Citation: | Liu Yukun, Li Jie, Shen Qiuyu, Zhang Jian, He Pingge, Qu Xuanhui, Liu Yongchang. Advanced characterizations and measurements for sodium-ion batteries with NASICON-type cathode materials[J]. eScience, 2022, 2(1): 10-31. doi: 10.1016/j.esci.2021.12.008 |
[1] |
T. Jin, H.X. Li, K.J. Zhu, P.-F. Wang, P. Liu, L.F. Jiao, Polyanion-type cathode materials for sodium-ion batteries, Chem. Soc. Rev. 49 (2020) 2342-2377 doi: 10.1039/c9cs00846b
|
[2] |
Y. Lu, J. Chen, Prospects of organic electrode materials for practical lithium batteries, Nat. Rev. Chem. 4 (2020) 127-142 doi: 10.1038/s41570-020-0160-9
|
[3] |
C. Yang, S. Xin, L.Q. Mai, Y. You, Materials design for high-safety sodium-ion battery, Adv. Energy Mater. 11 (2021) 2000974 doi: 10.1002/aenm.202000974
|
[4] |
N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries, Chem. Rev. 114 (2014) 11636-11682 doi: 10.1021/cr500192f
|
[5] |
J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Sodium-ion batteries: present and future, Chem. Soc. Rev. 46 (2017) 3529-3614
|
[6] |
P.K. Nayak, L.T. Yang, W. Brehm, P. Adelhelm, From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises, Angew. Chem. Int. Ed. 57 (2018) 102-120 doi: 10.1002/anie.201703772
|
[7] |
Y.C. Liu, X.B. Liu, T.S. Wang, L.-Z. Fan, L.F. Jiao, Research and application progress on key materials for sodium-ion batteries, Sustainable Energy Fules. 1 (2017) 986-1006 doi: 10.1039/C7SE00120G
|
[8] |
Y. Wang, Y.K. Liu, Y.C. Liu, Q.Y. Shen, C.C. Chen, F.Y. Qiu, P. Li, L.F. Jiao, X.H. Qu, Recent advances in electrospun electrode materials for sodium-ion batteries, J. Energy Chem. 54 (2021) 225-241 doi: 10.1016/j.jechem.2020.05.065
|
[9] |
P. Yu, W. Tang, F.-F. Wu, C. Zhang, H.-Y. Luo, H. Liu, Z.-G. Wang, Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: a review, Rare Met. 39 (2020) 1019-1033 doi: 10.1007/s12598-020-01443-z
|
[10] |
Q.Y. Shen, X.D. Zhao, Y.C. Liu, Y.P. Li, J. Zhang, N. Zhang, C.H. Yang, J. Chen, Dual-strategy of cation-doping and nanoengineering enables fast and stable sodium-ion storage in a novel Fe/Mn-based layered oxide cathode, Adv. Sci. 7 (2020) 2002199 doi: 10.1002/advs.202002199
|
[11] |
N. Ortiz-Vitoriano, N.E. Drewett, E. Gonzalo, T. Rojo, High performance manganese-based layered oxide cathodes: overcoming the challenges of sodium ion batteries, Energy Environ. Sci. 10 (2017) 1051-1074 doi: 10.1039/C7EE00566K
|
[12] |
S.H. Guo, P. Liu, H.J. Yu, Y.B. Zhu, M.W. Chen, M. Ishida, H.S. Zhou, A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries, Angew. Chem. Int. Ed. 54 (2015) 5894-5899 doi: 10.1002/anie.201411788
|
[13] |
P.-F. Wang, Y. You, Y.-X. Yin, Y.-S. Wang, L.-J. Wan, L. Gu, Y.-G. Guo, Suppressing the P2-O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries, Angew. Chem. Int. Ed. 55 (2016) 7445-7449 doi: 10.1002/anie.201602202
|
[14] |
Y.C. Liu, Q.Y. Shen, X.D. Zhao, J. Zhang, X.B. Liu, T.S. Wang, N. Zhang, L.F. Jiao, J. Chen, L.-Z. Fan, Hierarchical engineering of porous P2-Na2/3Ni1/3Mn2/3O2 nanofibers assembled by nanoparticles enables superior sodium-ion storage cathodes, Adv. Funct. Mater. 30 (2020) 1907837 doi: 10.1002/adfm.201907837
|
[15] |
Y.-F. Zhu, Y. Xiao, S.-X. Dou, Y.-M. Kang, S.-L. Chou, Spinel/post-spinel engineering on layered oxide cathodes for sodium-ion batteries, eScience 1 (2021) 13–27 doi: 10.1016/j.esci.2021.10.003
|
[16] |
F.F. Wang, N. Zhang, X.D. Zhao, L.X. Wang, J. Zhang, T.S. Wang, F.F. Liu, Y.C. Liu, L.-Z. Fan, Realizing a high-performance Na-storage cathode by tailoring ultrasmall Na2FePO4F nanoparticles with facilitated reaction kinetics, Adv. Sci. 6 (2019) 1900649 doi: 10.1002/advs.201900649
|
[17] |
Y.C. Liu, N. Zhang, F.F. Wang, X.B. Liu, L.F. Jiao, L.-Z. Fan, Approaching the downsizing limit of maricite NaFePO4 toward high-performance cathode for sodium-ion batteries, Adv. Funct. Mater. 28 (2018) 1801917 doi: 10.1002/adfm.201801917
|
[18] |
J. Zhao, X. Yang, Y. Yao, Y. Gao, Y.M. Sui, B. Zou, H. Ehrenberg, G. Chen, F. Du, Moving to aqueous binder: a valid approach to achieving high-rate capability and long-term durability for sodium-ion battery, Adv. Sci. 5 (2018) 1700768 doi: 10.1002/advs.201700768
|
[19] |
