Volume 2 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Yang Guohao, Liang Xianhui, Zheng Shisheng, Chen Haibiao, Zhang Wentao, Li Shunning, Pan Feng. Li-rich channels as the material gene for facile lithium diffusion in halide solid electrolytes[J]. eScience, 2022, 2(1): 79-86. doi: 10.1016/j.esci.2022.01.001
Citation: Yang Guohao, Liang Xianhui, Zheng Shisheng, Chen Haibiao, Zhang Wentao, Li Shunning, Pan Feng. Li-rich channels as the material gene for facile lithium diffusion in halide solid electrolytes[J]. eScience, 2022, 2(1): 79-86. doi: 10.1016/j.esci.2022.01.001

Li-rich channels as the material gene for facile lithium diffusion in halide solid electrolytes

doi: 10.1016/j.esci.2022.01.001
More Information
  • Corresponding author: Shunning Li lisn@pku.edu.cn; Feng Pan panfeng@pkusz.edu.cn
  • Received Date: 2021-09-09
  • Revised Date: 2021-12-02
  • Accepted Date: 2022-01-13
  • Available Online: 2022-01-22
  • Halide solid electrolytes have attracted intense research interest recently for application in all-solid-state lithium-ion batteries. Herein, we present a systematic first-principles study of the Li3MX6 (M: multivalent cation; X: halogen anion) halide family that unveils the link between Li-rich channels and ionic conductivity, highlighting the former as a material gene in these compounds. By screening a total of 180 halides for those with high thermodynamic stability, wide electrochemical window, low chemical reactivity, and decent Li-ion conductivity, we identify seven unexplored candidates for solid electrolytes. From these halides and another four prototype compounds, we discover that the facile Li diffusion is rooted in the availability of diffusion pathways which can avoid direct connection with M cations—that is, where the local environment is Li-rich. These findings shed light on strategies for regulating cation and anion frameworks to establish Li-rich channels in the design of high-performance inorganic solid electrolytes.
  • ● Li-rich channel is a material gene that can be extended to other electrolyte systems and leveraged for compositional design.
    ● Seven novel Li-containing halides are identified via simulations to be potential solid electrolytes for Li-ion batteries.
    ● Facile Li diffusion in halide solid electrolytes is found rooted in the availability of Li-rich channels.
    1 These authors contributed equally.
  • loading
  • eScience-2-1-79.pdf
  • [1]
    M. Li, J. Lu, Z. Chen & K. Amine. 30 years of lithium-ion batteries. Advanced Materials 30 (2018) 1800561 doi: 10.1002/adma.201800561
    [2]
    T. Krauskopf, F.H. Richter, W.G. Zeier & J.R. Janek. Physicochemical concepts of the lithium metal anode in solid-state batteries. Chemical Reviews 120 (2020) 7745-7794 doi: 10.1021/acs.chemrev.0c00431
    [3]
    J.C. Bachman, S. Muy, A. Grimaud, H.H. Chang, N. Pour, S.F. Lux, O. Paschos, F. Maglia, S. Lupart & P. Lamp. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chemical Reviews 116 (2016) 140-162 doi: 10.1021/acs.chemrev.5b00563
    [4]
    Y. Xiao, Y. Wang, S.H. Bo, J.C. Kim, L.J. Miara & G. Ceder. Understanding interface stability in solid-state batteries. Nature Reviews Materials 5 (2020) 105-126 doi: 10.1038/s41578-019-0157-5
    [5]
    J.F. Wu, R. Zhang, Q.F. Fu, J.S. Zhang, X.Y. Zhou, P. Gao, C.H. Xu, J. Liu & X. Guo. Inorganic solid electrolytes for all-solid-state sodium batteries: fundamentals and strategies for battery optimization. Advanced Functional Materials 31 (2021) 2008165 doi: 10.1002/adfm.202008165
