Volume 2 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Su Hui, Soldatov Mikhail A., Roldugin Victor, Liu Qinghua. Platinum single-atom catalyst with self-adjustable valence state for large-current-density acidic water oxidation[J]. eScience, 2022, 2(1): 102-109. doi: 10.1016/j.esci.2021.12.007
Citation: Su Hui, Soldatov Mikhail A., Roldugin Victor, Liu Qinghua. Platinum single-atom catalyst with self-adjustable valence state for large-current-density acidic water oxidation[J]. eScience, 2022, 2(1): 102-109. doi: 10.1016/j.esci.2021.12.007

Platinum single-atom catalyst with self-adjustable valence state for large-current-density acidic water oxidation

doi: 10.1016/j.esci.2021.12.007
More Information
  • Corresponding author: Qinghua Liu qhliu@ustc.edu.cn
  • Received Date: 2021-10-11
  • Revised Date: 2021-11-28
  • Accepted Date: 2021-12-24
  • Available Online: 2021-12-28
  • The design of active acidic oxygen evolution reaction (OER) catalysts is of paramount importance to achieve efficient large-current-density industrial hydrogen fuel production via water electrolysis. Herein, we develop a Pt-based catalyst with high electrochemical activity for the OER in acidic conditions under a large current. We achieve this by modulating the electronic structure of Pt into a high-valence, electron-accessible Pt1(2.4+δ)+ (δ ​= ​0–0.7) state during the reaction. This electron-accessible Pt1(2.4+δ)+ single-site catalyst can effectively maintain a large OER current density of 120 ​mA ​cm−2 for more than 12 ​h in 0.5 ​M ​H2SO4 at a low overpotential of 405 ​mV, and it shows a high mass activity of ∼3350 A gmetal−1 at 10 ​mA ​cm−2 current density and 232 ​mV overpotential. Using in situ synchrotron radiation infrared and X-ray absorption spectroscopies, we directly observe in an experiment that a key (∗O)–Pt1–C2N2 intermediate is produced by the potential-driven structural optimization of square pyramidal Pt1–C2N2 moieties; this highly favors the dissociation of H2O over Pt1(2.4+δ)+ sites and prevents over-oxidation and dissolution of the active sites.
  • ● The Pt1–C2N2 SAC maintains 120 ​mA/cm2 at overpotential of 405 ​mV and delivers a high mass activity of 3350 ​A ​g−1 at 232 ​mV.
    ● A self-modulating valence state of Pt1(2.4+δ)+ (δ ​= ​0–0.7) sites is for effective accessibility of oxo-containing species.
    ● In situ techniques directly detected a self-modulating Pt(2.4+δ)+ site to produce the ∗O for an efficient 4e OER process.
    ● The Pt1–C2N2 moieties were strongly interfacial chemically coupled in the 3D conductive carbon substrate for improved stability.
