Volume 2 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Xiao Xinxin. The direct use of enzymatic biofuel cells as functional bioelectronics[J]. eScience, 2022, 2(1): 1-9. doi: 10.1016/j.esci.2021.12.005
Citation: Xiao Xinxin. The direct use of enzymatic biofuel cells as functional bioelectronics[J]. eScience, 2022, 2(1): 1-9. doi: 10.1016/j.esci.2021.12.005

The direct use of enzymatic biofuel cells as functional bioelectronics

doi: 10.1016/j.esci.2021.12.005
More Information
  • Corresponding author: Xinxin Xiao xixiao@kemi.dtu.dk
  • Received Date: 2021-10-15
  • Revised Date: 2021-11-25
  • Accepted Date: 2021-12-14
  • Available Online: 2021-12-17
  • Enzymatic biofuel cells (EBFCs) are a subgroup of fuel cells that use enzymes as catalysts. EBFCs that utilize physiological substrates such as glucose or lactate are of great interest as implantable or wearable power sources to activate medical devices. This contribution introduces the working principles of EBFCs and summarizes recent progress in EBFC-enabled biosensors, pulse generators, and therapy. Biosensors with self-powered characteristic enjoy high selectivity, leading to potential “instrument-free” or “expensive-instrument-free” measurement. Autonomous pulse generation is based on the hybrid of EBFC and supercapacitor, which is promising for the application in medical related electrostimulation. By providing the direct electrical stimulation, or controllably releasing drug, EBFCs can also be used for self-powered therapeutic system. The further combination of self-powered sensing and treating enables EBFC as a possible platform of diagnostics and therapeutics. Future efforts can be focused on resolving the limited power density and lifetime of EBFC.
  • ● EBFC can enable instrument-free self-powered biosensing.
    ● The direct use of EBFC leads to various therapeutic systems.
    ● The direct use of enzymatic biofuel cells (EBFCs) as bioelectronics is reviewed.
    ● EBFC can enable autonomous pulse generation.
  • loading
  • [1]
    S. Calabrese Barton, J. Gallaway, P. Atanassov, Enzymatic Biofuel Cells for Implantable and Microscale Devices, Chem. Rev. 104 (2004) 4867-4886 doi: 10.1021/cr020719k
    [2]
    X. Xiao, H.-q. Xia, R. Wu, L. Bai, L. Yan, E. Magner, S. Cosnier, E. Lojou, Z. Zhu, A. Liu, Tackling the Challenges of Enzymatic (Bio)Fuel Cells, Chem. Rev. 119 (2019) 9509-9558 doi: 10.1021/acs.chemrev.9b00115
    [3]
    J. Tang, R. M. L. Werchmeister, L. Preda, W. Huang, Z. Zheng, S. Leimkuhler, U. Wollenberger, X. Xiao, C. Engelbrekt, J. Ulstrup, J. Zhang, Three-Dimensional Sulfite Oxidase Bioanodes Based on Graphene Functionalized Carbon Paper for Sulfite/O2 Biofuel Cells, ACS Catal. 9 (2019) 6543-6554 doi: 10.1021/acscatal.9b01715
    [4]
    A. T. Yahiro, S. M. Lee, D. O. Kimble, Bioelectrochemistry: I. Enzyme Utilizing Bio-Fuel Cell Studies, Biochim. Biophys. Acta 88 (1964) 375-383
    [5]
    S. Shleev, Quo Vadis, Implanted Fuel Cell?, ChemPlusChem 82 (2017) 522-539 doi: 10.1002/cplu.201600536
    [6]