    [6]
    M. Li, C. Wang, Z. Chen, K. Xu & J. Lu. New concepts in electrolytes. Chemical Reviews 120 (2020) 6783-6819 doi: 10.1021/acs.chemrev.9b00531
    [7]
    A. Manthiram, X. Yu & S. Wang. Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials 2 (2017) 1-16 doi: 10.1038/natrevmats.2016.103
    [8]
    Z. Zou, Y. Li, Z. Lu, D. Wang, Y. Cui, B. Guo, Y. Li, X. Liang, J. Feng, H. Li, C.W. Nan, M. Armand, L. Chen, K. Xu & S. Shi. Mobile ions in composite solids. Chemical Reviews 120 (2020) 4169-4221 doi: 10.1021/acs.chemrev.9b00760
    [9]
    X.B. Cheng, C.Z. Zhao, Y.X. Yao, H. Liu & Q. Zhang. Recent advances in energy chemistry between solid-state electrolyte and safe lithium-metal anodes. Chem 5 (2019) 74-96
    [10]
    J. Janek & W.G. Zeier. A solid future for battery development. Nature Energy 1 (2016) 1-4
    [11]
    P. Balakrishnan, R. Ramesh & T.P. Kumar. Safety mechanisms in lithium-ion batteries. Journal of Power Sources 155 (2006) 401-414 doi: 10.1016/j.jpowsour.2005.12.002
    [12]
    H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka & G.y. Adachi. Ionic conductivity of solid electrolytes based on lithium titanium phosphate. Journal of the Electrochemical Society 137 (1990) 1023 doi: 10.1149/1.2086597
    [13]
    R. Murugan, V. Thangadurai & W. Weppner. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angewandte Chemie International Edition 46 (2007) 7778-7781 doi: 10.1002/anie.200701144
    [14]
    S. Stramare, V. Thangadurai & W. Weppner. Lithium lanthanum titanates: a review. Chemistry of Materials 15 (2003) 3974-3990 doi: 10.1021/cm0300516
    [15]
    R. Chen, Q. Li, X. Yu, L. Chen & H. Li. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chemical Reviews 120 (2019) 6820-6877
    [16]
    N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama & K. Kawamoto. A lithium superionic conductor. Nature Materials 10 (2011) 682-686 doi: 10.1038/nmat3066
    [17]
    Y. Seino, T. Ota, K. Takada, A. Hayashi & M. Tatsumisago. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy & Environmental Science 7 (2014) 627-631 doi: 10.1039/C3EE41655K
    [18]
    W.D. Richards, L.J. Miara, Y. Wang, J.C. Kim & G. Ceder. Interface stability in solid-state batteries. Chemistry of Materials 28 (2016) 266-273 doi: 10.1021/acs.chemmater.5b04082
    [19]
    T. Asano, A. Sakai, S. Ouchi, M. Sakaida, A. Miyazaki & S. Hasegawa. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Advanced Materials 30 (2018) 1803075 doi: 10.1002/adma.201803075
    [20]
    X. Li, J. Liang, N. Chen, J. Luo, K.R. Adair, C. Wang, M.N. Banis, T.K. Sham, L. Zhang & S. Zhao. Water-mediated synthesis of a superionic halide solid electrolyte. Angewandte Chemie International Edition 131 (2019) 16579-16584 doi: 10.1002/ange.201909805
    [21]
    X. Li, J. Liang, J. Luo, M.N. Banis, C. Wang, W. Li, S. Deng, C. Yu, F. Zhao & Y. Hu. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries. Energy & Environmental Science 12 (2019) 2665-2671 doi: 10.1039/c9ee02311a
    [22]
    J. Liang, X. Li, S. Wang, K.R. Adair, W. Li, Y. Zhao, C. Wang, Y. Hu, L. Zhang & S. Zhao. Site-cccupation-tuned superionic LixScCl3+x halide solid electrolytes for all-solid-state batteries. Journal of the American Chemical Society 142 (2020) 7012-7022 doi: 10.1021/jacs.0c00134
