Citation: | Su Hui, Soldatov Mikhail A., Roldugin Victor, Liu Qinghua. Platinum single-atom catalyst with self-adjustable valence state for large-current-density acidic water oxidation[J]. eScience, 2022, 2(1): 102-109. doi: 10.1016/j.esci.2021.12.007 |
![]() |
![]() |
[1] |
Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Noerskov, T. F. Jaramillo, Combining theory and experiment in electrocatalysis: insights into materials design, Science 355 (2017) eaad4998 doi: 10.1126/science.aad4998
|
[2] |
V. R. Stamenkovic, D. Strmcnik, P. P. Lopes, N. M. Markovic, Energy and fuels from electrochemical interfaces, Nat. Mater. 16 (2017) 57 doi: 10.1038/nmat4738
|
[3] |
B. Kim, M. K. Kabiraz, J. Lee, C. Choi, H. Baik, Y. Jung, H.-S. Oh, S.-I. Choi, K. Lee, Vertical-crystalline Fe-doped β-Ni oxyhydroxides for highly active and stable oxygen evolution reaction, Matter 4 (2021) 1-20 doi: 10.1016/j.matt.2020.12.013
|
[4] |
T. Wang, X. Cao, L. Jiao, Ni2P/NiMoP heterostructure as a bifunctional electrocatalyst for energy saving hydrogen production, eScience 1 (2021) 69-74 doi: 10.1016/j.esci.2021.09.002
|
[5] |
L. C. Seitz, C. F. Dickens, K. Nishio, Y. Hikita, J. Montoya, A. Doyle, C. Kirk, A. Vojvodic, H. Y. Hwang, J. K. Norskov, A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction, Science 353 (2016) 1011-1014 doi: 10.1126/science.aaf5050
|
[6] |
L. Yang, G. Yu, X. Ai, W. Yan, H. Duan, W. Chen, X. Li, T. Wang, C. Zhang, X. Huang, Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers, Nat. Commun. 9 (2018) 5236 doi: 10.1038/s41467-018-07678-w
|
[7] |
H. J. Kim, H. Y. Kim, J. Joo, S. H. Joo, J. S. Lim, J. Lee, H. Huang, M. Shao, J. Hu, J. Y. Kim, Recent advances in non-precious group metal-based catalysts for water electrolysis and beyond, J. Mater. Chem. (2021) DOI: 10.1039/D1TA06548C
|
[8] |
O. Diaz-Morales, S. Raaijman, R. Kortlever, P. J. Kooyman, T. Wezendonk, J. Gascon, W. Fu, M. Koper, Iridium-based double perovskites for efficient water oxidation in acid media, Nat. Commun. 7 (2016) 12363 doi: 10.1038/ncomms12363
|
[9] |
J. Kim, P.-C. Shih, K.-C. Tsao, Y.-T. Pan, X. Yin, C.-J. Sun, H. Yang, High-performance pyrochlore-type yttrium ruthenate electrocatalyst for oxygen evolution reaction in acidic media, J. Am. Chem. Soc. 139 (2017) 12076-12083 doi: 10.1021/jacs.7b06808
|
[10] |
A. Grimaud, A. Demortiere, M. Saubanere, W. Dachraoui, M. Duchamp, M.-L. Doublet, J.-M. Tarascon, Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction, Nat. Energy 2 (2017) 16189 doi: 10.1038/nenergy.2016.189
|
[11] |
C. C. McCrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters, T. F. Jaramillo, Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices, J. Am. Chem. Soc. 137 (2015) 4347-4357 doi: 10.1021/ja510442p
|
[12] |
S. Kumari, B. P. Ajayi, B. Kumar, J. B. Jasinski, M. K. Sunkara, J. M. Spurgeon, A low-noble-metal W1−xIrxO3−δ water oxidation electrocatalyst for acidic media via rapid plasma synthesis, Energy Environ. Sci. 10 (2017) 2432-2440 doi: 10.1039/C7EE02626A
|
[13] |
Y. Lee, J. Suntivich, K. J. May, E. E. Perry, Y. Shao-Horn, Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions, J. Phys. Chem. Lett. 3 (2012) 399-404 doi: 10.1021/jz2016507