R.Liu, S.Y. Zheng, Y.F. Yuan, P.F. Yu, Z.T. Liang, W.M. Zhao, R. Shahbazian-Yassar, J.X. Ding, J. Lu, Y. Yang, Counter-intuitive structural instability aroused by transition metal migration in polyanionic sodium ion host, Adv. Energy Mater. 11 (2020) 2003256
|
[20] |
Y.Z. Jiang, S.L. Yu, B.Q. Wang, Y. Li, W.P. Sun, Y.H. Lu, M. Yan, B. Song, S.-X. Dou, Prussian blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode, Adv. Funct. Mater. 26 (2016) 5315-5321 doi: 10.1002/adfm.201600747
|
[21] |
J.F. Qian, C. Wu, Y.L. Cao, Z.F. Ma, Y.H. Huang, X.P. Ai, H.X. Yang, Prussian blue cathode materials for sodium-ion batteries and other ion batteries, Adv. Energy Mater. 8 (2018) 1702619 doi: 10.1002/aenm.201702619
|
[22] |
W. Luo, M. Allen, V. Raju, X.L. Ji, An organic pigment as a high-performance cathode for sodium-ion batteries, Adv. Energy Mater. 4 (2014) 1400554 doi: 10.1002/aenm.201400554
|
[23] |
Q. Ni, Y. Bai, F. Wu, C. Wu, Polyanion-type electrode materials for sodium-ion batteries, Adv. Sci. 4 (2017) 1600275 doi: 10.1002/advs.201600275
|
[24] |
C. Masquelier, L. Croguennec, Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries, Chem. Rev. 113 (2013) 6552-6591 doi: 10.1021/cr3001862
|
[25] |
Y.J. Fang, J.X. Zhang, L.F. Xiao, X.P. Ai, Y.L. Cao, H.X. Yang, Phosphate framework electrode materials for sodium ion batteries, Adv. Sci. 4 (2017) 1600392 doi: 10.1002/advs.201600392
|
[26] |
Y. You, A. Manthiram, Progress in high-voltage cathode materials for rechargeable sodium-ion batteries, Adv. Energy Mater. 8 (2018) 1701785 doi: 10.1002/aenm.201701785
|
[27] |
P. Barpanda, L. Lander, S.-i. Nishimura, A. Yamada, Polyanionic insertion materials for sodium-ion batteries, Adv. Energy Mater. 8 (2018) 1703055 doi: 10.1002/aenm.201703055
|
[28] |
R. Liu, Z.T. Liang, Z.L. Gong, Y. Yang, Research progress in multielectron reactions in polyanionic materials for sodium-ion batteries, Small Methods 3 (2019) 1800221 doi: 10.1002/smtd.201800221
|
[29] |
X.X. Cao, J. Zhou, A.Q. Pan, S.Q. Liang, Recent advances in phosphate cathode materials for sodium-ion batteries, Acta Phys. Chim. Sin. 36 (2020) 1905018
|
[30] |
H.X. Li, M. Xu, Z.A. Zhang, Y.Q. Lai, J.M. Ma, Engineering of polyanion type cathode materials for sodium-ion batteries: toward higher energy/power density, Adv. Funct. Mater. 30 (2020) 2000473 doi: 10.1002/adfm.202000473
|
[31] |
N. Anantharamulu, K.K. Rao, G. Rambabu, B.V. Kumar, V. Radha, M. Vithal, A wide-ranging review on Nasicon type materials, J. Mater. Sci. 46 (2011) 2821-2837 doi: 10.1007/s10853-011-5302-5
|
[32] |
Z.F. Dai, U. Mani, H.T. Tan, Q.Y. Yan, Advanced cathode materials for sodium-ion batteries: what determines our choices? Small Methods 1 (2017) 1700098 doi: 10.1002/smtd.201700098
|
[33] |
M. Sawicki, L.L. Shaw, Advances and challenges of sodium ion batteries as post lithium ion batteries, RSC Adv. 5 (2015) 53129-53154 doi: 10.1039/C5RA08321D
|
[34] |
Z.L. Jian, Y.-S. Hu, X.L. Ji, W. Chen, NASICON-structured materials for energy storage, Adv. Mater. 29 (2017) 1601925 doi: 10.1002/adma.201601925
|
[35] |
S.Q. Chen, C. Wu, L.F. Shen, C.B. Zhu, Y.Y. Huang, K. Xi, J. Maier, Y. Yu, Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries, Adv. Mater. 29 (2017) 1700431 doi: 10.1002/adma.201700431
|
[36] |
X.H. Rui, W.P. Sun, C. Wu, Y. Yu, Q.Y. Yan, An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network, Adv. Mater. 27 (2015) 6670-6676 doi: 10.1002/adma.201502864
|
[37] |
Q. Liu, X. Meng, Z.X. Wei, D.X. Wang, Y. Gao, Y.J. Wei, F. Du, G. Chen, Core/double-shell structured Na3V2(PO4)2F3@C nanocomposite as the high power and long lifespan cathode for sodium-ion batteries, ACS Appl. Mater. Interfaces 8 (2016) 31709-31715 doi: 10.1021/acsami.6b11372
|
[38] |
J.X. Zhang, Y.J. Fang, L.F. Xiao, J.F. Qian, Y.L. Cao, X.P. Ai, H.X. Yang, Graphene-scaffolded Na3V2(PO4)3 microsphere cathode with high rate capability and cycling stability for sodium ion batteries, ACS Appl. Mater. Interfaces 9 (2017) 7177-7184 doi: 10.1021/acsami.6b16000
|
[39] |
E.H. Wang, M.Z. Chen, X.H. Liu, Y.M. Liu, H.P. Guo, Z.G. Wu, W. Xiang, B.H. Zhong, X.D. Guo, S.L. Chou, S.-X. Dou, Organic cross-linker enabling a 3D porous skeleton-supported Na3V2(PO4)3/carbon composite for high power sodium-ion battery cathode, Small Methods 3 (2019) 1800169 doi: 10.1002/smtd.201800169