    N. Mano, F. Mao, A. Heller, Characteristics of a Miniature Compartment-less Glucose−O2 Biofuel Cell and Its Operation in a Living Plant, J. Am. Chem. Soc. 125 (2003) 6588-6594 doi: 10.1021/ja0346328
    [7]
    A. Heller, Miniature biofuel cells, Phys. Chem. Chem. Phys. 6 (2004) 209-216 doi: 10.1039/b313149a
    [8]
    P. Cinquin, C. Gondran, F. Giroud, S. Mazabrard, A. Pellissier, F. Boucher, J.-P. Alcaraz, K. Gorgy, F. Lenouvel, S. Mathe, P. Porcu, S. Cosnier, A Glucose Biofuel Cell Implanted in Rats, plos one 5 (2010) e10476 doi: 10.1371/journal.pone.0010476
    [9]
    W. Jia, G. Valdes-Ramirez, A. J. Bandodkar, J. R. Windmiller, J. Wang, Epidermal Biofuel Cells: Energy Harvesting from Human Perspiration, Angew. Chem. Int. Ed. 52 (2013) 7233-7236 doi: 10.1002/anie.201302922
    [10]
    X. Xiao, T. Siepenkoetter, P. O. Conghaile, D. Leech, E. Magner, Nanoporous Gold-Based Biofuel Cells on Contact Lenses, ACS. Appl. Mater. Interfaces 10 (2018) 7107-7116 doi: 10.1021/acsami.7b18708
    [11]
    J. Kim, I. Jeerapan, J. R. Sempionatto, A. Barfidokht, R. K. Mishra, A. S. Campbell, L. J. Hubble, J. Wang, Wearable Bioelectronics: Enzyme-Based Body-Worn Electronic Devices, Acc. Chem. Res. 51 (2018) 2820-2828 doi: 10.1021/acs.accounts.8b00451
    [12]
    L. Yin, J.-M. Moon, J. R. Sempionatto, M. Lin, M. Cao, A. Trifonov, F. Zhang, Z. Lou, J.-M. Jeong, S.-J. Lee, S. Xu, J. Wang, A passive perspiration biofuel cell: High energy return on investment, Joule 5 (2021) 1888-1904 doi: 10.1016/j.joule.2021.06.004
    [13]
    M. Gamella, A. Koushanpour, E. Katz, Biofuel Cells-Activation of Micro- and Macro-Electronic Devices, Bioelectrochem. 119 (2018) 33-42 doi: 10.1016/j.bioelechem.2017.09.002
    [14]
    H. G. Mond, M. Villafana, Celebrating 50 years of the lithium power source for cardiac pacemakers, Heart Rhythm 18 (2021) 491-492 doi: 10.1016/j.hrthm.2020.11.018
    [15]
    K. MacVittie, J. Halamek, L. Halamkova, M. Southcott, W. D. Jemison, R. Lobel, E. Katz, From "Cyborg" Lobsters to a Pacemaker Powered by Implantable Biofuel Cells, Energy Environ. Sci. 6 (2013) 81-86 doi: 10.1039/C2EE23209J
    [16]
    M. Southcott, K. MacVittie, J. Halamek, L. Halamkova, W. D. Jemison, R. Lobel, E. Katz, A Pacemaker Powered by an Implantable Biofuel Cell Operating under Conditions Mimicking the Human Blood Circulatory System - Battery Not Included, Phys. Chem. Chem. Phys. 15 (2013) 6278-6283 doi: 10.1039/c3cp50929j
    [17]
    D. Lee, S. H. Jeong, S. Yun, S. Kim, J. Sung, J. Seo, S. Son, J. T. Kim, L. Susanti, Y. Jeong, S. Park, K. Seo, S. J. Kim, T. D. Chung, Totally implantable enzymatic biofuel cell and brain stimulator operating in bird through wireless communication, Biosens. Bioelectron. 171 (2021) 112746 doi: 10.1016/j.bios.2020.112746
    [18]
    F. Conzuelo, A. Ruff, W. Schuhmann, Self-Powered Bioelectrochemical Devices, Curr Opin Electrochem. (2018) 156-163
    [19]
    X. Xiao, P. O. Conghaile, D. Leech, R. Ludwig, E. Magner, A Symmetric Supercapacitor/Biofuel Cell Hybrid Device Based on Enzyme-Modified Nanoporous Gold: An Autonomous Pulse Generator, Biosens. Bioelectron. 90 (2017) 96-102 doi: 10.1016/j.bios.2016.11.012
    [20]