  • loading
  • eScience-2-1-102.docx
  • [1]
    Z. W. Seh, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Noerskov, T. F. Jaramillo, Combining theory and experiment in electrocatalysis: insights into materials design, Science 355 (2017) eaad4998 doi: 10.1126/science.aad4998
    [2]
    V. R. Stamenkovic, D. Strmcnik, P. P. Lopes, N. M. Markovic, Energy and fuels from electrochemical interfaces, Nat. Mater. 16 (2017) 57 doi: 10.1038/nmat4738
    [3]
    B. Kim, M. K. Kabiraz, J. Lee, C. Choi, H. Baik, Y. Jung, H.-S. Oh, S.-I. Choi, K. Lee, Vertical-crystalline Fe-doped β-Ni oxyhydroxides for highly active and stable oxygen evolution reaction, Matter 4 (2021) 1-20 doi: 10.1016/j.matt.2020.12.013
    [4]
    T. Wang, X. Cao, L. Jiao, Ni2P/NiMoP heterostructure as a bifunctional electrocatalyst for energy saving hydrogen production, eScience 1 (2021) 69-74 doi: 10.1016/j.esci.2021.09.002
    [5]
    L. C. Seitz, C. F. Dickens, K. Nishio, Y. Hikita, J. Montoya, A. Doyle, C. Kirk, A. Vojvodic, H. Y. Hwang, J. K. Norskov, A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction, Science 353 (2016) 1011-1014 doi: 10.1126/science.aaf5050
    [6]
    L. Yang, G. Yu, X. Ai, W. Yan, H. Duan, W. Chen, X. Li, T. Wang, C. Zhang, X. Huang, Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers, Nat. Commun. 9 (2018) 5236 doi: 10.1038/s41467-018-07678-w
    [7]
    H. J. Kim, H. Y. Kim, J. Joo, S. H. Joo, J. S. Lim, J. Lee, H. Huang, M. Shao, J. Hu, J. Y. Kim, Recent advances in non-precious group metal-based catalysts for water electrolysis and beyond, J. Mater. Chem. (2021) DOI: 10.1039/D1TA06548C
    [8]
    O. Diaz-Morales, S. Raaijman, R. Kortlever, P. J. Kooyman, T. Wezendonk, J. Gascon, W. Fu, M. Koper, Iridium-based double perovskites for efficient water oxidation in acid media, Nat. Commun. 7 (2016) 12363 doi: 10.1038/ncomms12363
    [9]
    J. Kim, P.-C. Shih, K.-C. Tsao, Y.-T. Pan, X. Yin, C.-J. Sun, H. Yang, High-performance pyrochlore-type yttrium ruthenate electrocatalyst for oxygen evolution reaction in acidic media, J. Am. Chem. Soc. 139 (2017) 12076-12083 doi: 10.1021/jacs.7b06808
    [10]
    A. Grimaud, A. Demortiere, M. Saubanere, W. Dachraoui, M. Duchamp, M.-L. Doublet, J.-M. Tarascon, Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction, Nat. Energy 2 (2017) 16189 doi: 10.1038/nenergy.2016.189
    [11]
    C. C. McCrory, S. Jung, I. M. Ferrer, S. M. Chatman, J. C. Peters, T. F. Jaramillo, Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices, J. Am. Chem. Soc. 137 (2015) 4347-4357 doi: 10.1021/ja510442p
    [12]
    S. Kumari, B. P. Ajayi, B. Kumar, J. B. Jasinski, M. K. Sunkara, J. M. Spurgeon, A low-noble-metal W1−xIrxO3−δ water oxidation electrocatalyst for acidic media via rapid plasma synthesis, Energy Environ. Sci. 10 (2017) 2432-2440 doi: 10.1039/C7EE02626A
    [13]
    Y. Lee, J. Suntivich, K. J. May, E. E. Perry, Y. Shao-Horn, Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions, J. Phys. Chem. Lett. 3 (2012) 399-404 doi: 10.1021/jz2016507
    [14]
    Y. Lin, Z. Tian, L. Zhang, J. Ma, Z. Jiang, B. J. Deibert, R. Ge, L. Chen, Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media, Nat. Commun. 10 (2019) 162 doi: 10.1038/s41467-018-08144-3
    [15]
