Citation: | Yang Guohao, Liang Xianhui, Zheng Shisheng, Chen Haibiao, Zhang Wentao, Li Shunning, Pan Feng. Li-rich channels as the material gene for facile lithium diffusion in halide solid electrolytes[J]. eScience, 2022, 2(1): 79-86. doi: 10.1016/j.esci.2022.01.001 |
![]() |
![]() |
[1] |
M. Li, J. Lu, Z. Chen & K. Amine. 30 years of lithium-ion batteries. Advanced Materials 30 (2018) 1800561 doi: 10.1002/adma.201800561
|
[2] |
T. Krauskopf, F.H. Richter, W.G. Zeier & J.R. Janek. Physicochemical concepts of the lithium metal anode in solid-state batteries. Chemical Reviews 120 (2020) 7745-7794 doi: 10.1021/acs.chemrev.0c00431
|
[3] |
J.C. Bachman, S. Muy, A. Grimaud, H.H. Chang, N. Pour, S.F. Lux, O. Paschos, F. Maglia, S. Lupart & P. Lamp. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chemical Reviews 116 (2016) 140-162 doi: 10.1021/acs.chemrev.5b00563
|
[4] |
Y. Xiao, Y. Wang, S.H. Bo, J.C. Kim, L.J. Miara & G. Ceder. Understanding interface stability in solid-state batteries. Nature Reviews Materials 5 (2020) 105-126 doi: 10.1038/s41578-019-0157-5
|
[5] |
J.F. Wu, R. Zhang, Q.F. Fu, J.S. Zhang, X.Y. Zhou, P. Gao, C.H. Xu, J. Liu & X. Guo. Inorganic solid electrolytes for all-solid-state sodium batteries: fundamentals and strategies for battery optimization. Advanced Functional Materials 31 (2021) 2008165 doi: 10.1002/adfm.202008165
|
[6] |
M. Li, C. Wang, Z. Chen, K. Xu & J. Lu. New concepts in electrolytes. Chemical Reviews 120 (2020) 6783-6819 doi: 10.1021/acs.chemrev.9b00531
|
[7] |
A. Manthiram, X. Yu & S. Wang. Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials 2 (2017) 1-16 doi: 10.1038/natrevmats.2016.103
|
[8] |
Z. Zou, Y. Li, Z. Lu, D. Wang, Y. Cui, B. Guo, Y. Li, X. Liang, J. Feng, H. Li, C.W. Nan, M. Armand, L. Chen, K. Xu & S. Shi. Mobile ions in composite solids. Chemical Reviews 120 (2020) 4169-4221 doi: 10.1021/acs.chemrev.9b00760
|
[9] |
X.B. Cheng, C.Z. Zhao, Y.X. Yao, H. Liu & Q. Zhang. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes. Chem 5 (2019) 74-96
|
[10] |
J. Janek & W.G. Zeier. A solid future for battery development. Nature Energy 1 (2016) 1-4
|
[11] |
P. Balakrishnan, R. Ramesh & T.P. Kumar. Safety mechanisms in lithium-ion batteries. Journal of Power Sources 155 (2006) 401-414 doi: 10.1016/j.jpowsour.2005.12.002
|
[12] |
H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka & G.y. Adachi. Ionic conductivity of solid electrolytes based on lithium titanium phosphate. Journal of the Electrochemical Society 137 (1990) 1023 doi: 10.1149/1.2086597
|
[13] |
R. Murugan, V. Thangadurai & W. Weppner. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angewandte Chemie International Edition 46 (2007) 7778-7781 doi: 10.1002/anie.200701144
|
[14] |
S. Stramare, V. Thangadurai & W. Weppner. Lithium lanthanum titanates: a review. Chemistry of Materials 15 (2003) 3974-3990 doi: 10.1021/cm0300516
|
[15] |
R. Chen, Q. Li, X. Yu, L. Chen & H. Li. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chemical Reviews 120 (2019) 6820-6877
|
[16] |
N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama & K. Kawamoto. A lithium superionic conductor. Nature Materials 10 (2011) 682-686 doi: 10.1038/nmat3066
|
[17] |
Y. Seino, T. Ota, K. Takada, A. Hayashi & M. Tatsumisago. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy & Environmental Science 7 (2014) 627-631 doi: 10.1039/C3EE41655K
|
[18] |
W.D. Richards, L.J. Miara, Y. Wang, J.C. Kim & G. Ceder. Interface stability in solid-state batteries. Chemistry of Materials 28 (2016) 266-273 doi: 10.1021/acs.chemmater.5b04082
|
[19] |
