Volume 2 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Liu Yukun, Li Jie, Shen Qiuyu, Zhang Jian, He Pingge, Qu Xuanhui, Liu Yongchang. Advanced characterizations and measurements for sodium-ion batteries with NASICON-type cathode materials[J]. eScience, 2022, 2(1): 10-31. doi: 10.1016/j.esci.2021.12.008
Citation: Liu Yukun, Li Jie, Shen Qiuyu, Zhang Jian, He Pingge, Qu Xuanhui, Liu Yongchang. Advanced characterizations and measurements for sodium-ion batteries with NASICON-type cathode materials[J]. eScience, 2022, 2(1): 10-31. doi: 10.1016/j.esci.2021.12.008

Advanced characterizations and measurements for sodium-ion batteries with NASICON-type cathode materials

doi: 10.1016/j.esci.2021.12.008
More Information
  • Corresponding author: Pingge He pihe@ucsc.edu; Yongchang Liu liuyc@ustb.edu.cn
  • Received Date: 2021-08-13
  • Revised Date: 2021-11-08
  • Accepted Date: 2021-12-24
  • Available Online: 2021-12-29
  • NASICON (Na superionic conductor)-type cathode materials for sodium-ion batteries (SIBs) have attracted extensive attention due to their mechanically robust three-dimensional (3D) framework, which has sufficient open channels for fast Na+ transportation. However, they usually suffer from inferior electronic conductivity and low capacity, which severely limit their practical applications. To solve these issues, we need to deeply understand the structural evolution, redox mechanisms, and electrode/electrolyte interface reactions during cycling. Recently, rapid developments in synchrotron X-ray techniques, neutron-based resources, magnetic resonance, as well as optical and electron microscopy have brought numerous opportunities to gain deep insights into the Na-storage behaviors of NASICON cathodes. In this review, we summarize the detection principles of advanced characterization techniques used with typical NASICON-structured cathode materials for SIBs. The special focus is on both operando and ex situ techniques, which help to investigate the relationships among phase, composition, and valence variations within electrochemical responses. Fresh electrochemical measurements and theoretical computations are also included to reveal the kinetics and energy-storage mechanisms of electrodes upon charge/discharge. Finally, we describe potential new developments in NASICON-cathodes with optimized SIB systems, foreseeing a bright future for them, achievable through the rational application of advanced diagnostic methods.
  • ● Challenges and promises in developing high-performance NASICON-cathodes with advanced techniques are outlined.
    ● Both operando and ex situ techniques have been highlighted to understand the structure-mechanism-performance correlations.
    ● The advanced characterizations and measurements for SIBs with NASICON-type cathodes have been comprehensively summarized.
    ● The detection principles of advanced characterization/measurement techniques have been deeply discussed.
    1 These authors contributed equally to this work.
  • loading
  • [1]
    T. Jin, H.X. Li, K.J. Zhu, P.-F. Wang, P. Liu, L.F. Jiao, Polyanion-type cathode materials for sodium-ion batteries, Chem. Soc. Rev. 49 (2020) 2342-2377 doi: 10.1039/c9cs00846b
    [2]
    Y. Lu, J. Chen, Prospects of organic electrode materials for practical lithium batteries, Nat. Rev. Chem. 4 (2020) 127-142 doi: 10.1038/s41570-020-0160-9
    [3]
    C. Yang, S. Xin, L.Q. Mai, Y. You, Materials design for high-safety sodium-ion battery, Adv. Energy Mater. 11 (2021) 2000974 doi: 10.1002/aenm.202000974
    [4]
    N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Research development on sodium-ion batteries, Chem. Rev. 114 (2014) 11636-11682 doi: 10.1021/cr500192f
    [5]
    J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Sodium-ion batteries: present and future, Chem. Soc. Rev. 46 (2017) 3529-3614
    [6]
    P.K. Nayak, L.T. Yang, W. Brehm, P. Adelhelm, From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises, Angew. Chem. Int. Ed. 57 (2018) 102-120 doi: 10.1002/anie.201703772
    [7]
    Y.C. Liu, X.B. Liu, T.S. Wang, L.-Z. Fan, L.F. Jiao, Research and application progress on key materials for sodium-ion batteries, Sustainable Energy Fules. 1 (2017) 986-1006 doi: 10.1039/C7SE00120G
    [8]
    Y. Wang, Y.K. Liu, Y.C. Liu, Q.Y. Shen, C.C. Chen, F.Y. Qiu, P. Li, L.F. Jiao, X.H. Qu, Recent advances in electrospun electrode materials for sodium-ion batteries, J. Energy Chem. 54 (2021) 225-241 doi: 10.1016/j.jechem.2020.05.065
    [9]
    P. Yu, W. Tang, F.-F. Wu, C. Zhang, H.-Y. Luo, H. Liu, Z.-G. Wang, Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: a review, Rare Met. 39 (2020) 1019-1033 doi: 10.1007/s12598-020-01443-z