    F. Song, X. Hu, Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis, Nat. Commun. 5 (2014) 4477 doi: 10.1038/ncomms5477
    [16]
    E. A. Paoli, F. Masini, R. Frydendal, D. Deiana, C. Schlaup, M. Malizia, T. W. Hansen, S. Horch, I. E. Stephens, I. Chorkendorff, Oxygen evolution on well-characterized mass-selected Ru and RuO2 nanoparticles, Chem. Sci. 6 (2015) 190-196 doi: 10.1039/C4SC02685C
    [17]
    N. Danilovic, R. Subbaraman, K. C. Chang, S. H. Chang, Y. Kang, J. Snyder, A. P. Paulikas, D. Strmcnik, Y. T. Kim, D. Myers, Using surface segregation to design stable Ru-Ir oxides for the oxygen evolution reaction in acidic environments, Angew. Chem. Ed. 53 (2014) 14016-14021 doi: 10.1002/anie.201406455
    [18]
    P. P. Lopes, D. Strmcnik, D. Tripkovic, J. G. Connell, V. Stamenkovic, N. M. Markovic, Relationships between atomic level surface structure and stability/activity of platinum surface atoms in aqueous environments, ACS Catal. 6 (2016) 2536-2544 doi: 10.1021/acscatal.5b02920
    [19]
    V. R. Stamenkovic, B. S. Mun, M. Arenz, K. J. Mayrhofer, C. A. Lucas, G. Wang, P. N. Ross, N. M. Markovic, Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces, Nat. Mater. 6 (2007) 241 doi: 10.1038/nmat1840
    [20]
    A. Zitolo, V. Goellner, V. Armel, M.-T. Sougrati, T. Mineva, L. Stievano, E. Fonda, F. Jaouen, Identification of catalytic sites for oxygen reduction in iron-and nitrogen-doped graphene materials, Nat. Mater. 14 (2015) 937 doi: 10.1038/nmat4367
    [21]
    L. Cao, Q. Luo, W. Liu, Y. Lin, X. Liu, Y. Cao, W. Zhang, Y. Wu, J. Yang, T. Yao, Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution, Nat. Catal. 2 (2019) 134 doi: 10.1038/s41929-018-0203-5
    [22]
    W. Cheng, X. Zhao, H. Su, F. Tang, W. Che, H. Zhang, Q. Liu, Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis, Nat. Energy 4 (2019) 115 doi: 10.1038/s41560-018-0308-8
    [23]
    J. Liu, M. Jiao, B. Mei, Y. Tong, Y. Li, M. Ruan, P. Song, G. Sun, L. Jiang, Y. Wang, Carbon-supported divacancy-anchored platinum single-atom electrocatalysts with superhigh Pt utilization for the oxygen reduction reaction, Angew. Chem. 131 (2019) 1175-1179 doi: 10.1002/ange.201812423
    [24]
    H. Su, M. Liu, W. Cheng, X. Zhao, F. Hu, Q. Liu, Heterogeneous single-site synergetic catalysis for spontaneous photocatalytic overall water splitting, J. Mater. Chem. 7 (2019) 11170-11176 doi: 10.1039/c9ta01925a
    [25]
    H. Su, W. Che, F. Tang, W. Cheng, X. Zhao, H. Zhang, Q. Liu, Valence band engineering via PtII single-atom confinement realizing photocatalytic water splitting, J. Phys. Chem. C 122 (2018) 21108-21114 doi: 10.1021/acs.jpcc.8b03383
    [26]
    C. C. McCrory, S. Jung, J. C. Peters, T. F. Jaramillo, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction, J. Am. Chem. Soc. 135 (2013) 16977-16987 doi: 10.1021/ja407115p
    [27]
    Y. Zhao, E. A. Hernandez-Pagan, N. M. Vargas-Barbosa, J. L. Dysart, T. E. Mallouk, A high yield synthesis of ligand-free iridium oxide nanoparticles with high electrocatalytic activity, J. Phys. Chem. Lett. 2 (2011) 402-406 doi: 10.1021/jz200051c
    [28]
    X. L. Shao, J. S. Zhao, K. L. Zhang, R. Chen, K. Sun, C. J. Chen, K. Liu, L. W. Zhou, J. Y. Wang, C. M. Ma, Two-step reset in the resistance switching of the Al/TiOx/Cu Structure, ACS Appl. Mater. Interfaces 5 (2013) 11265-11270 doi: 10.1021/am403498q
