Volume 2 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Zhang Ye, Zhao Lihong, Liang Yanliang, Wang Xiaojun, Yao Yan. Effect of electrolyte anions on the cycle life of a polymer electrode in aqueous batteries[J]. eScience, 2022, 2(1): 110-115. doi: 10.1016/j.esci.2022.01.002
Citation: Zhang Ye, Zhao Lihong, Liang Yanliang, Wang Xiaojun, Yao Yan. Effect of electrolyte anions on the cycle life of a polymer electrode in aqueous batteries[J]. eScience, 2022, 2(1): 110-115. doi: 10.1016/j.esci.2022.01.002

Effect of electrolyte anions on the cycle life of a polymer electrode in aqueous batteries

doi: 10.1016/j.esci.2022.01.002
More Information
  • Corresponding author: Yan Yao yyao4@uh.edu
  • Received Date: 2021-11-08
  • Revised Date: 2021-12-31
  • Accepted Date: 2022-01-27
  • Available Online: 2022-02-02
  • Redox polymers are a class of high-capacity, low-cost electrode materials for electrochemical energy storage, but the mechanisms governing their cycling stability are not well understood. Here we investigate the effect of anions on the longevity of a p-dopable polymer through comparing two aqueous zinc-based electrolytes. Galvanostatic cycling studies reveal the polymer has better capacity retention in the presence of triflate anions than that with sulfate anions. Based on electrode microstructural analysis and evolution profiles of the cell stacking pressure, the origin of capacity decay is ascribed to mechanical fractures induced by volume change of the polymer active materials during repeated cycling. The volume change of the polymer with the triflate anion is 61% less than that with the sulfate anion, resulting in fewer cracks in the electrodes. The difference is related to the different anion solvation structures—the triflate anion has fewer solvated water molecules compared with the sulfate anion, leading to smaller volume expansion. This work highlights that anions with low solvation degree are preferable for long-term cycling.
  • ● The volume change of the polymer electrode induces mechanical fracture, leading to its capacity loss.
    ● The effect of anions of zinc salts in aqueous electrolytes on the longevity of a p-dopable polymer was investigated.
    ● Anions with lower solvation degree induce less volume change, thus yielding long-term cycling.
  • loading
  • eScience-2-1-110.pdf
  • [1]
    D. Larcher, J. M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem., 7, (2015), 19-29 doi: 10.1038/nchem.2085
    [2]
    J. Liu, J.-G. Zhang, Z. Yang, J. P. Lemmon, C. Imhoff, G. L. Graff, L. Li, J. Hu, C. Wang, J. Xiao, G. Xia, V. V. Viswanathan, S. Baskaran, V. Sprenkle, X. Li, Y. Shao, B. Schwenzer, Materials Science and Materials Chemistry for Large Scale Electrochemical Energy Storage: From Transportation to Electrical Grid, Adv. Funct. Mater., 23, (2013), 929-946 doi: 10.1002/adfm.201200690
    [3]
    Y. Liang, Y. Yao, Positioning Organic Electrode Materials in the Battery Landscape, Joule, 2, (2018), 1690-1706 doi: 10.1016/j.joule.2018.07.008
    [4]
    P. Novak, K. Muller, K. S. V. Santhanam, O. Haas, Electrochemically Active Polymers for Rechargeable Batteries, Chem. Rev., 97, (1997), 207-282
    [5]
    Z. Huang, Y. Hou, T. Wang, Y. Zhao, G. Liang, X. Li, Y. Guo, Q. Yang, Z. Chen, Q. Li, L. Ma, J. Fan, C. Zhi, Manipulating anion intercalation enables a high-voltage aqueous dual ion battery, Nat. Commun., 12, (2021), 3106 doi: 10.1038/s41467-021-23369-5
    [6]
    P. Poizot, J. Gaubicher, S. Renault, L. Dubois, Y. Liang, Y. Yao, Opportunities and Challenges for Organic Electrodes in Electrochemical Energy Storage, Chem. Rev., 120, (2020), 6490-6557 doi: 10.1021/acs.chemrev.9b00482
    [7]
    S. Muench, A. Wild, C. Friebe, B. Haupler, T. Janoschka, U. S. Schubert, Polymer-Based Organic Batteries, Chem. Rev., 116, (2016), 9438-9484 doi: 10.1021/acs.chemrev.6b00070
    [8]
    Z. Tie, Z. Niu, Design Strategies for High-Performance Aqueous Zn/Organic Batteries, Angew. Chem. Int. Ed., 59, (2020), 21293-21303 doi: 10.1002/anie.202008960
    [9]
    T. P. Nguyen, A. D. Easley, N. Kang, S. Khan, S.-M. Lim, Y. H. Rezenom, S. Wang, D. K. Tran, J. Fan, R. A. Letteri, X. He, L. Su, C.-H. Yu, J. L. Lutkenhaus, K. L. Wooley, Polypeptide organic radical batteries, Nature, 593, (2021), 61-66 doi: 10.1038/s41586-021-03399-1
    [10]
    J. Kim, J. H. Kim, K. Ariga, Redox-Active Polymers for Energy Storage Nanoarchitectonics, Joule, 1, (2017), 739-768 doi: 10.1016/j.joule.2017.08.018
    [11]
