Volume 2 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Meng Fanxu, Dai Chencheng, Liu Zheng, Luo Songzhu, Ge Jingjie, Duan Yan, Chen Gao, Wei Chao, Chen Riccardo Ruixi, Wang Jiarui, Mandler Daniel, Xu Zhichuan J.. Methanol electro-oxidation to formate on iron-substituted lanthanum cobaltite perovskite oxides[J]. eScience, 2022, 2(1): 87-94. doi: 10.1016/j.esci.2022.02.001
Citation: Meng Fanxu, Dai Chencheng, Liu Zheng, Luo Songzhu, Ge Jingjie, Duan Yan, Chen Gao, Wei Chao, Chen Riccardo Ruixi, Wang Jiarui, Mandler Daniel, Xu Zhichuan J.. Methanol electro-oxidation to formate on iron-substituted lanthanum cobaltite perovskite oxides[J]. eScience, 2022, 2(1): 87-94. doi: 10.1016/j.esci.2022.02.001

Methanol electro-oxidation to formate on iron-substituted lanthanum cobaltite perovskite oxides

doi: 10.1016/j.esci.2022.02.001
More Information
  • Electrochemically producing formate by oxidizing methanol is a promising way to add value to methanol. Noble metal-based electrocatalysts, which have been extensively studied for the methanol oxidation reaction, can catalyze the complete oxidation of methanol to carbon dioxide, but not the mild oxidation to formate. As a result, exploring efficient and earth-abundant electrocatalysts for formate production from methanol is of interest. Herein, we present the electro-oxidation of methanol to formate, catalyzed by iron-substituted lanthanum cobaltite (LaCo1−xFexO3). The Fe/Co ratio in the oxides greatly influences the activity and selectivity. This effect is attributed to the higher affinity of Fe and Co to the two reactants: CH3OH and OH, respectively. Because a balance between these affinities is favored, LaCo0.5Fe0.5O3 shows the highest formate production rate, at 24.5 mmol ​h−1 goxide−1, and a relatively high Faradaic efficiency of 44.4% in a series of (LaCo1−xFexO3) samples (x ​= ​0.00, 0.25, 0.50, 0.75, 1.00) at 1.6 ​V versus a reversible hydrogen electrode.
  • ● Electro-oxidation of methanol to formate is catalyzed by iron substituted lanthanum cobaltite (LaCo1−xFexO3).
    ● (LaCo0.5Fe0.5O3) shows the highest formate production rate of 24.5 mmol ​h−1 goxide−1 and a relatively high Faradaic efficiency of 44.4%.
    ● DFT calculations revealed the influence of iron substitution on the activity and selectivity.
    ● The Fe/Co ratio in the oxides greatly influences the activity and selectivity.
    1 These authors contributed equally to this work.
  • loading
  • eScience-2-1-87.docx
  • [1]
    D. A. Bulushev, J. R. H. Ross, Towards sustainable production of formic acid, ChemSusChem 11 (2018) 821-836 doi: 10.1002/cssc.201702075
    [2]
    I. A. Zolotarskii, T. V. Andrushkevich, G. Y. Popova, S. Stompel, V. O. Efimov, V. B. Nakrokhin, L. Y. Zudilina, N. V. Vernikovskaya, Modeling, design and operation of pilot plant for two-stage oxidation of methanol into formic acid, Chem. Eng. J. 238 (2014) 111-119 doi: 10.1016/j.cej.2013.08.026
    [3]
    J. Hietala, A. Vuori, P. Johnsson, I. Pollari, W. Reutemann, H. Kieczka, Formic acid, in: B. Elvers, C. Ley (Eds.), Ullmann's Encyclopedia of Industrial Chemistry, 2016, pp. 1-22
    [4]
    C. Fellay, P. J. Dyson, G. Laurenczy, A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst, Angew. Chem. Int. Ed. 47 (2008) 3966-3968 doi: 10.1002/anie.200800320
    [5]
    F. Joo, A breakthrough in sustainable production of formate salts: combined catalytic methanol dehydrogenation and bicarbonate hydrogenation, ChemCatChem 6 (2014) 3306-3308 doi: 10.1002/cctc.201402591
    [6]