    [29]
    D. Lin, P. Y. Yuen, Y. Liu, W. Liu, N. Liu, R. H. Dauskardt, Y. Cui, A silica-aerogel-reinforced composite polymer electrolyte with high ionic conductivity and high modulus, Adv. Mater. 30 (2018) 1802661 doi: 10.1002/adma.201802661
    [30]
    J. Sun, S. E. Lowe, L. Zhang, Y. Wang, K. Pang, Y. Wang, Y. Zhong, P. Liu, K. Zhao, Z. Tang, Ultrathin nitrogen-doped holey carbon@graphene bifunctional electrocatalyst for oxygen reduction and evolution reactions in alkaline and acidic media, Angew. Chem. 130 (2018) 16749-16753 doi: 10.1002/ange.201811573
    [31]
    H. Su, W. Zhou, H. Zhang, W. Zhou, X. Zhao, Y. Li, M. Liu, W. Cheng, Q. Liu, Dynamic evolution of solid-liquid electrochemical interfaces over single-atom active sites, J. Am. Chem. Soc. 142 (2020) 12306-12313 doi: 10.1021/jacs.0c04231
    [32]
    H. Su, W. Zhou, W. Zhou, Y. Li, L. Zheng, H. Zhang, M. Liu, X. Zhang, X. Sun, Y. Xu, In-situ spectroscopic observation of dynamic coupling oxygen on atomically dispersed iridium electrocatalyst for acidic water oxidation, Nat. Commun. 12 (2021) 6118 doi: 10.1038/s41467-021-26416-3
    [33]
    L. Guoxing, Z. Jingshan, S. Ke, W. Qiang, W. Ming, Study on mechanical property and thermal stability of in-situ nanocomposites of polyurethane/oxidized graphene, Chin. J. Mater. Res. 28 (2015) 901-908
    [34]
    O. Zandi, T. W. Hamann, Determination of photoelectrochemical water oxidation intermediates on haematite electrode surfaces using operando infrared spectroscopy, Nat. Chem. 8 (2016) 778 doi: 10.1038/nchem.2557
    [35]
    H. Su, X. Zhao, W. Cheng, H. Zhang, Y. Li, W. Zhou, M. Liu, Q. Liu, Hetero-N coordinated Co single sites with high turnover frequency for efficient electrocatalytic oxygen evolution in acid medium, ACS Energy Lett. 4 (2019) 1816-1822 doi: 10.1021/acsenergylett.9b01129
    [36]
    X. Zheng, B. Zhang, P. De Luna, Y. Liang, R. Comin, O. Voznyy, L. Han, F. P. G. De Arquer, M. Liu, C. T. Dinh, Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption, Nat. Chem. 10 (2018) 149
    [37]
    Z. Sun, Q. Liu, T. Yao, W. Yan, S. Wei, X-ray absorption fine structure spectroscopy in nanomaterials, Sci. China Mater. 58 (2015) 313-341 doi: 10.1007/s40843-015-0043-4
    [38]
    X. Liang, L. Shi, Y. Liu, H. Chen, R. Si, W. Yan, Q. Zhang, G. D. Li, L. Yang, X. Zou, Activating inert, nonprecious perovskites with iridium dopants for efficient oxygen evolution reaction under acidic conditions, Angew. Chem. Ed. 58 (2019) 7631-7635 doi: 10.1002/anie.201900796
    [39]
    K. R. Graham, Y. Yang, J. R. Sommer, A. H. Shelton, K. S. Schanze, J. Xue, J. R. Reynolds, Extended conjugation platinum (II) porphyrins for use in near-infrared emitting organic light emitting diodes, Chem. Mater. 23 (2011) 5305-5312 doi: 10.1021/cm202242x
    [40]
    Y. Tong, Y. Guo, P. Chen, H. Liu, M. Zhang, L. Zhang, W. Yan, W. Chu, C. Wu, Y. Xie, Spin-state regulation of perovskite cobaltite to realize enhanced oxygen evolution activity, Inside Chem. 3 (2017) 812-821
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (183) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return