    X. Xiao, E. Magner, A Quasi-Solid-State and Self-Powered Biosupercapacitor Based on Flexible Nanoporous Gold Electrodes, Chem. Commun. 54 (2018) 5823-5826 doi: 10.1039/C8CC02555J
    [21]
    L. Wang, H. Shao, X. Lu, W. Wang, J.-R. Zhang, R.-B. Song, J.-J. Zhu, A glucose/O2 fuel cell-based self-powered biosensor for probing a drug delivery model with self-diagnosis and self-evaluation, Chem. Sci. 9 (2018) 8482-8491 doi: 10.1039/c8sc04019b
    [22]
    L. Wang, X. Wu, B. S. Q.-w. Su, R. Song, J.-R. Zhang, J.-J. Zhu, Enzymatic Biofuel Cell: Opportunities and Intrinsic Challenges in Futuristic Applications, Adv. Energy Sustainability Res. 2 (2021) 2100031 doi: 10.1002/aesr.202100031
    [23]
    A. J. Bandodkar, J. Wang, Wearable Biofuel Cells: A Review, Electroanalysis 28 (2016) 1188-1200 doi: 10.1002/elan.201600019
    [24]
    E. Katz, K. MacVittie, Implanted Biofuel Cells Operating in vivo - Methods, Applications and Perspectives - Feature Article, Energy Environ. Sci. 6 (2013) 2791-2803 doi: 10.1039/c3ee42126k
    [25]
    A. Zebda, J.-P. Alcaraz, P. Vadgama, S. Shleev, S. D. Minteer, F. Boucher, P. Cinquin, D. K. Martin, Challenges for Successful Implantation of Biofuel Cells, Bioelectrochem. 124 (2018) 57-72 doi: 10.1016/j.bioelechem.2018.05.011
    [26]
    S. Cosnier, A. J. Gross, A. Le Goff, M. Holzinger, Recent Advances on Enzymatic Glucose/Oxygen and Hydrogen/Oxygen Biofuel Cells: Achievements and Limitations, J. Power Sources 325 (2016) 252-263 doi: 10.1016/j.jpowsour.2016.05.133
    [27]
    R. A. Marcus, Electron Transfer Reactions in Chemistry: Theory and Experiment (Nobel Lecture), Angew. Chem. Int. Ed. 32 (1993) 1111-1121 doi: 10.1002/anie.199311113
    [28]
    C. C. Page, C. C. Moser, X. Chen, P. L. Dutton, Natural Engineering Principles of Electron Tunnelling in Biological Oxidation-Reduction, Nature 402 (1999) 47-52 doi: 10.1038/46972
    [29]
    Q. Chi, O. Farver, J. Ulstrup, Long-range protein electron transfer observed at the single-molecule level: In situ mapping of redox-gated tunneling resonance, Proc. Natl. Acad. Sci. 102 (2005) 16203 doi: 10.1073/pnas.0508257102
    [30]
    X. Yan, J. Tang, D. Tanner, J. Ulstrup, X. Xiao, Direct Electrochemical Enzyme Electron Transfer on Electrodes Modified by Self-Assembled Molecular Monolayers, Catalysts 10 (2020) 1458 doi: 10.3390/catal10121458
    [31]
    N. Mano, A. de Poulpiquet, O2 Reduction in Enzymatic Biofuel Cells, Chem. Rev. 118 (2017) 2392-2468
    [32]
    P. N. Bartlett, F. A. Al-Lolage, There is no evidence to support literature claims of direct electron transfer (DET) for native glucose oxidase (GOx) at carbon nanotubes or graphene, J. Electroanal. Chem. 819 (2017) 26-37
    [33]
    X. Xiao, X. Yan, E. Magner, J. Ulstrup, Polymer coating for improved redox-polymer-mediated enzyme electrodes: A mini-review, Electrochem. Commun. 124 (2021) 106931 doi: 10.1016/j.elecom.2021.106931
    [34]
    A. Heller, Electron-Conducting Redox Hydrogels: Design, Characteristics and Synthesis, Curr. Opin. Chem. Biol. 10 (2006) 664-672 doi: 10.1016/j.cbpa.2006.09.018
    [35]