    [10]
    Q.Y. Shen, X.D. Zhao, Y.C. Liu, Y.P. Li, J. Zhang, N. Zhang, C.H. Yang, J. Chen, Dual-strategy of cation-doping and nanoengineering enables fast and stable sodium-ion storage in a novel Fe/Mn-based layered oxide cathode, Adv. Sci. 7 (2020) 2002199 doi: 10.1002/advs.202002199
    [11]
    N. Ortiz-Vitoriano, N.E. Drewett, E. Gonzalo, T. Rojo, High performance manganese-based layered oxide cathodes: overcoming the challenges of sodium ion batteries, Energy Environ. Sci. 10 (2017) 1051-1074 doi: 10.1039/C7EE00566K
    [12]
    S.H. Guo, P. Liu, H.J. Yu, Y.B. Zhu, M.W. Chen, M. Ishida, H.S. Zhou, A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries, Angew. Chem. Int. Ed. 54 (2015) 5894-5899 doi: 10.1002/anie.201411788
    [13]
    P.-F. Wang, Y. You, Y.-X. Yin, Y.-S. Wang, L.-J. Wan, L. Gu, Y.-G. Guo, Suppressing the P2-O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries, Angew. Chem. Int. Ed. 55 (2016) 7445-7449 doi: 10.1002/anie.201602202
    [14]
    Y.C. Liu, Q.Y. Shen, X.D. Zhao, J. Zhang, X.B. Liu, T.S. Wang, N. Zhang, L.F. Jiao, J. Chen, L.-Z. Fan, Hierarchical engineering of porous P2-Na2/3Ni1/3Mn2/3O2 nanofibers assembled by nanoparticles enables superior sodium-ion storage cathodes, Adv. Funct. Mater. 30 (2020) 1907837 doi: 10.1002/adfm.201907837
    [15]
    Y.-F. Zhu, Y. Xiao, S.-X. Dou, Y.-M. Kang, S.-L. Chou, Spinel/post-spinel engineering on layered oxide cathodes for sodium-ion batteries, eScience 1 (2021) 13–27 doi: 10.1016/j.esci.2021.10.003
    [16]
    F.F. Wang, N. Zhang, X.D. Zhao, L.X. Wang, J. Zhang, T.S. Wang, F.F. Liu, Y.C. Liu, L.-Z. Fan, Realizing a high-performance Na-storage cathode by tailoring ultrasmall Na2FePO4F nanoparticles with facilitated reaction kinetics, Adv. Sci. 6 (2019) 1900649 doi: 10.1002/advs.201900649
    [17]
    Y.C. Liu, N. Zhang, F.F. Wang, X.B. Liu, L.F. Jiao, L.-Z. Fan, Approaching the downsizing limit of maricite NaFePO4 toward high-performance cathode for sodium-ion batteries, Adv. Funct. Mater. 28 (2018) 1801917 doi: 10.1002/adfm.201801917
    [18]
    J. Zhao, X. Yang, Y. Yao, Y. Gao, Y.M. Sui, B. Zou, H. Ehrenberg, G. Chen, F. Du, Moving to aqueous binder: a valid approach to achieving high-rate capability and long-term durability for sodium-ion battery, Adv. Sci. 5 (2018) 1700768 doi: 10.1002/advs.201700768
    [19]
    R.Liu, S.Y. Zheng, Y.F. Yuan, P.F. Yu, Z.T. Liang, W.M. Zhao, R. Shahbazian-Yassar, J.X. Ding, J. Lu, Y. Yang, Counter-intuitive structural instability aroused by transition metal migration in polyanionic sodium ion host, Adv. Energy Mater. 11 (2020) 2003256
    [20]
    Y.Z. Jiang, S.L. Yu, B.Q. Wang, Y. Li, W.P. Sun, Y.H. Lu, M. Yan, B. Song, S.-X. Dou, Prussian blue@C composite as an ultrahigh-rate and long-life sodium-ion battery cathode, Adv. Funct. Mater. 26 (2016) 5315-5321 doi: 10.1002/adfm.201600747
    [21]
    J.F. Qian, C. Wu, Y.L. Cao, Z.F. Ma, Y.H. Huang, X.P. Ai, H.X. Yang, Prussian blue cathode materials for sodium-ion batteries and other ion batteries, Adv. Energy Mater. 8 (2018) 1702619 doi: 10.1002/aenm.201702619
    [22]
    W. Luo, M. Allen, V. Raju, X.L. Ji, An organic pigment as a high-performance cathode for sodium-ion batteries, Adv. Energy Mater. 4 (2014) 1400554 doi: 10.1002/aenm.201400554
    [23]
    Q. Ni, Y. Bai, F. Wu, C. Wu, Polyanion-type electrode materials for sodium-ion batteries, Adv. Sci. 4 (2017) 1600275 doi: 10.1002/advs.201600275
    [24]
    C. Masquelier, L. Croguennec, Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries, Chem. Rev. 113 (2013) 6552-6591 doi: 10.1021/cr3001862
    [25]
    Y.J. Fang, J.X. Zhang, L.F. Xiao, X.P. Ai, Y.L. Cao, H.X. Yang, Phosphate framework electrode materials for sodium ion batteries, Adv. Sci. 4 (2017) 1600392 doi: 10.1002/advs.201600392
    [26]
    Y. You, A. Manthiram, Progress in high-voltage cathode materials for rechargeable sodium-ion batteries, Adv. Energy Mater. 8 (2018) 1701785 doi: 10.1002/aenm.201701785
    [27]
    P. Barpanda, L. Lander, S.-i. Nishimura, A. Yamada, Polyanionic insertion materials for sodium-ion batteries, Adv. Energy Mater. 8 (2018) 1703055 doi: 10.1002/aenm.201703055
    [28]
    R. Liu, Z.T. Liang, Z.L. Gong, Y. Yang, Research progress in multielectron reactions in polyanionic materials for sodium-ion batteries, Small Methods 3 (2019) 1800221 doi: 10.1002/smtd.201800221
    [29]
    X.X. Cao, J. Zhou, A.Q. Pan, S.Q. Liang, Recent advances in phosphate cathode materials for sodium-ion batteries, Acta Phys. Chim. Sin. 36 (2020) 1905018
    [30]