|
[40] |
Y.J. Fang, L.F. Xiao, X.P. Ai, Y.L. Cao, H.X. Yang, Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries, Adv. Mater. 27 (2015) 5895-5900 doi: 10.1002/adma.201502018
|
[41] |
W.H. Ren, Z.P. Zheng, C. Xu, C.J. Niu, Q.L. Wei, Q.Y. An, K.N. Zhao, M.Y. Yan, M.S. Qin, L.Q. Mai, Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium ion full batteries, Nano Energy 25 (2016) 145-153 doi: 10.1016/j.nanoen.2016.03.018
|
[42] |
H. Li, H.M. Tang, C.Z. Ma, Y. Bai, J. Alvarado, B. Radhakrishnan, S.P. Ong, F. Wu, Y.S. Meng, C. Wu, Understanding the electrochemical mechanisms induced by gradient Mg2+ distribution of Na-rich Na3+xV2-xMgx(PO4)3/C for sodium ion batteries, Chem. Mater. 30 (2018) 2498-2505 doi: 10.1021/acs.chemmater.7b03903
|
[43] |
J. Zhang, Y.C. Liu, X.D. Zhao, L.H. He, H. Liu, Y.Z. Song, S.D. Sun, Q. Li, X.R. Xing, J. Chen, A novel NASICON-type Na4MnCr(PO4)3 demonstrating the energy density record of phosphate cathodes for sodium-ion batteries, Adv. Mater. 32 (2020) 1906348 doi: 10.1002/adma.201906348
|
[44] |
S.C. Yu, Z.G. Liu, H. Tempel, H. Kungl, R.-A. Eichel, Self-standing NASICON-type electrodes with high mass loading for fast-cycling all-phosphate sodium-ion batteries, J. Mater. Chem. A 6 (2018) 18304-18317 doi: 10.1039/c8ta07313a
|
[45] |
C.L. Xu, J.M. Zhao, E.H. Wang, X.H. Liu, X. Shen, X.H. Rong, Q. Zheng, G.X. Ren, N. Zhang, X.S. Liu, X.D. Guo, C. Yang, H.Z. Liu, B.H. Zhong, Y.-S. Hu, A novel NASICON-typed Na4VMn0.5Fe0.5(PO4)3 cathode for high-performance Na-ion battteries, Adv. Energy Mater. 11 (2021) 2100729 doi: 10.1002/aenm.202100729
|
[46] |
J.R. Hou, M. Hadouchi, L.J. Sui, J. Liu, M.X. Tang, W.H. Kan, M. Avdeev, G.M. Zhong, Y.-K. Liao, Y.-H. Lai, Y.-H. Chu, H.-J. Lin, C.-T. Chen, Z.W. Hu, Y.H. Huang, J.W. Ma, Unlocking fast and reversible sodium intercalation in NASICON Na4MnV(PO4)3 by fluorine substitution, Energy Storage Mater. 42 (2021) 307-316 doi: 10.1016/j.ensm.2021.07.040
|
[47] |
K. Chayambuka, G. Mulder, D.L. Danilov, P.H.L. Notten, Sodium-ion battery materials and electrochemical properties reviewed, Adv. Energy Mater. 8 (2018) 1800079 doi: 10.1002/aenm.201800079
|
[48] |
G.X. Chen, Q. Huang, T. Wu, L. Lu, Polyanion sodium vanadium phosphate for next generation of sodium-ion batteries-a review, Adv. Funct. Mater. 30 (2020) 2001289 doi: 10.1002/adfm.202001289
|
[49] |
H.J. Yu, S.H. Guo, Y.B. Zhu, M. Ishida, H.S. Zhou, Novel titanium-based O3-type NaTi0.5Ni0.5O2 as a cathode material for sodium ion batteries, Chem. Commun. 50 (2014) 457-459 doi: 10.1039/C3CC47351A
|
[50] |
Z.L. Jian, C.C. Yuan, W.Z. Han, X. Lu, L. Gu, X.K. Xi, Y.-S. Hu, H. Li, W. Chen, D.F. Chen, Y.C. Ikuhara, L.Q. Chen, Atomic structure and kinetics of NASICON NaxV2(PO4)3 cathode for sodium-ion batteries, Adv. Funct. Mater. 24 (2014) 4265-4272 doi: 10.1002/adfm.201400173
|
[51] |
C.P. Grey, J.M. Tarascon, Sustainability and in situ monitoring in battery development, Nat. Mater. 16 (2017) 45-56 doi: 10.1038/nmat4777
|
[52] |
X.J. Wei, X.P. Wang, Q.Y. An, C.H. Han, L.Q. Mai, Operando X-ray diffraction characterization for understanding the intrinsic electrochemical mechanism in rechargeable battery materials, Small Methods 1 (2017) 1700083 doi: 10.1002/smtd.201700083
|
[53] |
S.Y. Lim, H. Kim, R.A. Shakoor, Y. Jung, J.W. Choi, Electrochemical and thermal properties of NASICON structured Na3V2(PO4)3 as a sodium rechargeable battery cathode: a combined experimental and theoretical study, J. Electrochem. Soc. 159 (2012) A1393-A1397 doi: 10.1149/2.015209jes
|
[54] |
Z.L. Jian, W.Z. Han, X. Lu, H.X. Yang, Y.-S. Hu, J. Zhou, Z.B. Zhou, J.Q. Li, W. Chen, D.F. Chen, L.Q. Chen, Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries, Adv. Energy Mater. 3 (2013) 156-160 doi: 10.1002/aenm.201200558
|
[55] |
G.B. Zhang, T.F. Xiong, M.Y. Yan, Y.N. Xu, W.H. Ren, X. Xu, Q.L. Wei, L.Q. Mai, In operando probing of sodium-incorporation in NASICON nanomaterial: asymmetric reaction and electrochemical phase diagram, Chem. Mater. 29 (2017) 8057-8064 doi: 10.1021/acs.chemmater.7b00957
|
[56] |