    F. Mo, Q. Li, G. Liang, Y. Zhao, D. Wang, Y. Huang, J. Wei, C. Zhi, A Self-Healing Crease-Free Supramolecular All-Polymer Supercapacitor, Adv. Sci., 8, (2021), 2100072 doi: 10.1002/advs.202100072
    [12]
    Y. Luo, F. Zheng, L. Liu, K. Lei, X. Hou, G. Xu, H. Meng, J. Shi, F. Li, A High-Power Aqueous Zinc-Organic Radical Battery with Tunable Operating Voltage Triggered by Selected Anions, ChemSusChem, 13, (2020), 2239-2244 doi: 10.1002/cssc.201903083
    [13]
    J. Xie, F. Yu, J. Zhao, W. Guo, H.-L. Zhang, G. Cui, Q. Zhang, An irreversible electrolyte anion-doping strategy toward a superior aqueous Zn-organic battery, Energy Storage Mater., 33, (2020), 283-289 doi: 10.1016/j.ensm.2020.08.027
    [14]
    Y. Zhang, Y. Liang, H. Dong, X. Wang, Y. Yao, Charge Storage Mechanism of a Quinone Polymer Electrode for Zinc-ion Batteries, J Electrochem Soc., 167, (2020), 070558 doi: 10.1149/1945-7111/ab847a
    [15]
    A. Nimkar, F. Malchick, B. Gavriel, M. Turgeman, G. Bergman, T. Fan, S. Bublil, R. Cohen, M. Weitman, N. Shpigel, M. D. Levi, D. Aurbach, Influences of Cations’ Solvation on Charge Storage Performance in Polyimide Anodes for Aqueous Multivalent Ion Batteries, ACS Energy Lett., 6, (2021), 2638-2644 doi: 10.1021/acsenergylett.1c01007
    [16]
    Z. Song, Y. Qian, T. Zhang, M. Otani, H. Zhou, Poly(benzoquinonyl sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries, Adv. Sci., 2, (2015), 1500124 doi: 10.1002/advs.201500124
    [17]
    G. S. Richard Boddy. Statistical Methods in Practice: For Scientists and Technologists, John Wiley & Sons, Ltd 2009, 92-94
    [18]
    J. L. Devore. Probability and Statistics for Engineering and the Sciences, Cengage Learning, Boston, 2015, 357-359
    [19]
    I. Jureviciute, S. Bruckenstein, A. R. Hillman, Counter-ion specific effects on charge and solvent trapping in poly(vinylferrocene) films, J. Electroanal. Chem., 488, (2000), 73-81 doi: 10.1016/S0022-0728(00)00190-X
    [20]
    N. Levy, M. D. Levi, D. Aurbach, R. Demadrille, A. Pron, Failure and Stabilization Mechanisms in Multiply Cycled Conducting Polymers for Energy Storage Devices, J. Phys. Chem. C, 114, (2010), 16823-16831 doi: 10.1021/jp105965u
    [21]
    M. J. M. Jafeen, M. A. Careem, S. Skaarup, A study on the electrochemical behaviour of polypyrrole films in concentrated aqueous alkali halide electrolytes, Ionics, 20, (2014), 535-544 doi: 10.1007/s11581-013-1005-z
    [22]
    J. N. Israelachvili. Intermolecular and Surface Forces (Third Edition), Academic Press, Academic Press, 2011, 96-97
    [23]
    X.-B. Wang, J. B. Nicholas, L.-S. Wang, Electronic instability of isolated SO42− and its solvation stabilization, J. Chem. Phys., 113, (2000), 10837-10840 doi: 10.1063/1.1333703
    [24]
    J. Zhou, G. Santambrogio, M. Brummer, D. T. Moore, L. Woste, G. Meijer, D. M. Neumark, K. R. Asmis, Infrared spectroscopy of hydrated sulfate dianions, J. Chem. Phys., 125, (2006), 111102 doi: 10.1063/1.2351675
    [25]
    M. Prakash, V. Subramanian, Ab initio and density functional theory (DFT) studies on triflic acid with water and protonated water clusters, J. Mol. Model., 22, (2016), 293 doi: 10.1007/s00894-016-3158-y
    [26]
    J. Stangret, T. Gampe, Ionic Hydration Behavior Derived from Infrared Spectra in HDO, J. Phys. Chem. A, 106, (2002), 5393-5402
    [27]
    P.-A. Bergstrom, J. Lindgren, An infrared spectroscopic study of the hydration of the triflate ion (CF3SO3−) in aqueous solution, J. Mol. Struct., 239, (1990), 103-111 doi: 10.1016/0022-2860(90)80205-X
    [28]
    L. Jiang, Y. Lu, C. Zhao, L. Liu, J. Zhang, Q. Zhang, X. Shen, J. Zhao, X. Yu, H. Li, X. Huang, L. Chen, Y.-S. Hu, Building aqueous K-ion batteries for energy storage, Nat. Energy, 4, (2019), 495-503 doi: 10.1038/s41560-019-0388-0
    [29]
    T. Ma, A. D. Easley, S. Wang, P. Flouda, J. L. Lutkenhaus, Mixed electron-ion-water transfer in macromolecular radicals for metal-free aqueous batteries, Cell Rep. Phys. Sci., 2, (2021), 100414
    [30]
    Y. Sun, N. Liu, Y. Cui, Promises and challenges of nanomaterials for lithium-based rechargeable batteries, Nat. Energy, 1, (2016), 16071
    [31]
    Y. Shi, L. Peng, Y. Ding, Y. Zhao, G. Yu, Nanostructured conductive polymers for advanced energy storage, Chem. Soc. Rev., 44, (2015), 6684-6696
    [32]
    R. Zhan, X. Wang, Z. Chen, Z. W. Seh, L. Wang, Y. Sun, Promises and Challenges of the Practical Implementation of Prelithiation in Lithium-Ion Batteries, Adv. Energy Mater., 11, (2021), 2101565 doi: 10.1002/aenm.202101565
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (189) PDF downloads(30) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return