    H.X. Li, M. Xu, Z.A. Zhang, Y.Q. Lai, J.M. Ma, Engineering of polyanion type cathode materials for sodium-ion batteries: toward higher energy/power density, Adv. Funct. Mater. 30 (2020) 2000473 doi: 10.1002/adfm.202000473
    [31]
    N. Anantharamulu, K.K. Rao, G. Rambabu, B.V. Kumar, V. Radha, M. Vithal, A wide-ranging review on Nasicon type materials, J. Mater. Sci. 46 (2011) 2821-2837 doi: 10.1007/s10853-011-5302-5
    [32]
    Z.F. Dai, U. Mani, H.T. Tan, Q.Y. Yan, Advanced cathode materials for sodium-ion batteries: what determines our choices? Small Methods 1 (2017) 1700098 doi: 10.1002/smtd.201700098
    [33]
    M. Sawicki, L.L. Shaw, Advances and challenges of sodium ion batteries as post lithium ion batteries, RSC Adv. 5 (2015) 53129-53154 doi: 10.1039/C5RA08321D
    [34]
    Z.L. Jian, Y.-S. Hu, X.L. Ji, W. Chen, NASICON-structured materials for energy storage, Adv. Mater. 29 (2017) 1601925 doi: 10.1002/adma.201601925
    [35]
    S.Q. Chen, C. Wu, L.F. Shen, C.B. Zhu, Y.Y. Huang, K. Xi, J. Maier, Y. Yu, Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries, Adv. Mater. 29 (2017) 1700431 doi: 10.1002/adma.201700431
    [36]
    X.H. Rui, W.P. Sun, C. Wu, Y. Yu, Q.Y. Yan, An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network, Adv. Mater. 27 (2015) 6670-6676 doi: 10.1002/adma.201502864
    [37]
    Q. Liu, X. Meng, Z.X. Wei, D.X. Wang, Y. Gao, Y.J. Wei, F. Du, G. Chen, Core/double-shell structured Na3V2(PO4)2F3@C nanocomposite as the high power and long lifespan cathode for sodium-ion batteries, ACS Appl. Mater. Interfaces 8 (2016) 31709-31715 doi: 10.1021/acsami.6b11372
    [38]
    J.X. Zhang, Y.J. Fang, L.F. Xiao, J.F. Qian, Y.L. Cao, X.P. Ai, H.X. Yang, Graphene-scaffolded Na3V2(PO4)3 microsphere cathode with high rate capability and cycling stability for sodium ion batteries, ACS Appl. Mater. Interfaces 9 (2017) 7177-7184 doi: 10.1021/acsami.6b16000
    [39]
    E.H. Wang, M.Z. Chen, X.H. Liu, Y.M. Liu, H.P. Guo, Z.G. Wu, W. Xiang, B.H. Zhong, X.D. Guo, S.L. Chou, S.-X. Dou, Organic cross-linker enabling a 3D porous skeleton-supported Na3V2(PO4)3/carbon composite for high power sodium-ion battery cathode, Small Methods 3 (2019) 1800169 doi: 10.1002/smtd.201800169
    [40]
    Y.J. Fang, L.F. Xiao, X.P. Ai, Y.L. Cao, H.X. Yang, Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries, Adv. Mater. 27 (2015) 5895-5900 doi: 10.1002/adma.201502018
    [41]
    W.H. Ren, Z.P. Zheng, C. Xu, C.J. Niu, Q.L. Wei, Q.Y. An, K.N. Zhao, M.Y. Yan, M.S. Qin, L.Q. Mai, Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodium ion full batteries, Nano Energy 25 (2016) 145-153 doi: 10.1016/j.nanoen.2016.03.018
    [42]
    H. Li, H.M. Tang, C.Z. Ma, Y. Bai, J. Alvarado, B. Radhakrishnan, S.P. Ong, F. Wu, Y.S. Meng, C. Wu, Understanding the electrochemical mechanisms induced by gradient Mg2+ distribution of Na-rich Na3+xV2-xMgx(PO4)3/C for sodium ion batteries, Chem. Mater. 30 (2018) 2498-2505 doi: 10.1021/acs.chemmater.7b03903
    [43]
    J. Zhang, Y.C. Liu, X.D. Zhao, L.H. He, H. Liu, Y.Z. Song, S.D. Sun, Q. Li, X.R. Xing, J. Chen, A novel NASICON-type Na4MnCr(PO4)3 demonstrating the energy density record of phosphate cathodes for sodium-ion batteries, Adv. Mater. 32 (2020) 1906348 doi: 10.1002/adma.201906348
    [44]
    S.C. Yu, Z.G. Liu, H. Tempel, H. Kungl, R.-A. Eichel, Self-standing NASICON-type electrodes with high mass loading for fast-cycling all-phosphate sodium-ion batteries, J. Mater. Chem. A 6 (2018) 18304-18317 doi: 10.1039/c8ta07313a
    [45]
    C.L. Xu, J.M. Zhao, E.H. Wang, X.H. Liu, X. Shen, X.H. Rong, Q. Zheng, G.X. Ren, N. Zhang, X.S. Liu, X.D. Guo, C. Yang, H.Z. Liu, B.H. Zhong, Y.-S. Hu, A novel NASICON-typed Na4VMn0.5Fe0.5(PO4)3 cathode for high-performance Na-ion battteries, Adv. Energy Mater. 11 (2021) 2100729 doi: 10.1002/aenm.202100729
    [46]
    J.R. Hou, M. Hadouchi, L.J. Sui, J. Liu, M.X. Tang, W.H. Kan, M. Avdeev, G.M. Zhong, Y.-K. Liao, Y.-H. Lai, Y.-H. Chu, H.-J. Lin, C.-T. Chen, Z.W. Hu, Y.H. Huang, J.W. Ma, Unlocking fast and reversible sodium intercalation in NASICON Na4MnV(PO4)3 by fluorine substitution, Energy Storage Mater. 42 (2021) 307-316 doi: 10.1016/j.ensm.2021.07.040
    [47]
    K. Chayambuka, G. Mulder, D.L. Danilov, P.H.L. Notten, Sodium-ion battery materials and electrochemical properties reviewed, Adv. Energy Mater. 8 (2018) 1800079 doi: 10.1002/aenm.201800079
    [48]
    G.X. Chen, Q. Huang, T. Wu, L. Lu, Polyanion sodium vanadium phosphate for next generation of sodium-ion batteries-a review, Adv. Funct. Mater. 30 (2020) 2001289 doi: 10.1002/adfm.202001289
    [49]
    H.J. Yu, S.H. Guo, Y.B. Zhu, M. Ishida, H.S. Zhou, Novel titanium-based O3-type NaTi0.5Ni0.5O2 as a cathode material for sodium ion batteries, Chem. Commun. 50 (2014) 457-459 doi: 10.1039/C3CC47351A