    [23]
    S. Muy, J. Voss, R. Schlem, R. Koerver, S.J. Sedlmaier, F. Maglia, P. Lamp, W.G. Zeier & Y. Shao-Horn. High-throughput screening of solid-state Li-ion conductors using lattice-dynamics descriptors. iScience 16 (2019) 270-282 doi: 10.1016/j.isci.2019.05.036
    [24]
    R. Schlem, S. Muy, N. Prinz, A. Banik, Y. Shao-Horn, M. Zobel & W.G. Zeier. Mechanochemical Synthesis: A tool to tune cation site disorder and ionic transport properties of Li3MCl6 (M = Y, Er) superionic conductors. Advanced Energy Materials 10 (2019) 1903719
    [25]
    K.H. Park, K. Kaup, A. Assoud, Q. Zhang, X. Wu & L.F. Nazar. High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries. ACS Energy Letters 5 (2020) 533-539 doi: 10.1021/acsenergylett.9b02599
    [26]
    T. Yu, J. Liang, L. Luo, L. Wang, F. Zhao, G. Xu, X. Bai, R. Yang, S. Zhao & J. Wang. Superionic fluorinated halide solid electrolytes for highly stable Li-metal in all-solid-state Li batteries. Advanced Energy Materials 11 (2021) 2101915 doi: 10.1002/aenm.202101915
    [27]
    Y. Liu, S. Wang, A.M. Nolan, C. Ling & Y. Mo. Tailoring the cation lattice for chloride lithium-ion conductors. Advanced Energy Materials 10 (2020) 2002356 doi: 10.1002/aenm.202002356
    [28]
    S. Wang, Q. Bai, A.M. Nolan, Y. Liu, S. Gong, Q. Sun & Y. Mo. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability. Angewandte Chemie International Edition 58 (2019) 8039-8043 doi: 10.1002/anie.201901938
    [29]
    N. Adelstein & B.C. Wood. Role of dynamically frustrated bond disorder in a Li+ superionic solid electrolyte. Chemistry of Materials 28 (2016) 7218-7231 doi: 10.1021/acs.chemmater.6b00790
    [30]
    X. Li, J. Liang, X. Yang, K.R. Adair, C. Wang, F. Zhao & X. Sun. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries. Energy & Environmental Science 13 (2020) 1429-1461 doi: 10.1039/c9ee03828k
    [31]
    J. Liang, X. Li, K.R. Adair & X. Sun. Metal halide superionic conductors for all-solid-state batteries. Accounts of Chemical Research 54 (2021) 1023-1033 doi: 10.1021/acs.accounts.0c00762
    [32]
    B. Zhang, R. Tan, L. Yang, J. Zheng, K. Zhang, S. Mo, Z. Lin & F. Pan. Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Storage Materials 10 (2018) 139-159 doi: 10.1016/j.ensm.2017.08.015
    [33]
    Z. Lin, T. Liu, X. Ai & C. Liang. Aligning academia and industry for unified battery performance metrics. Nature Communications 9 (2018) 5262 doi: 10.1038/s41467-018-07599-8
    [34]
    X. Li, J. Liang, K.R. Adair, J. Li, W. Li, F. Zhao, Y. Hu, T.K. Sham, L. Zhang & S. Zhao. Origin of superionic Li3Y1-xInxCl6 halide solid electrolytes with high humidity tolerance. Nano Letters 20 (2020) 4384-4392 doi: 10.1021/acs.nanolett.0c01156
    [35]
    B. Helm, R. Schlem, B. Wankmiller, A. Banik, A. Gautam, J. Ruhl, C. Li, M.R. Hansen & W.G. Zeier. Exploring aliovalent substitutions in the lithium halide superionic conductor Li3-xIn1-xZrxCl6 (0 ≤ x ≤ 0.5). Chemistry of Materials 33 (2021) 4773-4782 doi: 10.1021/acs.chemmater.1c01348
    [36]
    D. Chen, S. Li, J. Jie, S. Li, S. Zheng, M. Weng, C. Yu, S. Li, D. Chen & F. Pan. A descriptor of “material genes”: Effective atomic size in structural unit of ionic crystals. Science China Technological Sciences 62 (2019) 849-855 doi: 10.1007/s11431-018-9461-x
    [37]