    M. Yuan, S. D. Minteer, Redox polymers in electrochemical systems: From methods of mediation to energy storage, Curr. Opin. Electrochem. 15 (2019) 1-6 doi: 10.1504/ijceell.2019.10018934
    [36]
    I. Mazurenko, V. P. Hitaishi, E. Lojou, Recent advances in surface chemistry of electrodes to promote direct enzymatic bioelectrocatalysis, Curr. Opin. Electrochem. 19 (2020) 113-121 doi: 10.1016/j.coelec.2019.11.004
    [37]
    X. Yan, S. Ma, J. Tang, D. Tanner, J. Ulstrup, X. Xiao, J. Zhang, Direct electron transfer of fructose dehydrogenase immobilized on thiol-gold electrodes, Electrochim. Acta 392 (2021) 138946 doi: 10.1016/j.electacta.2021.138946
    [38]
    J. Tang, X. Yan, W. Huang, C. Engelbrekt, J. OE. Duus, J. Ulstrup, X. Xiao, J. Zhang, Bilirubin oxidase oriented on novel type three-dimensional biocathodes with reduced graphene aggregation for biocathode, Biosens. Bioelectron. 167 (2020) 112500 doi: 10.1016/j.bios.2020.112500
    [39]
    I. Mazurenko, K. Monsalve, J. Rouhana, P. Parent, C. Laffon, A. L. Goff, S. Szunerits, R. Boukherroub, M.-T. Giudici-Orticoni, N. Mano, E. Lojou, How the Intricate Interactions between Carbon Nanotubes and Two Bilirubin Oxidases Control Direct and Mediated O2 Reduction, ACS Appl. Mater. Interfaces 8 (2016) 23074-23085 doi: 10.1021/acsami.6b07355
    [40]
    A. J. Gross, M. Holzinger, S. Cosnier, Buckypaper Bioelectrodes: Emerging Materials for Implantable and Wearable Biofuel Cells, Energy Environ. Sci. 11 (2018) 1670-1687 doi: 10.1039/C8EE00330K
    [41]
    F. Shen, D. Pankratov, A. Halder, X. Xiao, M. D. Toscano, J. Zhang, J. Ulstrup, L. Gorton, Q. Chi, Two-dimensional graphene paper supported flexible enzymatic fuel cells, Nanoscale Adv. 1 (2019) 2562-2570 doi: 10.1039/C9NA00178F
    [42]
    J. Tang, X. Yan, C. Engelbrekt, J. Ulstrup, E. Magner, X. Xiao, J. Zhang, Development of graphene-based enzymatic biofuel cells: A minireview, Bioelectrochemistry 134 (2020) 107537 doi: 10.1016/j.bioelechem.2020.107537
    [43]
    C. Gutierrez-Sanchez, M. Pita, C. Vaz-Dominguez, S. Shleev, A. L. De Lacey, Gold Nanoparticles as Electronic Bridges for Laccase-Based Biocathodes, J. Am. Chem. Soc. 134 (2012) 17212-17220 doi: 10.1021/ja307308j
    [44]
    X. Xiao, P. Si, E. Magner, An Overview of Dealloyed Nanoporous Gold in Bioelectrochemistry, Bioelectrochem. 109 (2016) 117-126 doi: 10.1016/j.bioelechem.2015.12.008
    [45]
    M. J. Moehlenbrock, R. L. Arechederra, K. H. Sjoholm, S. D. Minteer, Analytical Techniques for Characterizing Enzymatic Biofuel Cells, Anal. Chem. 81 (2009) 9538-9545 doi: 10.1021/ac901243s
    [46]
    X. Xiao, E. Magner, A Biofuel Cell in Non-Aqueous Solution, Chem. Commun. 51 (2015) 13478-13480 doi: 10.1039/C5CC04888E
    [47]
    F. Mao, N. Mano, A. Heller, Long Tethers Binding Redox Centers to Polymer Backbones Enhance Electron Transport in Enzyme “Wiring” Hydrogels, J. Am. Chem. Soc. 125 (2003) 4951-4957 doi: 10.1021/ja029510e
    [48]
    E. Katz, A. F. Buckmann, I. Willner, Self-Powered Enzyme-Based Biosensors, J. Am. Chem. Soc. 123 (2001) 10752-10753 doi: 10.1021/ja0167102
    [49]