    [50]
    Z.L. Jian, C.C. Yuan, W.Z. Han, X. Lu, L. Gu, X.K. Xi, Y.-S. Hu, H. Li, W. Chen, D.F. Chen, Y.C. Ikuhara, L.Q. Chen, Atomic structure and kinetics of NASICON NaxV2(PO4)3 cathode for sodium-ion batteries, Adv. Funct. Mater. 24 (2014) 4265-4272 doi: 10.1002/adfm.201400173
    [51]
    C.P. Grey, J.M. Tarascon, Sustainability and in situ monitoring in battery development, Nat. Mater. 16 (2017) 45-56 doi: 10.1038/nmat4777
    [52]
    X.J. Wei, X.P. Wang, Q.Y. An, C.H. Han, L.Q. Mai, Operando X-ray diffraction characterization for understanding the intrinsic electrochemical mechanism in rechargeable battery materials, Small Methods 1 (2017) 1700083 doi: 10.1002/smtd.201700083
    [53]
    S.Y. Lim, H. Kim, R.A. Shakoor, Y. Jung, J.W. Choi, Electrochemical and thermal properties of NASICON structured Na3V2(PO4)3 as a sodium rechargeable battery cathode: a combined experimental and theoretical study, J. Electrochem. Soc. 159 (2012) A1393-A1397 doi: 10.1149/2.015209jes
    [54]
    Z.L. Jian, W.Z. Han, X. Lu, H.X. Yang, Y.-S. Hu, J. Zhou, Z.B. Zhou, J.Q. Li, W. Chen, D.F. Chen, L.Q. Chen, Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries, Adv. Energy Mater. 3 (2013) 156-160 doi: 10.1002/aenm.201200558
    [55]
    G.B. Zhang, T.F. Xiong, M.Y. Yan, Y.N. Xu, W.H. Ren, X. Xu, Q.L. Wei, L.Q. Mai, In operando probing of sodium-incorporation in NASICON nanomaterial: asymmetric reaction and electrochemical phase diagram, Chem. Mater. 29 (2017) 8057-8064 doi: 10.1021/acs.chemmater.7b00957
    [56]
    F. Lalere, V. Seznec, M. Courty, R. David, J.N. Chotard, C. Masquelier, Improving the energy density of Na3V2(PO4)3-based positive electrodes through V/Al substitution, J. Mater. Chem. A 3 (2015) 16198-16205 doi: 10.1039/C5TA03528G
    [57]
    A. Inoishi, Y. Yoshioka, L.W. Zhao, A. Kitajou, S. Okada, Improvement in the energy density of Na3V2(PO4)3 by Mg Substitution, ChemElectroChem 4 (2017) 2755-2759 doi: 10.1002/celc.201700540
    [58]
    F. Chen, V.M. Kovrugin, R. David, O. Mentre, F. Fauth, J.-N. Chotard, C. Masquelier, A NASICON-type positive electrode for Na batteries with high energy density: Na4MnV(PO4)3, Small Methods 3 (2019) 1800218 doi: 10.1002/smtd.201800218
    [59]
    H.X. Li, T. Jin, X.B. Chen, Y.Q. Lai, Z.A. Zhang, W.Z. Bao, L.F. Jiao, Rational architecture design enables superior Na storage in greener NASICON-Na4MnV(PO4)3 cathode, Adv. Energy Mater. 8 (2018) 1801418 doi: 10.1002/aenm.201801418
    [60]
    D.X. Wang, X.F. Bie, Q. Fu, D. Dixon, N. Bramnik, Y.-S. Hu, F. Fauth, Y.J. Wei, H. Ehrenberg, G. Chen, F. Du, Sodium vanadium titanium phosphate electrode for symmetric sodium-ion batteries with high power and long lifespan, Nat. Commun. 8 (2017) 15888 doi: 10.1038/ncomms15888
    [61]
    F. Lalere, V. Seznec, M. Courty, J.N. Chotard, C. Masquelier, Coupled X-ray diffraction and electrochemical studies of the mixed Ti/V-containing NASICON: Na2TiV(PO4)3, J. Mater. Chem. A 6 (2018) 6654-6659 doi: 10.1039/C7TA10689K
    [62]
    X. Li, Y.Y. Huang, J.S. Wang, L. Miao, Y.Y. Li, Y. Liu, Y.G. Qiu, C. Fang, J.T. Han, Y.H. Huang, High valence Mo-doped Na3V2(PO4)3/C as a high rate and stable cycle-life cathode for sodium battery, J. Mater. Chem. A 6 (2018) 1390-1396 doi: 10.1039/C7TA08970H
    [63]
    T. Zhu, P. Hu, X.P. Wang, Z.H. Liu, W. Luo, K.A. Owusu, W.W. Cao, C.W. Shi, J.T. Li, L. Zhou, L.Q. Mai, Realizing three-electron redox reactions in NASICON-structured Na3MnTi(PO4)3 for sodium-ion batteries, Adv. Energy Mater. 9 (2019) 1803436 doi: 10.1002/aenm.201803436
    [64]
    J.Y. Wang, Y. Wang, D.-H. Seo, T. Shi, S.P. Chen, Y.S. Tian, H. Kim, G. Ceder, A high-energy NASICON-type cathode material for Na-ion batteries, Adv. Energy Mater. 10 (2020) 1903968 doi: 10.1002/aenm.201903968
    [65]
    X.Q. Yu, H.L. Pan, W. Wan, C. Ma, J.M. Bai, Q.P. Meng, S.N. Ehrlich, Y.-S. Hu, X.-Q. Yang, A size-dependent sodium storage mechanism in Li4Ti5O12 investigated by a novel characterization technique combining in situ X-ray diffraction and chemical sodiation, Nano Lett. 13 (2013) 4721-4727 doi: 10.1021/nl402263g
    [66]
    J.-N. Chotard, G. Rousse, R. David, O. Mentre, M. Courty, C. Masquelier, Discovery of a sodium-ordered form of Na3V2(PO4)3 below ambient temperature, Chem. Mater. 27 (2015) 5982-5987 doi: 10.1021/acs.chemmater.5b02092
    [67]
    R. Liu, G.L. Xu, Q. Li, S.Y. Zheng, G.R. Zheng, Z.L. Gong, Y.X. Li, E. Kruskop, R.Q. Fu, Z.H. Chen, K. Amine, Y. Yang, Exploring highly reversible 1.5-electron reactions (V3+/V4+/V5+) in Na3VCr(PO4)3 cathode for sodium-ion batteries, ACS Appl. Mater. Interfaces 9 (2017) 43632-43639 doi: 10.1021/acsami.7b13018