    J. Jie, M. Weng, S. Li, D. Chen, S. Li, W. Xiao, J. Zheng, F. Pan & L. Wang. A new MaterialGo database and its comparison with other high-throughput electronic structure databases for their predicted energy band gaps. Science China Technological Sciences 62 (2019) 1423-1430 doi: 10.1007/s11431-019-9514-5
    [38]
    J. Zheng, Y. Ye & F. Pan. ‘Structure units’ as material genes in cathode materials for lithium-ion batteries. National Science Review 7 (2020) 242-245 doi: 10.1093/nsr/nwz178
    [39]
    G. Kresse & J. Hafner. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Physical Review B 49 (1994) 14251 doi: 10.1103/PhysRevB.49.14251
    [40]
    G. Kresse & D. Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 59 (1999) 1758
    [41]
    S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V.L. Chevrier, K.A. Persson & G. Ceder. Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis. Computational Materials Science 68 (2013) 314-319 doi: 10.1016/j.commatsci.2012.10.028
    [42]
    H. Chen, L.L. Wong & S. Adams. SoftBV-a software tool for screening the materials genome of inorganic fast ion conductors. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials 75 (2019) 18-33 doi: 10.1107/s2052520618015718
    [43]
    Z. Hu, M. Weng, Z. Chen, W. Tan, S. Li & F. Pan. The role of M@Ni6 superstructure units in honeycomb-ordered layered oxides for Li/Na ion batteries. Nano Energy 83 (2021) 105834 doi: 10.1016/j.nanoen.2021.105834
    [44]
    D. Park, H. Park, Y. Lee, S.O. Kim, H.G. Jung, K.Y. Chung, J.H. Shim & S. Yu. Theoretical design of lithium chloride superionic conductors for all-solid-state high-voltage lithium-ion batteries. ACS Applied Materials & Interfaces 12 (2020) 34806-34814 doi: 10.1021/acsami.0c07003
    [45]
    R. Xiao, H. Li & L. Chen. High-throughput design and optimization of fast lithium ion conductors by the combination of bond-valence method and density functional theory. Scientific Reports 5 (2015) 1-11
    [46]
    B. Zhang, J. Zhong, Y. Zhang, L. Yang, J. Yang, S. Li, L.W. Wang, F. Pan & Z. Lin. Discovering a new class of fluoride solid-electrolyte materials via screening the structural property of Li-ion sublattice. Nano Energy 79 (2021) 105407 doi: 10.1016/j.nanoen.2020.105407
    [47]
    A. Van der Ven, Z. Deng, S. Banerjee & S.P. Ong. Rechargeable alkali-ion battery materials: theory and computation. Chemical Reviews 120 (2020) 6977-7019 doi: 10.1021/acs.chemrev.9b00601
    [48]
    J. Huang, P. Zhong, Y. Ha, D.-H. Kwon, M.J. Crafton, Y. Tian, M. Balasubramanian, B.D. McCloskey, W. Yang & G. Ceder. Non-topotactic reactions enable high rate capability in Li-rich cathode materials. Nature Energy (2021) 1-9 doi: 10.1038/s41560-021-00817-6
    [49]
    J. Lee, A. Urban, X. Li, D. Su, G. Hautier & G. Ceder. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343 (2014) 519-522 doi: 10.1126/science.1246432
    [50]
    F. Chen, S. Cheng, J.B. Liu, S. Li, W. Ouyang & B. Liu. Insights into the electrochemical stability and lithium conductivity of Li4MS4 (M= Si, Ge, and Sn). ACS Applied Materials & Interfaces 13 (2021) 22438-22447 doi: 10.1021/acsami.1c03227
    [51]
    W. Xiao, C. Xin, S. Li, J. Jie, Y. Gu, J. Zheng & F. Pan. Insight into fast Li diffusion in Li-excess spinel lithium manganese oxide. 2 6 (2018) 9893-9898.g doi: 10.1039/C8TA01428K
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(1)

    Article Metrics

    Article views (339) PDF downloads(52) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return