    M. Grattieri, S. D. Minteer, Self-Powered Biosensors, ACS Sens. 3 (2018) 44-53 doi: 10.1021/acssensors.7b00818
    [50]
    Y. Chen, W. Ji, K. Yan, J. Gao, J. Zhang, Fuel cell-based self-powered electrochemical sensors for biochemical detection, Nano Energy 61 (2019) 173-193 doi: 10.1016/j.nanoen.2019.04.056
    [51]
    P.-P. Gai, Y.-S. Ji, W.-J. Wang, R.-B. Song, C. Zhu, Y. Chen, J.-R. Zhang, J.-J. Zhu, Ultrasensitive self-powered cytosensor, Nano Energy 19 (2016) 541-549 doi: 10.1016/j.nanoen.2015.03.035
    [52]
    H. Liu, R. M. Crooks, Paper-Based Electrochemical Sensing Platform with Integral Battery and Electrochromic Read-Out, Anal. Chem. 84 (2012) 2528-2532 doi: 10.1021/ac203457h
    [53]
    A. Zloczewska, A. Celebanska, K. Szot, D. Tomaszewska, M. Opallo, M. Jonsson-Niedziolka, Self-powered biosensor for ascorbic acid with a Prussian blue electrochromic display, Biosens. Bioelectron. 54 (2014) 455-461 doi: 10.1016/j.bios.2013.11.033
    [54]
    M. A. Pellitero, A. Guimera, M. Kitsara, R. Villa, C. Rubio, B. Lakard, M.-L. Doche, J.-Y. Hihn, F. Javier del Campo, Quantitative self-powered electrochromic biosensors, Chem. Sci. 8 (2017) 1995-2002 doi: 10.1039/C6SC04469G
    [55]
    X. Zhang, L. Zhang, Q. Zhai, W. Gu, J. Li, E. Wang, Self-Powered Bipolar Electrochromic Electrode Arrays for Direct Displaying Applications, Anal. Chem. 88 (2016) 2543-2547 doi: 10.1021/acs.analchem.6b00054
    [56]
    H. Kai, W. Suda, S. Yoshida, M. Nishizawa, Organic electrochromic timer for enzymatic skin patches, Biosens. Bioelectron. 123 (2019) 108-113 doi: 10.1016/j.bios.2018.07.013
    [57]
    T. Hanashi, T. Yamazaki, W. Tsugawa, S. Ferri, D. Nakayama, M. Tomiyama, K. Ikebukuro, K. Sode, BioCapacitor-A Novel Category of Biosensor, Biosens. Bioelectron. 24 (2009) 1837-1842 doi: 10.1016/j.bios.2008.09.014
    [58]
    J. Lv, L. Yin, X. Chen, I. Jeerapan, C. A. Silva, Y. Li, M. Le, Z. Lin, L. Wang, A. Trifonov, S. Xu, S. Cosnier, J. Wang, Wearable Biosupercapacitor: Harvesting and Storing Energy from Sweat, Adv. Funct. Mater. 31 (2021) 2102915 doi: 10.1002/adfm.202102915
    [59]
    L. Zhang, M. Zhou, S. Dong, A Self-Powered Acetaldehyde Sensor Based on Biofuel Cell, Anal. Chem. 84 (2012) 10345-10349 doi: 10.1021/ac302414a
    [60]
    D. Wen, L. Deng, S. Guo, S. Dong, Self-Powered Sensor for Trace Hg2+ Detection, Anal. Chem. 83 (2011) 3968-3972 doi: 10.1021/ac2001884
    [61]
    L. Deng, C. Chen, M. Zhou, S. Guo, E. Wang, S. Dong, Integrated Self-Powered Microchip Biosensor for Endogenous Biological Cyanide, Anal. Chem. 82 (2010) 4283-4287 doi: 10.1021/ac100274s
    [62]
    M. T. Meredith, S. D. Minteer, Inhibition and Activation of Glucose Oxidase Bioanodes for Use in a Self-Powered EDTA Sensor, Anal. Chem. 83 (2011) 5436-5441 doi: 10.1021/ac2011087
    [63]
    Y. Wang, L. Ge, P. Wang, M. Yan, J. Yu, S. Ge, A three-dimensional origami-based immuno-biofuel cell for self-powered, low-cost, and sensitive point-of-care testing, Chem. Commun. 50 (2014) 1947-1949 doi: 10.1039/c3cc47731b
    [64]