F. Lalere, V. Seznec, M. Courty, R. David, J.N. Chotard, C. Masquelier, Improving the energy density of Na3V2(PO4)3-based positive electrodes through V/Al substitution, J. Mater. Chem. A 3 (2015) 16198-16205 doi: 10.1039/C5TA03528G
|
[57] |
A. Inoishi, Y. Yoshioka, L.W. Zhao, A. Kitajou, S. Okada, Improvement in the energy density of Na3V2(PO4)3 by Mg Substitution, ChemElectroChem 4 (2017) 2755-2759 doi: 10.1002/celc.201700540
|
[58] |
F. Chen, V.M. Kovrugin, R. David, O. Mentre, F. Fauth, J.-N. Chotard, C. Masquelier, A NASICON-type positive electrode for Na batteries with high energy density: Na4MnV(PO4)3, Small Methods 3 (2019) 1800218 doi: 10.1002/smtd.201800218
|
[59] |
H.X. Li, T. Jin, X.B. Chen, Y.Q. Lai, Z.A. Zhang, W.Z. Bao, L.F. Jiao, Rational architecture design enables superior Na storage in greener NASICON-Na4MnV(PO4)3 cathode, Adv. Energy Mater. 8 (2018) 1801418 doi: 10.1002/aenm.201801418
|
[60] |
D.X. Wang, X.F. Bie, Q. Fu, D. Dixon, N. Bramnik, Y.-S. Hu, F. Fauth, Y.J. Wei, H. Ehrenberg, G. Chen, F. Du, Sodium vanadium titanium phosphate electrode for symmetric sodium-ion batteries with high power and long lifespan, Nat. Commun. 8 (2017) 15888 doi: 10.1038/ncomms15888
|
[61] |
F. Lalere, V. Seznec, M. Courty, J.N. Chotard, C. Masquelier, Coupled X-ray diffraction and electrochemical studies of the mixed Ti/V-containing NASICON: Na2TiV(PO4)3, J. Mater. Chem. A 6 (2018) 6654-6659 doi: 10.1039/C7TA10689K
|
[62] |
X. Li, Y.Y. Huang, J.S. Wang, L. Miao, Y.Y. Li, Y. Liu, Y.G. Qiu, C. Fang, J.T. Han, Y.H. Huang, High valence Mo-doped Na3V2(PO4)3/C as a high rate and stable cycle-life cathode for sodium battery, J. Mater. Chem. A 6 (2018) 1390-1396 doi: 10.1039/C7TA08970H
|
[63] |
T. Zhu, P. Hu, X.P. Wang, Z.H. Liu, W. Luo, K.A. Owusu, W.W. Cao, C.W. Shi, J.T. Li, L. Zhou, L.Q. Mai, Realizing three-electron redox reactions in NASICON-structured Na3MnTi(PO4)3 for sodium-ion batteries, Adv. Energy Mater. 9 (2019) 1803436 doi: 10.1002/aenm.201803436
|
[64] |
J.Y. Wang, Y. Wang, D.-H. Seo, T. Shi, S.P. Chen, Y.S. Tian, H. Kim, G. Ceder, A high-energy NASICON-type cathode material for Na-ion batteries, Adv. Energy Mater. 10 (2020) 1903968 doi: 10.1002/aenm.201903968
|
[65] |
X.Q. Yu, H.L. Pan, W. Wan, C. Ma, J.M. Bai, Q.P. Meng, S.N. Ehrlich, Y.-S. Hu, X.-Q. Yang, A size-dependent sodium storage mechanism in Li4Ti5O12 investigated by a novel characterization technique combining in situ X-ray diffraction and chemical sodiation, Nano Lett. 13 (2013) 4721-4727 doi: 10.1021/nl402263g
|
[66] |
J.-N. Chotard, G. Rousse, R. David, O. Mentre, M. Courty, C. Masquelier, Discovery of a sodium-ordered form of Na3V2(PO4)3 below ambient temperature, Chem. Mater. 27 (2015) 5982-5987 doi: 10.1021/acs.chemmater.5b02092
|
[67] |
R. Liu, G.L. Xu, Q. Li, S.Y. Zheng, G.R. Zheng, Z.L. Gong, Y.X. Li, E. Kruskop, R.Q. Fu, Z.H. Chen, K. Amine, Y. Yang, Exploring highly reversible 1.5-electron reactions (V3+/V4+/V5+) in Na3VCr(PO4)3 cathode for sodium-ion batteries, ACS Appl. Mater. Interfaces 9 (2017) 43632-43639 doi: 10.1021/acsami.7b13018
|
[68] |
M. Bianchini, F. Fauth, N. Brisset, F. Weill, E. Suard, C. Masquelier, L. Croguennec, Comprehensive investigation of the Na3V2(PO4)2F3-NaV2(PO4)2F3 system by operando high resolution synchrotron X-ray diffraction, Chem. Mater. 27 (2015) 3009-3020 doi: 10.1021/acs.chemmater.5b00361
|
[69] |
R. Muruganantham, Y.-T. Chiu, C.-C. Yang, C.-W. Wang, W.-R. Liu, An efficient evaluation of F-doped polyanion cathode materials with long cycle life for Na-ion batteries applications, Sci. Rep. 7 (2017) 14808 doi: 10.1038/s41598-017-13718-0
|
[70] |
X.H. Liu, G.L. Feng, E.H. Wang, H. Chen, Z.G. Wu, W. Xiang, Y.J. Zhong, Y.X. Chen, X.D. Guo, B.H. Zhong, Insight into preparation of Fe-doped Na3V2(PO4)3@C from aspects of particle morphology design, crystal structure modulation, and carbon graphitization regulation, ACS Appl. Mater. Interfaces 11 (2019) 12421-12430 doi: 10.1021/acsami.8b21257
|
[71] |
M. Hadouchi, N. Yaqoob, P. Kaghazchi, M.X. Tang, J. Liu, P.F. Sang, Y.Z. Fu, Y. H. Huang, J. W. Ma, Fast sodium intercalation in Na3.41£0.59FeV(PO4)3 pound: a novel sodium-deficient NASICON cathode for sodium-ion batteries, Energy Storage Mater. 35 (2021) 192-202 doi: 10.1016/j.ensm.2020.11.010
|
[72] |