    [68]
    M. Bianchini, F. Fauth, N. Brisset, F. Weill, E. Suard, C. Masquelier, L. Croguennec, Comprehensive investigation of the Na3V2(PO4)2F3-NaV2(PO4)2F3 system by operando high resolution synchrotron X-ray diffraction, Chem. Mater. 27 (2015) 3009-3020 doi: 10.1021/acs.chemmater.5b00361
    [69]
    R. Muruganantham, Y.-T. Chiu, C.-C. Yang, C.-W. Wang, W.-R. Liu, An efficient evaluation of F-doped polyanion cathode materials with long cycle life for Na-ion batteries applications, Sci. Rep. 7 (2017) 14808 doi: 10.1038/s41598-017-13718-0
    [70]
    X.H. Liu, G.L. Feng, E.H. Wang, H. Chen, Z.G. Wu, W. Xiang, Y.J. Zhong, Y.X. Chen, X.D. Guo, B.H. Zhong, Insight into preparation of Fe-doped Na3V2(PO4)3@C from aspects of particle morphology design, crystal structure modulation, and carbon graphitization regulation, ACS Appl. Mater. Interfaces 11 (2019) 12421-12430 doi: 10.1021/acsami.8b21257
    [71]
    M. Hadouchi, N. Yaqoob, P. Kaghazchi, M.X. Tang, J. Liu, P.F. Sang, Y.Z. Fu, Y. H. Huang, J. W. Ma, Fast sodium intercalation in Na3.41£0.59FeV(PO4)3 pound: a novel sodium-deficient NASICON cathode for sodium-ion batteries, Energy Storage Mater. 35 (2021) 192-202 doi: 10.1016/j.ensm.2020.11.010
    [72]
    Z.G. Liu, Y.-Y. Hu, M.T. Dunstan, H. Huo, X.G. Hao, H. Zou, G.M. Zhong, Y. Yang, C.P. Grey, Local structure and dynamics in the Na ion battery positive electrode material Na3V2(PO4)2F3, Chem. Mater. 26 (2014) 2513-2521 doi: 10.1021/cm403728w
    [73]
    X.S. Liu, Z.T. Liang, Y.X. Xiang, M. Lin, Q. Li, Z.G. Liu, G.M. Zhong, R.Q. Fu, Y. Yang, Solid-state NMR and MRI spectroscopy for Li/Na batteries: materials, interface, and in situ characterization, Adv. Mater. (2021) 2005878 doi: 10.1002/adma.202005878
    [74]
    Y.F. Deng, S.Y. Dong, Z.F. Li, H. Jiang, X.G. Zhang, X.L. Ji, Applications of conventional vibrational spectroscopic methods for batteries beyond Li-ion, Small Methods 2 (2018) 1700332 doi: 10.1002/smtd.201700332
    [75]
    V. Stancovski, S. Badilescu, In situ Raman spectroscopic-electrochemical studies of lithium-ion battery materials: a historical overview, J. Appl. Electrochem. 44 (2014) 23-43 doi: 10.1007/s10800-013-0628-0
    [76]
    R. Rajagopalan, B. Chen, Z.C. Zhang, X.-L. Wu, Y.H. Du, Y. Huang, B. Li, Y. Zong, J. Wang, G.-H. Nam, M. Sindoro, S.X. Dou, H.K. Liu, H. Zhang, Improved reversibility of Fe3+/Fe4+ redox couple in sodium super ion conductor type Na3Fe2(PO4)3 for sodium-ion batteries, Adv. Mater. 29 (2017) 1605694 doi: 10.1002/adma.201605694
    [77]
    H. Bih, L. Bih, B. Manoun, M. Azdouz, S. Benmokhtar, P. Lazor, Raman spectroscopic study of the phase transitions sequence in Li3Fe2(PO4)3 and Na3Fe2(PO4)3 at high temperature, J. Mol. Struct. 936 (2009) 147-155 doi: 10.1016/j.molstruc.2009.07.035
    [78]
    I.A. Trussov, L.L. Male, M.L. Sanjuan, A. Orera, P.R. Slater, Understanding the complex structural features and phase changes in Na2Mg2(SO4)3: a combined single crystal and variable temperature powder diffraction and Raman spectroscopy study, J. Solid State Chem. 272 (2019) 157-165 doi: 10.1016/j.jssc.2019.02.014
    [79]
    S.D. Findlay, N. Shibata, H. Sawada, E. Okunishi, Y. Kondo, T. Yamamoto, Y. Ikuhara, Robust atomic resolution imaging of light elements using scanning transmission electron microscopy, Appl. Phys. Lett. 95 (2009) 191913 doi: 10.1063/1.3265946
    [80]
    W.D. Zhou, L.G. Xue, X.J. Lu, H.C. Gao, Y.T. Li, S. Xin, G.T. Fu, Z.M. Cui, Y. Zhu, J.B. Goodenough, NaxMV(PO4)3 (M = Mn, Fe, Ni) structure and properties for sodium extraction, Nano Lett. 16 (2016) 7836-7841 doi: 10.1021/acs.nanolett.6b04044
    [81]
    M.-Y. Wang, J.-Z. Guo, Z.-W. Wang, Z.-Y. Gu, X.-J. Nie, X. Yang, X.-L. Wu, Isostructural and multivalent anion substitution toward improved phosphate cathode materials for sodium-ion batteries, Small 16 (2020) 1907645 doi: 10.1002/smll.201907645
    [82]
    H.X. Li, M. Xu, C.H. Gao, W. Zhang, Z.A. Zhang, Y.Q. Lai, L.F. Jiao, Highly efficient, fast and reversible multi-electron reaction of Na3MnTi(PO4)3 cathode for sodium-ion batteries, Energy Storage Mater. 26 (2020) 325-333 doi: 10.1016/j.ensm.2019.11.004
    [83]
    L.S. Plashnitsa, E. Kobayashi, Y. Noguchi, S. Okada, J.-i. Yamaki, Performance of NASICON symmetric cell with ionic liquid electrolyte, J. Electrochem. Soc. 157 (2010) A536-A543 doi: 10.1149/1.3298903
    [84]
    P. Senguttuvan, G. Rousse, M.E.A.Y. de Dompablo, H. Vezin, J.-M. Tarascon, M.R. Palacin, Low-potential sodium insertion in a NASICON-type structure through the Ti(III)/Ti(II) redox couple, J. Am. Chem. Soc. 135 (2013) 3897-3903 doi: 10.1021/ja311044t
