauer study of tin phosphides, J. Solid State Chem. 13 (1975) 204–207. doi: 10.1016/0022-4596(75)90120-6
    [29]
    E. Pan, Y. Jin, C. Zhao, et al., Dopamine-derived N-doped carbon encapsulating hollow Sn4P3 microspheres as anode materials with superior sodium storage performance, J. Alloys Compd. 769 (2018) 45–52. doi: 10.1016/j.jallcom.2018.07.361
    [30]
    J. Luo, X. Tao, J. Zhang, et al., Sn4+ ion decorated highly conductive Ti3C2 Mxene: promising lithium-ion anodes with enhanced volumetric capacity and cyclic performance, ACS Nano 10 (2016) 2491–2499. doi: 10.1021/acsnano.5b07333
    [31]
    S. Zhang, H. Ying, B. Yuan, et al., Partial atomic tin nanocomplex pillared fewlayered Ti3C2Tx MXenes for superior lithium-ion storage, Nano-Micro Lett. 12 (2020) 1–14. doi: 10.1007/s40820-019-0337-2
    [32]
    C. Wang, S. Chen, H. Xie, et al., Atomic Sn4+ decorated into vanadium carbide MXene interlayers for superior lithium storage, Adv. Energy Mater. 9 (2019) 1802977. doi: 10.1002/aenm.201802977
    [33]
    C. Xuan, J. Wang, W. Xia, et al., Heteroatom (P, B, or S) incorporated NiFe-based nanocubes as efficient electrocatalysts for the oxygen evolution reaction, J. Mater. Chem. A 6 (2018) 7062–7069. doi: 10.1039/C8TA00410B
    [34]
    J. Qian, Y. Xiong, Y. Cao, et al., Synergistic Na-storage reactions in Sn4P3 as a highcapacity, cycle-stable anode of Na-ion batteries, Nano Lett. 14 (2014) 1865–1869. doi: 10.1021/nl404637q
    [35]
    V. Augustyn, J. Come, M.A. Lowe, et al., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance, Nat. Mater. 12 (2013) 518. doi: 10.1038/nmat3601
    [36]
    V. Augustyn, P. Simon, B. Dunn, et al., Pseudocapacitive oxide materials for highrate electrochemical energy storage, Energy Environ. Sci. 7 (2014) 1597–1614. doi: 10.1039/c3ee44164d
    [37]
    J. Zhou, X. Lian, Y. You, et al., Revealing the various electrochemical behaviors of Sn4P3 binary alloy anodes in alkali metal ion batteries, Adv. Funct. Mater. (2021) 2102047.
    [38]
    Y. Xu, Y. Zhu, Y. Liu, et al., Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries, Adv. Energy Mater. 3 (2013) 128–133. doi: 10.1002/aenm.201200346
    [39]
    H. Lindström, S. Södergren, A. Solbrand, et al., Li+ ion insertion in TiO2 (anatase) Voltammetry on nanoporous films, J. Phys. Chem. B 101 (1997) 7717–7722. doi: 10.1021/jp970490q
    [40]
    J. Wang, J. Polleux, J. Lim, et al., Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles, J. Phys. Chem. C 111 (2007) 14925–14931. doi: 10.1021/jp074464w
    [41]
    Y. Zhang, Y. Tang, J. Deng, et al., Correlating the Peukert's constant with phase composition of electrode materials in fast lithiation processes, ACS Mater. Lett. 1 (2019) 519–525. doi: 10.1021/acsmaterialslett.9b00320
    [42]
    S.H. Yang, S. Park, Y.C. Kang, et al., Mof-derived CoSe2@N-doped carbon matrix confined in hollow mesoporous carbon nanospheres as high-performance anodes for potassium-ion batteries, Nano-Micro Lett. 13 (2021) 1–15. doi: 10.1007/s40820-020-00525-y
    [43]
    Y. Wang, C. Wu, Z. Wu, et al., FeP nanorod arrays on carbon cloth: a highperformance anode for sodium-ion batteries, Chem. Commun. 54 (2018) 9341–9344. doi: 10.1039/C8CC03827A
    [44]
    S. Huang, C. Meng, M. Xiao, et al., Pseudocapacitive sodium storage by ferroelectric Sn2P2S6 with layered nanostructure, Small 14 (2018) 1704367. doi: 10.1002/smll.201704367
    [45]
    Y. Noguchi, E. Kobayashi, L.S. Plashnitsa, et al., Fabrication and performances of all solid-state symmetric sodium battery based on Nasicon-related compounds, Electrochim. Acta 101 (2013) 59–65. doi: 10.1016/j.electacta.2012.11.038
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (195) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return