Z.G. Liu, Y.-Y. Hu, M.T. Dunstan, H. Huo, X.G. Hao, H. Zou, G.M. Zhong, Y. Yang, C.P. Grey, Local structure and dynamics in the Na ion battery positive electrode material Na3V2(PO4)2F3, Chem. Mater. 26 (2014) 2513-2521 doi: 10.1021/cm403728w
|
[73] |
X.S. Liu, Z.T. Liang, Y.X. Xiang, M. Lin, Q. Li, Z.G. Liu, G.M. Zhong, R.Q. Fu, Y. Yang, Solid-state NMR and MRI spectroscopy for Li/Na batteries: materials, interface, and in situ characterization, Adv. Mater. (2021) 2005878 doi: 10.1002/adma.202005878
|
[74] |
Y.F. Deng, S.Y. Dong, Z.F. Li, H. Jiang, X.G. Zhang, X.L. Ji, Applications of conventional vibrational spectroscopic methods for batteries beyond Li-ion, Small Methods 2 (2018) 1700332 doi: 10.1002/smtd.201700332
|
[75] |
V. Stancovski, S. Badilescu, In situ Raman spectroscopic-electrochemical studies of lithium-ion battery materials: a historical overview, J. Appl. Electrochem. 44 (2014) 23-43 doi: 10.1007/s10800-013-0628-0
|
[76] |
R. Rajagopalan, B. Chen, Z.C. Zhang, X.-L. Wu, Y.H. Du, Y. Huang, B. Li, Y. Zong, J. Wang, G.-H. Nam, M. Sindoro, S.X. Dou, H.K. Liu, H. Zhang, Improved reversibility of Fe3+/Fe4+ redox couple in sodium super ion conductor type Na3Fe2(PO4)3 for sodium-ion batteries, Adv. Mater. 29 (2017) 1605694 doi: 10.1002/adma.201605694
|
[77] |
H. Bih, L. Bih, B. Manoun, M. Azdouz, S. Benmokhtar, P. Lazor, Raman spectroscopic study of the phase transitions sequence in Li3Fe2(PO4)3 and Na3Fe2(PO4)3 at high temperature, J. Mol. Struct. 936 (2009) 147-155 doi: 10.1016/j.molstruc.2009.07.035
|
[78] |
I.A. Trussov, L.L. Male, M.L. Sanjuan, A. Orera, P.R. Slater, Understanding the complex structural features and phase changes in Na2Mg2(SO4)3: a combined single crystal and variable temperature powder diffraction and Raman spectroscopy study, J. Solid State Chem. 272 (2019) 157-165 doi: 10.1016/j.jssc.2019.02.014
|
[79] |
S.D. Findlay, N. Shibata, H. Sawada, E. Okunishi, Y. Kondo, T. Yamamoto, Y. Ikuhara, Robust atomic resolution imaging of light elements using scanning transmission electron microscopy, Appl. Phys. Lett. 95 (2009) 191913 doi: 10.1063/1.3265946
|
[80] |
W.D. Zhou, L.G. Xue, X.J. Lu, H.C. Gao, Y.T. Li, S. Xin, G.T. Fu, Z.M. Cui, Y. Zhu, J.B. Goodenough, NaxMV(PO4)3 (M = Mn, Fe, Ni) structure and properties for sodium extraction, Nano Lett. 16 (2016) 7836-7841 doi: 10.1021/acs.nanolett.6b04044
|
[81] |
M.-Y. Wang, J.-Z. Guo, Z.-W. Wang, Z.-Y. Gu, X.-J. Nie, X. Yang, X.-L. Wu, Isostructural and multivalent anion substitution toward improved phosphate cathode materials for sodium-ion batteries, Small 16 (2020) 1907645 doi: 10.1002/smll.201907645
|
[82] |
H.X. Li, M. Xu, C.H. Gao, W. Zhang, Z.A. Zhang, Y.Q. Lai, L.F. Jiao, Highly efficient, fast and reversible multi-electron reaction of Na3MnTi(PO4)3 cathode for sodium-ion batteries, Energy Storage Mater. 26 (2020) 325-333 doi: 10.1016/j.ensm.2019.11.004
|
[83] |
L.S. Plashnitsa, E. Kobayashi, Y. Noguchi, S. Okada, J.-i. Yamaki, Performance of NASICON symmetric cell with ionic liquid electrolyte, J. Electrochem. Soc. 157 (2010) A536-A543 doi: 10.1149/1.3298903
|
[84] |
P. Senguttuvan, G. Rousse, M.E.A.Y. de Dompablo, H. Vezin, J.-M. Tarascon, M.R. Palacin, Low-potential sodium insertion in a NASICON-type structure through the Ti(III)/Ti(II) redox couple, J. Am. Chem. Soc. 135 (2013) 3897-3903 doi: 10.1021/ja311044t
|
[85] |
Q.Y. Shen, Y.C. Liu, L.F. Jiao, X.H. Qu, J. Chen, Current state-of-the-art characterization techniques for probing the layered oxide cathode materials of sodium-ion batteries, Energy Storage Mater. 35 (2021) 400-430 doi: 10.1016/j.ensm.2020.11.002
|
[86] |
Y.J. Zhao, X.W. Gao, H.C. Gao, A. Dolocan, J.B. Goodenough, Elevating energy density for sodium-ion batteries through multielectron reactions, Nano Lett. 21 (2021) 2281-2287 doi: 10.1021/acs.nanolett.1c00100
|
[87] |
A. Knop-Gericke, E. Kleimenov, M. Havecker, R. Blume, D. Teschner, S. Zafeiratos, R. Schlogl, V.I. Bukhtiyarov, V.V. Kaichev, I.P. Prosvirin, A.I. Nizovskii, H. Bluhm, A. Barinov, P. Dudin, M. Kiskinova, X-ray photoelectron spectroscopy for investigation of heterogeneous catalytic processes, Adv. Catal. 52 (2009) 213-272
|
[88] |