    C. Gu, X. Kong, X. Liu, P. Gai, F. Li, Enzymatic Biofuel-Cell-Based Self-Powered Biosensor Integrated with DNA Amplification Strategy for Ultrasensitive Detection of Single-Nucleotide Polymorphism, Anal. Chem. 91 (2019) 8697-8704 doi: 10.1021/acs.analchem.9b02510
    [65]
    C. Gu, L. Bai, L. Pu, P. Gai, F. Li, Highly sensitive and stable self-powered biosensing for exosomes based on dual metal-organic frameworks nanocarriers, Biosens. Bioelectron. 176 (2021) 112907 doi: 10.1016/j.bios.2020.112907
    [66]
    V. S. Mallela, V. Ilankumaran, N. Rao, Trends in Cardiac Pacemaker Batteries, Indian Pacing Electrophys. J. 4 (2004) 201-212
    [67]
    C. Agnes, M. Holzinger, A. Le Goff, B. Reuillard, K. Elouarzaki, S. Tingry, S. Cosnier, Supercapacitor/Biofuel Cell Hybrids Based on Wired Enzymes on Carbon Nanotube Matrices: Autonomous Reloading after High Power Pulses in Neutral Buffered Glucose Solutions, Energy Environ. Sci. 7 (2014) 1884-1888 doi: 10.1039/C3EE43986K
    [68]
    D. Pankratov, Z. Blum, D. B. Suyatin, V. O. Popov, S. Shleev, Self-Charging Electrochemical Biocapacitor, ChemElectroChem 1 (2014) 343-346 doi: 10.1002/celc.201300142
    [69]
    F. Shen, D. Pankratov, G. Pankratova, M. D. Toscano, J. Zhang, J. Ulstrup, Q. Chi, L. Gorton, Supercapacitor/Biofuel Cell Hybrid Device Employing Biomolecules for Energy Conversion and Charge Storage, Bioelectrochem. 128 (2019) 94-99 doi: 10.1016/j.bioelechem.2019.03.009
    [70]
    D. Pankratov, F. Conzuelo, P. Pinyou, S. Alsaoub, W. Schuhmann, S. Shleev, A Nernstian Biosupercapacitor, Angew. Chem. Int. Ed. 55 (2016) 15434-15438 doi: 10.1002/anie.201607144
    [71]
    M. Kizling, S. Draminska, K. Stolarczyk, P. Tammela, Z. Wang, L. Nyholm, R. Bilewicz, Biosupercapacitors for powering oxygen sensing devices, Bioelectrochem. 106, Part A (2015) 34-40
    [72]
    K. L. Knoche, D. P. Hickey, R. D. Milton, C. L. Curchoe, S. D. Minteer, Hybrid Glucose/O2 Biobattery and Supercapacitor Utilizing a Pseudocapacitive Dimethylferrocene Redox Polymer at the Bioanode, ACS Energy Lett. 1 (2016) 380-385 doi: 10.1021/acsenergylett.6b00225
    [73]
    Y. Lee, V. K. Bandari, Z. Li, M. Medina-Sanchez, M. F. Maitz, D. Karnaushenko, M. V. Tsurkan, D. D. Karnaushenko, O. G. Schmidt, Nano-biosupercapacitors enable autarkic sensor operation in blood, Nat. Commun. 12 (2021) 4967 doi: 10.1038/s41467-021-24863-6
    [74]
    H. Kai, T. Yamauchi, Y. Ogawa, A. Tsubota, T. Magome, T. Miyake, K. Yamasaki, M. Nishizawa, Accelerated Wound Healing on Skin by Electrical Stimulation with a Bioelectric Plaster, Adv. Healthc. Mater. 6 (2017) 1700465 doi: 10.1002/adhm.201700465
    [75]
    S. Kusama, K. Sato, Y. Matsui, N. Kimura, H. Abe, S. Yoshida, M. Nishizawa, Transdermal electroosmotic flow generated by a porous microneedle array patch, Nat. Commun. 12 (2021) 658 doi: 10.1038/s41467-021-20948-4
    [76]
    S.-J. Park, K.-H. Kim, W.-Y. Jeon, J. Seo, J.-M. Han, J.-S. Kim, H.-M. Chung, J.-H. Lee, S.-H. Moon, H.-H. Kim, Enzyme catalyzed electrostimulation of human embryonic stem cell-derived cardiomyocytes influence contractility and synchronization, Biochem. Eng. J. 123 (2017) 95-109 doi: 10.1016/j.bej.2017.03.013
    [77]