    [85]
    Q.Y. Shen, Y.C. Liu, L.F. Jiao, X.H. Qu, J. Chen, Current state-of-the-art characterization techniques for probing the layered oxide cathode materials of sodium-ion batteries, Energy Storage Mater. 35 (2021) 400-430 doi: 10.1016/j.ensm.2020.11.002
    [86]
    Y.J. Zhao, X.W. Gao, H.C. Gao, A. Dolocan, J.B. Goodenough, Elevating energy density for sodium-ion batteries through multielectron reactions, Nano Lett. 21 (2021) 2281-2287 doi: 10.1021/acs.nanolett.1c00100
    [87]
    A. Knop-Gericke, E. Kleimenov, M. Havecker, R. Blume, D. Teschner, S. Zafeiratos, R. Schlogl, V.I. Bukhtiyarov, V.V. Kaichev, I.P. Prosvirin, A.I. Nizovskii, H. Bluhm, A. Barinov, P. Dudin, M. Kiskinova, X-ray photoelectron spectroscopy for investigation of heterogeneous catalytic processes, Adv. Catal. 52 (2009) 213-272
    [88]
    L.N. Bi, X.Y. Li, X.Q. Liu, Q.J. Zheng, D.M. Lin, Enhanced cycling stability and rate capability in a La-doped Na3V2(PO4)3/C cathode for high-performance sodium ion batteries, ACS Sustain. Chem. Eng. 7 (2019) 7693-7699 doi: 10.1021/acssuschemeng.8b06385
    [89]
    K. Saravanan, C.W. Mason, A. Rudola, K.H. Wong, P. Balaya, The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries, Adv. Energy Mater. 3 (2013) 444-450 doi: 10.1002/aenm.201200803
    [90]
    M.J. Aragon, P. Lavela, G.F. Ortiz, J.L. Tirado, Benefits of chromium substitution in Na3V2(PO4)3 as a potential candidate for sodium-ion batteries, ChemElectroChem 2 (2015) 995-1002 doi: 10.1002/celc.201500052
    [91]
    W. Zhang, H.X. Li, Z.A. Zhang, M. Xu, Y.Q. Lai, S.-L. Chou, Full ativation of Mn4+/Mn3+ redox in Na4MnCr(PO4)3 as a high-voltage and high-rate cathode material for sodium-ion batteries, Small 16 (2020) 2001524 doi: 10.1002/smll.202001524
    [92]
    G.G. Eshetu, T. Diemant, M. Hekmatfar, S. Grugeon, R.J. Behm, S. Laruelle, M. Armand, S. Passerini, Impact of the electrolyte salt anion on the solid electrolyte interphase formation in sodium ion batteries, Nano Energy 55 (2019) 327-340 doi: 10.1016/j.nanoen.2018.10.040
    [93]
    M.Y. Ma, H.R. Cai, C.L. Xu, R.Z. Huang, S.R. Wang, H.L. Pan, Y.-S. Hu, Engineering solid electrolyte interface at nano-scale for high-performance hard carbon in sodium-ion batteries, Adv. Funct. Mater. 31 (2021) 2100278 doi: 10.1002/adfm.202100278
    [94]
    A. Ponrouch, R. Dedryvere, D. Monti, A.E. Demet, J.M.A. Mba, L. Croguennec, C. Masquelier, P. Johansson, M.R. Palacin, Towards high energy density sodium ion batteries through electrolyte optimization, Energy Environ. Sci. 6 (2013) 2361-2369 doi: 10.1039/c3ee41379a
    [95]
    D. Burova, I. Shakhova, P. Morozova, A. Larchuk, O.A. Drozhzhin, M.G. Rozova, S. Praneetha, V. Murugan, J.-M. Tarascon, A.M. Abakumov, The rapid microwave-assisted hydrothermal synthesis of NASICON-structured Na3V2Ox(PO4)2Fx (0 < x ≤ 1) cathode materials for Na-ion batteries, RSC Adv. 9 (2019) 19429-19440 doi: 10.1039/c9ra02257k
    [96]
    M.Z. Chen, W.B. Hua, J. Xiao, D. Cortie, X.D. Guo, E.H. Wang, Q.F. Gu, Z. Hu, S. Indris, X.-L. Wang, S.-L. Chou, S.-X. Dou, Development and investigation of a NASICON-type high-voltage cathode material for high-power sodium-ion batteries, Angew. Chem., Int. Ed. 59 (2020) 2449-2456 doi: 10.1002/anie.201912964
    [97]
    E. Talaie, P. Bonnick, X.Q. Sun, Q. Pang, X. Liang, L.F. Nazar, Methods and protocols for electrochemical energy storage materials research, Chem. Mater. 29 (2017) 90-105 doi: 10.1021/acs.chemmater.6b02726
    [98]
    M. Pivko, I. Arcon, M. Bele, R. Dominko, M. Gaberscek, A3V2(PO4)3 (A = Na or Li) probed by in situ X-ray absorption spectroscopy, J. Power Sources 216 (2012) 145-151 doi: 10.1016/j.jpowsour.2012.05.037
    [99]
    M.Z. Chen, W.B. Hua, J. Xiao, J.L. Zhang, V.W. Lau, M. Park, G.-H. Lee, S. Lee, W.L. Wang, J. Peng, L. Fang, L.M. Zhou, C.-K. Chang, Y. Yamauchi, S.L. Chou, Y.-M. Kang, Activating a multielectron reaction of NASICON-structured cathodes toward high energy density for sodium-ion batteries, J. Am. Chem. Soc. 143 (2021) 18091-18102 doi: 10.1021/jacs.1c06727
    [100]
    S. Ghosh, N. Barman, M. Mazumder, S.K. Pati, G. Rousse, P. Senguttuvan, High capacity and high-rateNASICON-Na3.75V1.25Mn0.75(PO4)3 cathode for Na-ion batteries via modulating electronic and crystal structures, Adv. Energy Mater. 10 (2020) 1902918 doi: 10.1002/aenm.201902918
    [101]
    K. Kawai, W.W. Zhao, S.-i. Nishimura, A. Yamada, High-voltage Cr4+/Cr3+ redox couple in polyanion compounds, ACS Appl. Energy Mater. 1 (2018) 928-931 doi: 10.1021/acsaem.7b00105
    [102]