L.N. Bi, X.Y. Li, X.Q. Liu, Q.J. Zheng, D.M. Lin, Enhanced cycling stability and rate capability in a La-doped Na3V2(PO4)3/C cathode for high-performance sodium ion batteries, ACS Sustain. Chem. Eng. 7 (2019) 7693-7699 doi: 10.1021/acssuschemeng.8b06385
|
[89] |
K. Saravanan, C.W. Mason, A. Rudola, K.H. Wong, P. Balaya, The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries, Adv. Energy Mater. 3 (2013) 444-450 doi: 10.1002/aenm.201200803
|
[90] |
M.J. Aragon, P. Lavela, G.F. Ortiz, J.L. Tirado, Benefits of chromium substitution in Na3V2(PO4)3 as a potential candidate for sodium-ion batteries, ChemElectroChem 2 (2015) 995-1002 doi: 10.1002/celc.201500052
|
[91] |
W. Zhang, H.X. Li, Z.A. Zhang, M. Xu, Y.Q. Lai, S.-L. Chou, Full ativation of Mn4+/Mn3+ redox in Na4MnCr(PO4)3 as a high-voltage and high-rate cathode material for sodium-ion batteries, Small 16 (2020) 2001524 doi: 10.1002/smll.202001524
|
[92] |
G.G. Eshetu, T. Diemant, M. Hekmatfar, S. Grugeon, R.J. Behm, S. Laruelle, M. Armand, S. Passerini, Impact of the electrolyte salt anion on the solid electrolyte interphase formation in sodium ion batteries, Nano Energy 55 (2019) 327-340 doi: 10.1016/j.nanoen.2018.10.040
|
[93] |
M.Y. Ma, H.R. Cai, C.L. Xu, R.Z. Huang, S.R. Wang, H.L. Pan, Y.-S. Hu, Engineering solid electrolyte interface at nano-scale for high-performance hard carbon in sodium-ion batteries, Adv. Funct. Mater. 31 (2021) 2100278 doi: 10.1002/adfm.202100278
|
[94] |
A. Ponrouch, R. Dedryvere, D. Monti, A.E. Demet, J.M.A. Mba, L. Croguennec, C. Masquelier, P. Johansson, M.R. Palacin, Towards high energy density sodium ion batteries through electrolyte optimization, Energy Environ. Sci. 6 (2013) 2361-2369 doi: 10.1039/c3ee41379a
|
[95] |
D. Burova, I. Shakhova, P. Morozova, A. Larchuk, O.A. Drozhzhin, M.G. Rozova, S. Praneetha, V. Murugan, J.-M. Tarascon, A.M. Abakumov, The rapid microwave-assisted hydrothermal synthesis of NASICON-structured Na3V2Ox(PO4)2Fx (0 < x ≤ 1) cathode materials for Na-ion batteries, RSC Adv. 9 (2019) 19429-19440 doi: 10.1039/c9ra02257k
|
[96] |
M.Z. Chen, W.B. Hua, J. Xiao, D. Cortie, X.D. Guo, E.H. Wang, Q.F. Gu, Z. Hu, S. Indris, X.-L. Wang, S.-L. Chou, S.-X. Dou, Development and investigation of a NASICON-type high-voltage cathode material for high-power sodium-ion batteries, Angew. Chem., Int. Ed. 59 (2020) 2449-2456 doi: 10.1002/anie.201912964
|
[97] |
E. Talaie, P. Bonnick, X.Q. Sun, Q. Pang, X. Liang, L.F. Nazar, Methods and protocols for electrochemical energy storage materials research, Chem. Mater. 29 (2017) 90-105 doi: 10.1021/acs.chemmater.6b02726
|
[98] |
M. Pivko, I. Arcon, M. Bele, R. Dominko, M. Gaberscek, A3V2(PO4)3 (A = Na or Li) probed by in situ X-ray absorption spectroscopy, J. Power Sources 216 (2012) 145-151 doi: 10.1016/j.jpowsour.2012.05.037
|
[99] |
M.Z. Chen, W.B. Hua, J. Xiao, J.L. Zhang, V.W. Lau, M. Park, G.-H. Lee, S. Lee, W.L. Wang, J. Peng, L. Fang, L.M. Zhou, C.-K. Chang, Y. Yamauchi, S.L. Chou, Y.-M. Kang, Activating a multielectron reaction of NASICON-structured cathodes toward high energy density for sodium-ion batteries, J. Am. Chem. Soc. 143 (2021) 18091-18102 doi: 10.1021/jacs.1c06727
|
[100] |
S. Ghosh, N. Barman, M. Mazumder, S.K. Pati, G. Rousse, P. Senguttuvan, High capacity and high-rateNASICON-Na3.75V1.25Mn0.75(PO4)3 cathode for Na-ion batteries via modulating electronic and crystal structures, Adv. Energy Mater. 10 (2020) 1902918 doi: 10.1002/aenm.201902918
|
[101] |
K. Kawai, W.W. Zhao, S.-i. Nishimura, A. Yamada, High-voltage Cr4+/Cr3+ redox couple in polyanion compounds, ACS Appl. Energy Mater. 1 (2018) 928-931 doi: 10.1021/acsaem.7b00105
|
[102] |
K. Kawai, D. Asakura, S.-i. Nishimura, A. Yamada, Stabilization of a 4.5 V Cr4+/Cr3+ redox reaction in NASICON-type Na3Cr2(PO4)3 by Ti substitution, Chem. Commun. 55 (2019) 13717-13720 doi: 10.1039/c9cc04860j
|
[103] |
C.L. Zhao, Y.X. Lu, Y.M. Li, L.W. Jiang, X.H. Rong, Y.-S. Hu, H. Li, L.Q. Chen, Novel methods for sodium-ion battery materials, Small Methods 1 (2017) 1600063 doi: 10.1002/smtd.201600063
|
[104] |
S.C. Chung, J. Ming, L. Lander, J.C. Lu, A. Yamada, Rhombohedral NASICON-type NaxFe2(SO4)3 for sodium ion batteries: comparison with phosphate and alluaudite phases, J. Mater. Chem. A. 6 (2018) 3919-3925 doi: 10.1039/C7TA08606G
|
[105] |