T. Asano, A. Sakai, S. Ouchi, M. Sakaida, A. Miyazaki & S. Hasegawa. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Advanced Materials 30 (2018) 1803075 doi: 10.1002/adma.201803075
|
[20] |
X. Li, J. Liang, N. Chen, J. Luo, K.R. Adair, C. Wang, M.N. Banis, T.K. Sham, L. Zhang & S. Zhao. Water-mediated synthesis of a superionic halide solid electrolyte. Angewandte Chemie International Edition 131 (2019) 16579-16584 doi: 10.1002/ange.201909805
|
[21] |
X. Li, J. Liang, J. Luo, M.N. Banis, C. Wang, W. Li, S. Deng, C. Yu, F. Zhao & Y. Hu. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries. Energy & Environmental Science 12 (2019) 2665-2671 doi: 10.1039/c9ee02311a
|
[22] |
J. Liang, X. Li, S. Wang, K.R. Adair, W. Li, Y. Zhao, C. Wang, Y. Hu, L. Zhang & S. Zhao. Site-cccupation-tuned superionic LixScCl3+x halide solid electrolytes for all-solid-state batteries. Journal of the American Chemical Society 142 (2020) 7012-7022 doi: 10.1021/jacs.0c00134
|
[23] |
S. Muy, J. Voss, R. Schlem, R. Koerver, S.J. Sedlmaier, F. Maglia, P. Lamp, W.G. Zeier & Y. Shao-Horn. High-throughput screening of solid-state Li-ion conductors using lattice-dynamics descriptors. iScience 16 (2019) 270-282 doi: 10.1016/j.isci.2019.05.036
|
[24] |
R. Schlem, S. Muy, N. Prinz, A. Banik, Y. Shao-Horn, M. Zobel & W.G. Zeier. Mechanochemical Synthesis: A tool to tune cation site disorder and ionic transport properties of Li3MCl6 (M = Y, Er) superionic conductors. Advanced Energy Materials 10 (2019) 1903719
|
[25] |
K.H. Park, K. Kaup, A. Assoud, Q. Zhang, X. Wu & L.F. Nazar. High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries. ACS Energy Letters 5 (2020) 533-539 doi: 10.1021/acsenergylett.9b02599
|
[26] |
T. Yu, J. Liang, L. Luo, L. Wang, F. Zhao, G. Xu, X. Bai, R. Yang, S. Zhao & J. Wang. Superionic fluorinated halide solid electrolytes for highly stable Li-metal in all-solid-state Li batteries. Advanced Energy Materials 11 (2021) 2101915 doi: 10.1002/aenm.202101915
|
[27] |
Y. Liu, S. Wang, A.M. Nolan, C. Ling & Y. Mo. Tailoring the cation lattice for chloride lithium-ion conductors. Advanced Energy Materials 10 (2020) 2002356 doi: 10.1002/aenm.202002356
|
[28] |
S. Wang, Q. Bai, A.M. Nolan, Y. Liu, S. Gong, Q. Sun & Y. Mo. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability. Angewandte Chemie International Edition 58 (2019) 8039-8043 doi: 10.1002/anie.201901938
|
[29] |
N. Adelstein & B.C. Wood. Role of dynamically frustrated bond disorder in a Li+ superionic solid electrolyte. Chemistry of Materials 28 (2016) 7218-7231 doi: 10.1021/acs.chemmater.6b00790
|
[30] |
X. Li, J. Liang, X. Yang, K.R. Adair, C. Wang, F. Zhao & X. Sun. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries. Energy & Environmental Science 13 (2020) 1429-1461 doi: 10.1039/c9ee03828k
|
[31] |
J. Liang, X. Li, K.R. Adair & X. Sun. Metal halide superionic conductors for all-solid-state batteries. Accounts of Chemical Research 54 (2021) 1023-1033 doi: 10.1021/acs.accounts.0c00762
|
[32] |
B. Zhang, R. Tan, L. Yang, J. Zheng, K. Zhang, S. Mo, Z. Lin & F. Pan. Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Storage Materials 10 (2018) 139-159 doi: 10.1016/j.ensm.2017.08.015
|
[33] |
Z. Lin, T. Liu, X. Ai & C. Liang. Aligning academia and industry for unified battery performance metrics. Nature Communications 9 (2018) 5262 doi: 10.1038/s41467-018-07599-8
|
[34] |
X. Li, J. Liang, K.R. Adair, J. Li, W. Li, F. Zhao, Y. Hu, T.K. Sham, L. Zhang & S. Zhao. Origin of superionic Li3Y1-xInxCl6 halide solid electrolytes with high humidity tolerance. Nano Letters 20 (2020) 4384-4392 doi: 10.1021/acs.nanolett.0c01156
|
[35] |