|
[14] |
Y. Lin, Z. Tian, L. Zhang, J. Ma, Z. Jiang, B. J. Deibert, R. Ge, L. Chen, Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media, Nat. Commun. 10 (2019) 162 doi: 10.1038/s41467-018-08144-3
|
[15] |
F. Song, X. Hu, Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis, Nat. Commun. 5 (2014) 4477 doi: 10.1038/ncomms5477
|
[16] |
E. A. Paoli, F. Masini, R. Frydendal, D. Deiana, C. Schlaup, M. Malizia, T. W. Hansen, S. Horch, I. E. Stephens, I. Chorkendorff, Oxygen evolution on well-characterized mass-selected Ru and RuO2 nanoparticles, Chem. Sci. 6 (2015) 190-196 doi: 10.1039/C4SC02685C
|
[17] |
N. Danilovic, R. Subbaraman, K. C. Chang, S. H. Chang, Y. Kang, J. Snyder, A. P. Paulikas, D. Strmcnik, Y. T. Kim, D. Myers, Using surface segregation to design stable Ru-Ir oxides for the oxygen evolution reaction in acidic environments, Angew. Chem. Ed. 53 (2014) 14016-14021 doi: 10.1002/anie.201406455
|
[18] |
P. P. Lopes, D. Strmcnik, D. Tripkovic, J. G. Connell, V. Stamenkovic, N. M. Markovic, Relationships between atomic level surface structure and stability/activity of platinum surface atoms in aqueous environments, ACS Catal. 6 (2016) 2536-2544 doi: 10.1021/acscatal.5b02920
|
[19] |
V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. Mayrhofer, C. A. Lucas, G. Wang, P. N. Ross, N. M. Markovic, Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces, Nat. Mater. 6 (2007) 241 doi: 10.1038/nmat1840
|
[20] |
A. Zitolo, V. Goellner, V. Armel, M.-T. Sougrati, T. Mineva, L. Stievano, E. Fonda, F. Jaouen, Identification of catalytic sites for oxygen reduction in iron-and nitrogen-doped graphene materials, Nat. Mater. 14 (2015) 937 doi: 10.1038/nmat4367
|
[21] |
L. Cao, Q. Luo, W. Liu, Y. Lin, X. Liu, Y. Cao, W. Zhang, Y. Wu, J. Yang, T. Yao, Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution, Nat. Catal. 2 (2019) 134 doi: 10.1038/s41929-018-0203-5
|
[22] |
W. Cheng, X. Zhao, H. Su, F. Tang, W. Che, H. Zhang, Q. Liu, Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis, Nat. Energy 4 (2019) 115 doi: 10.1038/s41560-018-0308-8
|
[23] |
J. Liu, M. Jiao, B. Mei, Y. Tong, Y. Li, M. Ruan, P. Song, G. Sun, L. Jiang, Y. Wang, Carbon-supported divacancy-anchored platinum single-atom electrocatalysts with superhigh Pt utilization for the oxygen reduction reaction, Angew. Chem. 131 (2019) 1175-1179 doi: 10.1002/ange.201812423
|
[24] |
H. Su, M. Liu, W. Cheng, X. Zhao, F. Hu, Q. Liu, Heterogeneous single-site synergetic catalysis for spontaneous photocatalytic overall water splitting, J. Mater. Chem. 7 (2019) 11170-11176 doi: 10.1039/c9ta01925a
|
[25] |
H. Su, W. Che, F. Tang, W. Cheng, X. Zhao, H. Zhang, Q. Liu, Valence band engineering via PtII single-atom confinement realizing photocatalytic water splitting, J. Phys. Chem. C 122 (2018) 21108-21114 doi: 10.1021/acs.jpcc.8b03383
|
[26] |
C. C. McCrory, S. Jung, J. C. Peters, T. F. Jaramillo, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction, J. Am. Chem. Soc. 135 (2013) 16977-16987 doi: 10.1021/ja407115p
|
[27] |
Y. Zhao, E. A. Hernandez-Pagan, N. M. Vargas-Barbosa, J. L. Dysart, T. E. Mallouk, A high yield synthesis of ligand-free iridium oxide nanoparticles with high electrocatalytic activity, J. Phys. Chem. Lett. 2 (2011) 402-406 doi: 10.1021/jz200051c