S. Park, J.-N. Chotard, D. Carlier, I. Moog, M. Courty, M. Duttine, F. Fauth, A. Iadecola, L. Croguennec, C. Masquelier, Crystal structures and local environments of NASICON-type Na3FeV(PO4)3 and Na4FeV(PO4)3 positive electrode materials for Na-ion batteries, Chem. Mater. 33 (2021) 5355-5367 doi: 10.1021/acs.chemmater.1c01457
|
[106] |
G.J. Cui, Q.Y. Dong, Z.Z. Wang, X-Z. Liao, S.Q. Yuan, M.D. Jiang, Y.B. Shen, H. Wang, H.Y. Che, Y-S. He, Z-F. Ma, Achieving highly reversible and fast sodium storage of Na4VMn(PO4)3/C-rGO composite with low-fraction rGO via spray-drying technique, Nano Energy 89 (2021) 106462 doi: 10.1016/j.nanoen.2021.106462
|
[107] |
W. Weppner, R.A. Huggins, Electrochemical methods for determining kinetic properties of solids, Annu. Rev. Mater. Sci. 8 (1978) 269-311 doi: 10.1146/annurev.ms.08.080178.001413
|
[108] |
W. Weppner, R.A. Huggins, Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb, J. Electrochem. Soc. 124 (1977) 1569 doi: 10.1149/1.2133112
|
[109] |
C.J. Wen, B.A. Boukamp, R.A. Huggins, W. Weppner, Thermodynamic and mass transport properties of ''LiAl",J.Electrochem .Soc. 126( 1979 )2258 doi: 10.1149/1.2128939
|
[110] |
X.H. Rui, N. Ding, J. Liu, C. Li, C.H. Chen, Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material, Electrochim. Acta 55 (2010) 2384-2390 doi: 10.1016/j.electacta.2009.11.096
|
[111] |
K. Tang, X.Q. Yu, J.P. Sun, H. Li, X.J. Huang, Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS, Electrochim. Acta 56 (2011) 4869-4875 doi: 10.1016/j.electacta.2011.02.119
|
[112] |
N. Bockenfeld, A. Balducci, Determination of sodium ion diffusion coefficients in sodium vanadium phosphate, J. Solid State Electrochem. 18 (2014) 959-964 doi: 10.1007/s10008-013-2342-6
|
[113] |
M.Z. Chen, W.B. Hua, J. Xiao, D. Cortie, W.H. Chen, E.H. Wang, Z. Hu, Q.F. Gu, X.L. Wang, S. Indris, S.-L. Chou, S.-X. Dou, NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density, Nat. Commun. 10 (2019) 1480 doi: 10.1038/s41467-019-09170-5
|
[114] |
H.B. Yahia, R. Essehli, R. Amin, K. Boulahya, T. Okumura, I. Belharouak, Sodium intercalation in the phosphosulfate cathode NaFe2(PO4)(SO4)2, J. Power Sources 382 (2018) 144-151 doi: 10.1016/j.jpowsour.2018.02.021
|
[115] |
W.X. Song, X.Y. Cao, Z.P. Wu, J. Chen, Y.R. Zhu, H.S. Hou, Q. Lan, X.B. Ji, Investigation of the sodium ion pathway and cathode behavior in Na3V2(PO4)2F3 combined via a first principles calculation, Langmuir. 30 (2014) 12438-12446 doi: 10.1021/la5025444
|
[116] |
X.M. Ma, X.X. Cao, Y.F. Zhou, S. Guo, X.D. Shi, G.Z. Fang, A.Q. Pan, B.A. Lu, J. Zhou, S.Q. Liang, Tuning crystal structure and redox potential of NASICON-type cathodes for sodium-ion batteries, Nano Res. 13 (2020) 3330-3337 doi: 10.1007/s12274-020-3011-6
|
[117] |
J. Dong, G.M. Zhang, X.G. Wang, S. Zhang, C. Deng, Cross-linked Na2VTi(PO4)3@C hierarchical nanofibers as high-performance bi-functional electrodes for symmetric aqueous rechargeable sodium batteries, J. Mater. Chem. A 5 (2017) 18725-18736 doi: 10.1039/C7TA05361D
|
[118] |
J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive Contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles, J. Phys. Chem. C 111 (2007) 14925-14931 doi: 10.1021/jp074464w
|
[119] |
J. Zhang, X.D. Zhao, Y.Z. Song, Q. Li, Y.C. Liu, J. Chen, X.R. Xing, Understanding the superior sodium-ion storage in a novel Na3.5Mn0.5V1.5(PO4)3 cathode, Energy Storage Mater. 23 (2019) 25-34 doi: 10.1117/12.2518324
|
[120] |
H. Li, X.Q. Yu, Y. Bai, F. Wu, C. Wu, L.-Y. Liu, X.-Q. Yang, Effects of Mg doping on the remarkably enhanced electrochemical performance of Na3V2(PO4)3 cathode materials for sodium ion batteries, J. Mater. Chem. A 3 (2015) 9578-9586 doi: 10.1039/C5TA00277J
|
[121] |
B.H. Li, C.P. Han, Y.-B. He, C. Yang, H.D. Du, Q.-H. Yang, F.Y. Kang, Facile synthesis of Li4Ti5O12/C composite with super rate performance, Energy Environ. Sci. 5 (2012) 9595-9602 doi: 10.1039/c2ee22591c
|
[122] |
H. Li, Y. Bai, F. Wu, Q. Ni, C. Wu, Na-rich Na3+xV2-xNix(PO4)3/C for sodium ion batteries: controlling the doping site and improving the electrochemical performances, ACS Appl. Mater. Interfaces 8 (2016) 27779-27787 doi: 10.1021/acsami.6b09898
|
[123] |