    K. Kawai, D. Asakura, S.-i. Nishimura, A. Yamada, Stabilization of a 4.5 V Cr4+/Cr3+ redox reaction in NASICON-type Na3Cr2(PO4)3 by Ti substitution, Chem. Commun. 55 (2019) 13717-13720 doi: 10.1039/c9cc04860j
    [103]
    C.L. Zhao, Y.X. Lu, Y.M. Li, L.W. Jiang, X.H. Rong, Y.-S. Hu, H. Li, L.Q. Chen, Novel methods for sodium-ion battery materials, Small Methods 1 (2017) 1600063 doi: 10.1002/smtd.201600063
    [104]
    S.C. Chung, J. Ming, L. Lander, J.C. Lu, A. Yamada, Rhombohedral NASICON-type NaxFe2(SO4)3 for sodium ion batteries: comparison with phosphate and alluaudite phases, J. Mater. Chem. A. 6 (2018) 3919-3925 doi: 10.1039/C7TA08606G
    [105]
    S. Park, J.-N. Chotard, D. Carlier, I. Moog, M. Courty, M. Duttine, F. Fauth, A. Iadecola, L. Croguennec, C. Masquelier, Crystal structures and local environments of NASICON-type Na3FeV(PO4)3 and Na4FeV(PO4)3 positive electrode materials for Na-ion batteries, Chem. Mater. 33 (2021) 5355-5367 doi: 10.1021/acs.chemmater.1c01457
    [106]
    G.J. Cui, Q.Y. Dong, Z.Z. Wang, X-Z. Liao, S.Q. Yuan, M.D. Jiang, Y.B. Shen, H. Wang, H.Y. Che, Y-S. He, Z-F. Ma, Achieving highly reversible and fast sodium storage of Na4VMn(PO4)3/C-rGO composite with low-fraction rGO via spray-drying technique, Nano Energy 89 (2021) 106462 doi: 10.1016/j.nanoen.2021.106462
    [107]
    W. Weppner, R.A. Huggins, Electrochemical methods for determining kinetic properties of solids, Annu. Rev. Mater. Sci. 8 (1978) 269-311 doi: 10.1146/annurev.ms.08.080178.001413
    [108]
    W. Weppner, R.A. Huggins, Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb, J. Electrochem. Soc. 124 (1977) 1569 doi: 10.1149/1.2133112
    [109]
    C.J. Wen, B.A. Boukamp, R.A. Huggins, W. Weppner, Thermodynamic and mass transport properties of ''LiAl",J.Electrochem .Soc. 126( 1979 )2258 doi: 10.1149/1.2128939
    [110]
    X.H. Rui, N. Ding, J. Liu, C. Li, C.H. Chen, Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material, Electrochim. Acta 55 (2010) 2384-2390 doi: 10.1016/j.electacta.2009.11.096
    [111]
    K. Tang, X.Q. Yu, J.P. Sun, H. Li, X.J. Huang, Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS, Electrochim. Acta 56 (2011) 4869-4875 doi: 10.1016/j.electacta.2011.02.119
    [112]
    N. Bockenfeld, A. Balducci, Determination of sodium ion diffusion coefficients in sodium vanadium phosphate, J. Solid State Electrochem. 18 (2014) 959-964 doi: 10.1007/s10008-013-2342-6
    [113]
    M.Z. Chen, W.B. Hua, J. Xiao, D. Cortie, W.H. Chen, E.H. Wang, Z. Hu, Q.F. Gu, X.L. Wang, S. Indris, S.-L. Chou, S.-X. Dou, NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density, Nat. Commun. 10 (2019) 1480 doi: 10.1038/s41467-019-09170-5
    [114]
    H.B. Yahia, R. Essehli, R. Amin, K. Boulahya, T. Okumura, I. Belharouak, Sodium intercalation in the phosphosulfate cathode NaFe2(PO4)(SO4)2, J. Power Sources 382 (2018) 144-151 doi: 10.1016/j.jpowsour.2018.02.021
    [115]
    W.X. Song, X.Y. Cao, Z.P. Wu, J. Chen, Y.R. Zhu, H.S. Hou, Q. Lan, X.B. Ji, Investigation of the sodium ion pathway and cathode behavior in Na3V2(PO4)2F3 combined via a first principles calculation, Langmuir. 30 (2014) 12438-12446 doi: 10.1021/la5025444
    [116]
    X.M. Ma, X.X. Cao, Y.F. Zhou, S. Guo, X.D. Shi, G.Z. Fang, A.Q. Pan, B.A. Lu, J. Zhou, S.Q. Liang, Tuning crystal structure and redox potential of NASICON-type cathodes for sodium-ion batteries, Nano Res. 13 (2020) 3330-3337 doi: 10.1007/s12274-020-3011-6
    [117]
    J. Dong, G.M. Zhang, X.G. Wang, S. Zhang, C. Deng, Cross-linked Na2VTi(PO4)3@C hierarchical nanofibers as high-performance bi-functional electrodes for symmetric aqueous rechargeable sodium batteries, J. Mater. Chem. A 5 (2017) 18725-18736 doi: 10.1039/C7TA05361D
    [118]
    J. Wang, J. Polleux, J. Lim, B. Dunn, Pseudocapacitive Contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles, J. Phys. Chem. C 111 (2007) 14925-14931 doi: 10.1021/jp074464w
    [119]
    J. Zhang, X.D. Zhao, Y.Z. Song, Q. Li, Y.C. Liu, J. Chen, X.R. Xing, Understanding the superior sodium-ion storage in a novel Na3.5Mn0.5V1.5(PO4)3 cathode, Energy Storage Mater. 23 (2019) 25-34 doi: 10.1117/12.2518324
    [120]
    H. Li, X.Q. Yu, Y. Bai, F. Wu, C. Wu, L.-Y. Liu, X.-Q. Yang, Effects of Mg doping on the remarkably enhanced electrochemical performance of Na3V2(PO4)3 cathode materials for sodium ion batteries, J. Mater. Chem. A 3 (2015) 9578-9586 doi: 10.1039/C5TA00277J
    [121]
    B.H. Li, C.P. Han, Y.-B. He, C. Yang, H.D. Du, Q.-H. Yang, F.Y. Kang, Facile synthesis of Li4Ti5O12/C composite with super rate performance, Energy Environ. Sci. 5 (2012) 9595-9602 doi: 10.1039/c2ee22591c
    [122]