    W.-Y. Jeon, J.-H. Lee, K. Dashnyam, Y.-B. Choi, T.-H. Kim, H.-H. Lee, H.-W. Kim, H.-H. Kim, Performance of a glucose-reactive enzyme-based biofuel cell system for biomedical applications, Sci. Rep. 9 (2019) 10872 doi: 10.1038/s41598-019-47392-1
    [78]
    M. Zhou, N. Zhou, F. Kuralay, J. R. Windmiller, S. Parkhomovsky, G. Valdes-Ramirez, E. Katz, J. Wang, A Self-Powered “Sense-Act-Treat” System that is Based on a Biofuel Cell and Controlled by Boolean Logic, Angew. Chem. Int. Ed. 51 (2012) 2686-2689 doi: 10.1002/anie.201107068
    [79]
    S. Mailloux, J. Halamek, L. Halamkova, A. Tokarev, S. Minko, E. Katz, Biomolecular Release Triggered by Glucose Input-Bioelectronic Coupling of Sensing and Actuating Systems, Chem. Commun. 49 (2013) 4755-4757 doi: 10.1039/c3cc42027b
    [80]
    S. Mailloux, J. Halamek, E. Katz, A Model System for Targeted Drug Release Triggered by Biomolecular Signals Logically Processed through Enzyme Logic Networks, Analyst 139 (2014) 982-986 doi: 10.1039/c3an02162a
    [81]
    A. V. Okhokhonin, S. Domanskyi, Y. Filipov, M. Gamella, A. N. Kozitsina, V. Privman, E. Katz, Biomolecular release from alginate-modified electrode triggered by chemical inputs processed through a biocatalytic cascade - integration of biomolecular computing and actuation, Electroanalysis 30 (2017) 426-435
    [82]
    P. Bollella, V. K. Kadambar, A. Melman, E. Katz, Reconfigurable Implication and Inhibition Boolean logic gates based on NAD+-dependent enzymes: Application to signal-controlled biofuel cells and molecule release, Electrochem. Sci. Adv. n/a (2021) e2100008
    [83]
    P. Gai, C. Gu, X. Kong, F. Li, Anode-Driven Controlled Release of Cathodic Fuel via pH Response for Smart Enzymatic Biofuel Cell, iScience 23 (2020) 101133 doi: 10.1016/j.isci.2020.101133
    [84]
    Y. Ogawa, K. Kato, T. Miyake, K. Nagamine, T. Ofuji, S. Yoshino, M. Nishizawa, Organic Transdermal Iontophoresis Patch with Built-in Biofuel Cell, Adv. Healthc. Mater. 4 (2015) 506-510 doi: 10.1002/adhm.201400457
    [85]
    X. Xiao, K. Denis McGourty, E. Magner, Enzymatic Biofuel Cells for Self-Powered, Controlled Drug Release, J. Am. Chem. Soc. 142 (2020) 11602-11609 doi: 10.1021/jacs.0c05749
    [86]
    X. Xiao, M. P. Ryan, D. Leech, J. Zhang, E. Magner, Antimicrobial enzymatic biofuel cells, Chem. Commun. 56 (2020) 15589-15592 doi: 10.1039/d0cc07472a
    [87]
    M. J. Kim, H. W. Shin, S. J. Lee, A novel self-powered time-temperature integrator (TTI) using modified biofuel cell for food quality monitoring, Food Control 70 (2016) 167-173 doi: 10.17207/jstc.2016.12.19.4.167
    [88]
    F. Mashayekhi Mazar, J. G. Martinez, M. Tyagi, M. Alijanianzadeh, A. P. F. Turner, E. W. H. Jager, Artificial Muscles Powered by Glucose, Adv. Mater. 31 (2019) 1901677 doi: 10.1002/adma.201901677
    [89]
    S. Kusama, K. Sato, S. Yoshida, M. Nishizawa, Self-Moisturizing Smart Contact Lens Employing Electroosmosis, Adv. Mater. Techno.l 5 (2020) 1900889 doi: 10.1002/admt.201900889
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (96) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return