Y.J. Cao, Y. Liu, D.Q. Zhao, J.X. Zhang, X.P. Xia, T. Chen, L.-C. Zhang, P. Qin, Y.Y. Xia, K-doped Na3Fe2(PO4)3 cathode materials with high-stable structure for sodium-ion stored energy battery, J. Alloys Compd. 784 (2019) 939-946
|
[124] |
Y.J. Zhao, X.W. Gao, H.C. Gao, H.B. Jin, J.B. Goodenough, Three electron reversible redox reaction in sodium vanadium chromium phosphate as a high-energy-density cathode for sodium-ion batteries, Adv. Funct. Mater. 30 (2020) 1908680 doi: 10.1002/adfm.201908680
|
[125] |
Y. Deng, C. Eames, L.H.B. Nguyen, O. Pecher, K.J. Griffith, M. Courty, B. Fleutot, J.-N. Chotard, C.P. Grey, M.S. Islam, C. Masquelier, Crystal structures, local atomic environments and ion diffusion mechanisms of scandium-substituted NASICON solid electrolytes, Chem. Mater. 30 (2018) 2618-2630 doi: 10.1021/acs.chemmater.7b05237
|
[126] |
P.A. Aparicio, J.A. Dawson, M.S. Islam, N.H. de Leeuw, Computational study of NaVOPO4 polymorphs as cathode materials for Na-Ion batteries: diffusion, electronic properties, and cation-doping behavior, J. Phys. Chem. C 122 (2018) 25829-25836 doi: 10.1021/acs.jpcc.8b07797
|
[127] |
M. Chen, D. Cortie, Z. Hu, H. Jin, S. Wang, Q. Gu, W. Hua, E. Wang, W. Lai, L. Chen, S.-L. Chou, X.-L. Wang, S.-X. Dou, A novel graphene oxide wrapped Na2Fe2(SO4)3/C cathode composite for long life and high energy density sodium-ion batteries, Adv. Energy Mater. 8 (2018) 1800944 doi: 10.1002/aenm.201800944
|
[128] |
L.N. Zhao, H.L. Zhao, Z.H. Du, N. Chen, X.W. Chang, Z.J. Zhang, F. Gao, A. Trenczek-Zajac, K. Swierczek, Computational and experimental understanding of Al-doped Na3V2-xAlx(PO4)3 cathode material for sodium ion batteries: electronic structure, ion dynamics and electrochemical properties, Electrochim. Acta 282 (2018) 510-519 doi: 10.1016/j.electacta.2018.06.074
|
[129] |
Y. Zhou, X.J. Shao, K.-h. Lam, Y. Zheng, L.Z. Zhao, K.D. Wang, J.Z. Zhao, F.M. Chen, X.H. Hou, Symmetric sodium-ion battery based on dual-electron reactions of NASICON-structured Na3MnTi(PO4)3 material, ACS Appl. Mater. Interfaces 12 (2020) 30328-30335 doi: 10.1021/acsami.0c05784
|
[130] |
W.X. Song, X.B. Ji, Z.P. Wu, Y.R. Zhu, Y.C. Yang, J. Chen, M.J. Jing, F.Q. Li, C.E. Banks, First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3, J. Mater. Chem. A 2 (2014) 5358-5362 doi: 10.1039/c4ta00230j
|
[131] |
Q. Wang, M.Y. Zhang, C.G. Zhou, Y.L. Chen, Concerted ion-exchange mechanism for sodium diffusion and its promotion in Na3V2(PO4)3 framework, J. Phys. Chem. C 122 (2018) 16649-16654 doi: 10.1021/acs.jpcc.8b06120
|
[132] |
H.C. Gao, I.D. Seymour, S. Xin, L.G. Xue, G. Henkelman, J.B. Goodenough, Na3MnZr(PO4)3: a high-voltage cathode for sodium batteries, J. Am. Chem. Soc. 140 (2018) 18192-18199 doi: 10.1021/jacs.8b11388
|
[133] |
P. Barpanda, G. Oyama, S.-i. Nishimura, S.-C. Chung, A. Yamada, A 3.8-V earth-abundant sodium battery electrode, Nat. Commun. 5 (2014) 4358
|
[134] |
M.T. Xia, T.T. Liu, N. Peng, R.T. Zheng, X. Cheng, H.J. Zhu, H.X. Yu, M. Shui, J. Shu, Lab-scale in situ X-ray diffraction technique for different battery systems: designs, applications, and perspectives, Small Methods 3 (2019) 1900119 doi: 10.1002/smtd.201900119
|
[135] |
Z.B. Wu, W.K. Pang, L.B. Chen, B. Johannessen, Z.P. Guo, In situ synchrotron X-ray absorption spectroscopy studies of anode materials for rechargeable batteries, Batteries Supercaps 4 (2021) 1547-1566 doi: 10.1002/batt.202100006
|
[136] |
C. Yang, M.N. Han, H.H. Yan, F. Li, M.J. Shi, L.P. Zhao, In-situ probing phase evolution and electrochemical mechanism of ZnMn2O4 nanoparticles anchored on porous carbon polyhedrons in high-performance aqueous Zn-ion batteries, J. Power Sources 452 (2020) 227826
|
[137] |
D.Q. Liu, Z. Shadike, R.Q. Lin, K. Qian, H. Li, K.K. Li, S.W. Wang, Q.P. Yu, M. Liu, S. Ganapathy, X.Y. Qin, Q.-H. Yang, M. Wagemaker, F.Y. Kang, X.-Q. Yang, B.H. Li, Review of recent development of in situ/operando characterization techniques for lithium battery reaserch, Adv. Mater. 31 (2019) 1806620 doi: 10.1002/adma.201806620
|
[138] |
Z. Shadike, E.Y. Zhao, Y.-N. Zhou, X.Q. Yu, Y. Yang, E.Y. Hu, S. Bak, L. Gu, X.-Q. Yang, Advanced characterization techniques for sodium-ion battery studies, Adv. Energy Mater. 8 (2018) 1702588 doi: 10.1002/aenm.201702588
|