    H. Li, Y. Bai, F. Wu, Q. Ni, C. Wu, Na-rich Na3+xV2-xNix(PO4)3/C for sodium ion batteries: controlling the doping site and improving the electrochemical performances, ACS Appl. Mater. Interfaces 8 (2016) 27779-27787 doi: 10.1021/acsami.6b09898
    [123]
    Y.J. Cao, Y. Liu, D.Q. Zhao, J.X. Zhang, X.P. Xia, T. Chen, L.-C. Zhang, P. Qin, Y.Y. Xia, K-doped Na3Fe2(PO4)3 cathode materials with high-stable structure for sodium-ion stored energy battery, J. Alloys Compd. 784 (2019) 939-946
    [124]
    Y.J. Zhao, X.W. Gao, H.C. Gao, H.B. Jin, J.B. Goodenough, Three electron reversible redox reaction in sodium vanadium chromium phosphate as a high-energy-density cathode for sodium-ion batteries, Adv. Funct. Mater. 30 (2020) 1908680 doi: 10.1002/adfm.201908680
    [125]
    Y. Deng, C. Eames, L.H.B. Nguyen, O. Pecher, K.J. Griffith, M. Courty, B. Fleutot, J.-N. Chotard, C.P. Grey, M.S. Islam, C. Masquelier, Crystal structures, local atomic environments and ion diffusion mechanisms of scandium-substituted NASICON solid electrolytes, Chem. Mater. 30 (2018) 2618-2630 doi: 10.1021/acs.chemmater.7b05237
    [126]
    P.A. Aparicio, J.A. Dawson, M.S. Islam, N.H. de Leeuw, Computational study of NaVOPO4 polymorphs as cathode materials for Na-Ion batteries: diffusion, electronic properties, and cation-doping behavior, J. Phys. Chem. C 122 (2018) 25829-25836 doi: 10.1021/acs.jpcc.8b07797
    [127]
    M. Chen, D. Cortie, Z. Hu, H. Jin, S. Wang, Q. Gu, W. Hua, E. Wang, W. Lai, L. Chen, S.-L. Chou, X.-L. Wang, S.-X. Dou, A novel graphene oxide wrapped Na2Fe2(SO4)3/C cathode composite for long life and high energy density sodium-ion batteries, Adv. Energy Mater. 8 (2018) 1800944 doi: 10.1002/aenm.201800944
    [128]
    L.N. Zhao, H.L. Zhao, Z.H. Du, N. Chen, X.W. Chang, Z.J. Zhang, F. Gao, A. Trenczek-Zajac, K. Swierczek, Computational and experimental understanding of Al-doped Na3V2-xAlx(PO4)3 cathode material for sodium ion batteries: electronic structure, ion dynamics and electrochemical properties, Electrochim. Acta 282 (2018) 510-519 doi: 10.1016/j.electacta.2018.06.074
    [129]
    Y. Zhou, X.J. Shao, K.-h. Lam, Y. Zheng, L.Z. Zhao, K.D. Wang, J.Z. Zhao, F.M. Chen, X.H. Hou, Symmetric sodium-ion battery based on dual-electron reactions of NASICON-structured Na3MnTi(PO4)3 material, ACS Appl. Mater. Interfaces 12 (2020) 30328-30335 doi: 10.1021/acsami.0c05784
    [130]
    W.X. Song, X.B. Ji, Z.P. Wu, Y.R. Zhu, Y.C. Yang, J. Chen, M.J. Jing, F.Q. Li, C.E. Banks, First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3, J. Mater. Chem. A 2 (2014) 5358-5362 doi: 10.1039/c4ta00230j
    [131]
    Q. Wang, M.Y. Zhang, C.G. Zhou, Y.L. Chen, Concerted ion-exchange mechanism for sodium diffusion and its promotion in Na3V2(PO4)3 framework, J. Phys. Chem. C 122 (2018) 16649-16654 doi: 10.1021/acs.jpcc.8b06120
    [132]
    H.C. Gao, I.D. Seymour, S. Xin, L.G. Xue, G. Henkelman, J.B. Goodenough, Na3MnZr(PO4)3: a high-voltage cathode for sodium batteries, J. Am. Chem. Soc. 140 (2018) 18192-18199 doi: 10.1021/jacs.8b11388
    [133]
    P. Barpanda, G. Oyama, S.-i. Nishimura, S.-C. Chung, A. Yamada, A 3.8-V earth-abundant sodium battery electrode, Nat. Commun. 5 (2014) 4358
    [134]
    M.T. Xia, T.T. Liu, N. Peng, R.T. Zheng, X. Cheng, H.J. Zhu, H.X. Yu, M. Shui, J. Shu, Lab-scale in situ X-ray diffraction technique for different battery systems: designs, applications, and perspectives, Small Methods 3 (2019) 1900119 doi: 10.1002/smtd.201900119
    [135]
    Z.B. Wu, W.K. Pang, L.B. Chen, B. Johannessen, Z.P. Guo, In situ synchrotron X-ray absorption spectroscopy studies of anode materials for rechargeable batteries, Batteries Supercaps 4 (2021) 1547-1566 doi: 10.1002/batt.202100006
    [136]
    C. Yang, M.N. Han, H.H. Yan, F. Li, M.J. Shi, L.P. Zhao, In-situ probing phase evolution and electrochemical mechanism of ZnMn2O4 nanoparticles anchored on porous carbon polyhedrons in high-performance aqueous Zn-ion batteries, J. Power Sources 452 (2020) 227826
    [137]
    D.Q. Liu, Z. Shadike, R.Q. Lin, K. Qian, H. Li, K.K. Li, S.W. Wang, Q.P. Yu, M. Liu, S. Ganapathy, X.Y. Qin, Q.-H. Yang, M. Wagemaker, F.Y. Kang, X.-Q. Yang, B.H. Li, Review of recent development of in situ/operando characterization techniques for lithium battery reaserch, Adv. Mater. 31 (2019) 1806620 doi: 10.1002/adma.201806620
    [138]
    Z. Shadike, E.Y. Zhao, Y.-N. Zhou, X.Q. Yu, Y. Yang, E.Y. Hu, S. Bak, L. Gu, X.-Q. Yang, Advanced characterization techniques for sodium-ion battery studies, Adv. Energy Mater. 8 (2018) 1702588 doi: 10.1002/aenm.201702588
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(2)

    Article Metrics

    Article views (217) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return