|
[28] |
X. L. Shao, J. S. Zhao, K. L. Zhang, R. Chen, K. Sun, C. J. Chen, K. Liu, L. W. Zhou, J. Y. Wang, C. M. Ma, Two-step reset in the resistance switching of the Al/TiOx/Cu Structure, ACS Appl. Mater. Interfaces 5 (2013) 11265-11270 doi: 10.1021/am403498q
|
[29] |
D. Lin, P. Y. Yuen, Y. Liu, W. Liu, N. Liu, R. H. Dauskardt, Y. Cui, A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus, Adv. Mater. 30 (2018) 1802661 doi: 10.1002/adma.201802661
|
[30] |
J. Sun, S. E. Lowe, L. Zhang, Y. Wang, K. Pang, Y. Wang, Y. Zhong, P. Liu, K. Zhao, Z. Tang, Ultrathin nitrogen-doped holey carbon@graphene bifunctional electrocatalyst for oxygen reduction and evolution reactions in alkaline and acidic media, Angew. Chem. 130 (2018) 16749-16753 doi: 10.1002/ange.201811573
|
[31] |
H. Su, W. Zhou, H. Zhang, W. Zhou, X. Zhao, Y. Li, M. Liu, W. Cheng, Q. Liu, Dynamic evolution of solid-liquid electrochemical interfaces over single-atom active sites, J. Am. Chem. Soc. 142 (2020) 12306-12313 doi: 10.1021/jacs.0c04231
|
[32] |
H. Su, W. Zhou, W. Zhou, Y. Li, L. Zheng, H. Zhang, M. Liu, X. Zhang, X. Sun, Y. Xu, In-situ spectroscopic observation of dynamic coupling oxygen on atomically dispersed iridium electrocatalyst for acidic water oxidation, Nat. Commun. 12 (2021) 6118 doi: 10.1038/s41467-021-26416-3
|
[33] |
L. Guoxing, Z. Jingshan, S. Ke, W. Qiang, W. Ming, Study on mechanical property and thermal stability of in-situ nanocomposites of polyurethane/oxidized graphene, Chin. J. Mater. Res. 28 (2015) 901-908
|
[34] |
O. Zandi, T. W. Hamann, Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy, Nat. Chem. 8 (2016) 778 doi: 10.1038/nchem.2557
|
[35] |
H. Su, X. Zhao, W. Cheng, H. Zhang, Y. Li, W. Zhou, M. Liu, Q. Liu, Hetero-N coordinated Co single sites with high turnover frequency for efficient electrocatalytic oxygen evolution in acid medium, ACS Energy Lett. 4 (2019) 1816-1822 doi: 10.1021/acsenergylett.9b01129
|
[36] |
X. Zheng, B. Zhang, P. De Luna, Y. Liang, R. Comin, O. Voznyy, L. Han, F. P. G. De Arquer, M. Liu, C. T. Dinh, Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption, Nat. Chem. 10 (2018) 149
|
[37] |
Z. Sun, Q. Liu, T. Yao, W. Yan, S. Wei, X-ray absorption fine structure spectroscopy in nanomaterials, Sci. China Mater. 58 (2015) 313-341 doi: 10.1007/s40843-015-0043-4
|
[38] |
X. Liang, L. Shi, Y. Liu, H. Chen, R. Si, W. Yan, Q. Zhang, G. D. Li, L. Yang, X. Zou, Activating inert, nonprecious perovskites with iridium dopants for efficient oxygen evolution reaction under acidic conditions, Angew. Chem. Ed. 58 (2019) 7631-7635 doi: 10.1002/anie.201900796
|
[39] |
K. R. Graham, Y. Yang, J. R. Sommer, A. H. Shelton, K. S. Schanze, J. Xue, J. R. Reynolds, Extended conjugation platinum (II) porphyrins for use in near-infrared emitting organic light emitting diodes, Chem. Mater. 23 (2011) 5305-5312 doi: 10.1021/cm202242x
|
[40] |
Y. Tong, Y. Guo, P. Chen, H. Liu, M. Zhang, L. Zhang, W. Yan, W. Chu, C. Wu, Y. Xie, Spin-state regulation of perovskite cobaltite to realize enhanced oxygen evolution activity, Inside Chem. 3 (2017) 812-821
|