B. Helm, R. Schlem, B. Wankmiller, A. Banik, A. Gautam, J. Ruhl, C. Li, M.R. Hansen & W.G. Zeier. Exploring aliovalent substitutions in the lithium halide superionic conductor Li3-xIn1-xZrxCl6 (0 ≤ x ≤ 0.5). Chemistry of Materials 33 (2021) 4773-4782 doi: 10.1021/acs.chemmater.1c01348
|
[36] |
D. Chen, S. Li, J. Jie, S. Li, S. Zheng, M. Weng, C. Yu, S. Li, D. Chen & F. Pan. A descriptor of “material genes”: Effective atomic size in structural unit of ionic crystals. Science China Technological Sciences 62 (2019) 849-855 doi: 10.1007/s11431-018-9461-x
|
[37] |
J. Jie, M. Weng, S. Li, D. Chen, S. Li, W. Xiao, J. Zheng, F. Pan & L. Wang. A new MaterialGo database and its comparison with other high-throughput electronic structure databases for their predicted energy band gaps. Science China Technological Sciences 62 (2019) 1423-1430 doi: 10.1007/s11431-019-9514-5
|
[38] |
J. Zheng, Y. Ye & F. Pan. ‘Structure units’ as material genes in cathode materials for lithium-ion batteries. National Science Review 7 (2020) 242-245 doi: 10.1093/nsr/nwz178
|
[39] |
G. Kresse & J. Hafner. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Physical Review B 49 (1994) 14251 doi: 10.1103/PhysRevB.49.14251
|
[40] |
G. Kresse & D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 59 (1999) 1758
|
[41] |
S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V.L. Chevrier, K.A. Persson & G. Ceder. Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis. Computational Materials Science 68 (2013) 314-319 doi: 10.1016/j.commatsci.2012.10.028
|
[42] |
H. Chen, L.L. Wong & S. Adams. SoftBV-a software tool for screening the materials genome of inorganic fast ion conductors. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials 75 (2019) 18-33 doi: 10.1107/s2052520618015718
|
[43] |
Z. Hu, M. Weng, Z. Chen, W. Tan, S. Li & F. Pan. The role of M@Ni6 superstructure units in honeycomb-ordered layered oxides for Li/Na ion batteries. Nano Energy 83 (2021) 105834 doi: 10.1016/j.nanoen.2021.105834
|
[44] |
D. Park, H. Park, Y. Lee, S.O. Kim, H.G. Jung, K.Y. Chung, J.H. Shim & S. Yu. Theoretical design of lithium chloride superionic conductors for all-solid-state high-voltage lithium-ion batteries. ACS Applied Materials & Interfaces 12 (2020) 34806-34814 doi: 10.1021/acsami.0c07003
|
[45] |
R. Xiao, H. Li & L. Chen. High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory. Scientific Reports 5 (2015) 1-11
|
[46] |
B. Zhang, J. Zhong, Y. Zhang, L. Yang, J. Yang, S. Li, L.W. Wang, F. Pan & Z. Lin. Discovering a new class of fluoride solid-electrolyte materials via screening the structural property of Li-ion sublattice. Nano Energy 79 (2021) 105407 doi: 10.1016/j.nanoen.2020.105407
|
[47] |
A. Van der Ven, Z. Deng, S. Banerjee & S.P. Ong. Rechargeable alkali-ion battery materials: theory and computation. Chemical Reviews 120 (2020) 6977-7019 doi: 10.1021/acs.chemrev.9b00601
|
[48] |
J. Huang, P. Zhong, Y. Ha, D.-H. Kwon, M.J. Crafton, Y. Tian, M. Balasubramanian, B.D. McCloskey, W. Yang & G. Ceder. Non-topotactic reactions enable high rate capability in Li-rich cathode materials. Nature Energy (2021) 1-9 doi: 10.1038/s41560-021-00817-6
|
[49] |
J. Lee, A. Urban, X. Li, D. Su, G. Hautier & G. Ceder. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343 (2014) 519-522 doi: 10.1126/science.1246432
|
[50] |
F. Chen, S. Cheng, J.B. Liu, S. Li, W. Ouyang & B. Liu. Insights into the electrochemical stability and lithium conductivity of Li4MS4 (M= Si, Ge, and Sn). ACS Applied Materials & Interfaces 13 (2021) 22438-22447 doi: 10.1021/acsami.1c03227
|
[51] |
W. Xiao, C. Xin, S. Li, J. Jie, Y. Gu, J. Zheng & F. Pan. Insight into fast Li diffusion in Li-excess spinel lithium manganese oxide. 2 6 (2018) 9893-9898.g doi: 10.1039/C8TA01428K
|