    T. V. Andrushkevich, G. Y. Popova, E. V. Danilevich, I. A. Zolotarskii, V. B. Nakrokhin, T. A. Nikoro, S. I. Stompel, V. N. Parmon, A new gas-phase method for formic acid production: tests on a pilot plant, Catalys. Indus. 6 (2014) 17-24 doi: 10.1134/S2070050414010024
    [7]
    Z. Pi, H. Zhong, Integrating hydrogen production with selective methanol oxidation to value-added formate over a NiS bifunctional electrocatalyst, IOP Conf. Ser. Earth Environ. Sci. 651 (2021) 042062 doi: 10.1088/1755-1315/651/4/042062
    [8]
    X. Han, H. Sheng, C. Yu, T. W. Walker, G. W. Huber, J. Qiu, S. Jin, Electrocatalytic oxidation of glycerol to formic acid by CuCo2O4 spinel oxide nanostructure catalysts, ACS Catal. 10 (2020) 6741-6752 doi: 10.1021/acscatal.0c01498
    [9]
    C. Dong, X. Zong, W. Jiang, L. Niu, Z. Liu, D. Qu, X. Wang, Z. Sun, Recent advances of ceria-based materials in the oxidation of carbon monoxide, Small Struct. 2 (2021) 2000081 doi: 10.1002/sstr.202000081
    [10]
    L. Zhang, H. Zhao, S. Xu, Q. Liu, T. Li, Y. Luo, S. Gao, X. Shi, A. M. Asiri, X. Sun, Recent advances in 1D electrospun nanocatalysts for electrochemical water splitting, Small Struct. 2 (2021) 2000048 doi: 10.1002/sstr.202000048
    [11]
    S. S. Mahapatra, J. Datta, Characterization of Pt-Pd/C electrocatalyst for methanol oxidation in alkaline medium, Intern. J. Electrochem. 2011 (2011) 1-16 doi: 10.4061/2011/563495
    [12]
    M. V. Pagliaro, M. Bellini, J. Filippi, M. G. Folliero, A. Marchionni, H. A. Miller, W. Oberhauser, F. Vizza, Hydrogen production from the electrooxidation of methanol and potassium formate in alkaline media on carbon supported Rh and Pd nanoparticles, Inorg. Chim. Acta. 470 (2018) 263-269 doi: 10.1016/j.ica.2017.05.055
    [13]
    D. Y. Chung, K.-J. Lee, Y.-E. Sung, Methanol electro-oxidation on the Pt surface: revisiting the cyclic voltammetry interpretation, J. Phys. Chem. C 120 (2016) 9028-9035 doi: 10.1021/acs.jpcc.5b12303
    [14]
    W. Huang, H. Wang, J. Zhou, J. Wang, P. N. Duchesne, D. Muir, P. Zhang, N. Han, F. Zhao, M. Zeng, J. Zhong, C. Jin, Y. Li, S. T. Lee, H. Dai, Highly active and durable methanol oxidation electrocatalyst based on the synergy of platinum-nickel hydroxide-graphene, Nat. Commun. 6 (2015) 10035 doi: 10.1038/ncomms10035
    [15]
    S. W. Lee, S. Chen, W. Sheng, N. Yabuuchi, Y.-T. Kim, T. Mitani, E. Vescovo, Y. Shao-Horn, Roles of surface steps on Pt nanoparticles in electro-oxidation of carbon monoxide and methanol, J. Am. Chem. Soc. 131 (2009) 15669-15677 doi: 10.1021/ja9025648
    [16]
    J. Suntivich, Z. Xu, C. E. Carlton, J. Kim, B. Han, S. W. Lee, N. Bonnet, N. Marzari, L. F. Allard, H. A. Gasteiger, K. Hamad-Schifferli, Y. Shao-Horn, Surface composition tuning of Au-Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation, J. Am. Chem. Soc. 135 (2013) 7985-7991 doi: 10.1021/ja402072r
    [17]
    K. Miecznikowski, WO3 decorated carbon nanotube supported PtSn nanoparticles with enhanced activity towards electrochemical oxidation of ethylene glycol in direct alcohol fuel cells, Arab. J. Chem. 13 (2020) 1020-1031 doi: 10.1016/j.arabjc.2017.09.005
    [18]
    Y.-W. Zhou, Y.-F. Chen, K. Jiang, Z. Liu, Z.-J. Mao, W.-Y. Zhang, W.-F. Lin, W.-B. Cai, Probing the enhanced methanol electrooxidation mechanism on platinum-metal oxide catalyst, Appl. Catal. B Environ. 280 (2021) doi: 10.1016/j.apcatb.2020.119393
    [19]
    J. Mateos-Santiago, M. L. Hernandez-Pichardo, L. Lartundo-Rojas, A. Manzo-Robledo, Methanol electro-oxidation on Pt-carbon vulcan catalyst modified with WOx nanostructures: an approach to the reaction sequence using DEMS, Ind. Eng. Chem. Res. 56 (2016) 161-167
    [20]
    K. Zhang, W. Yang, C. Ma, Y. Wang, C. Sun, Y. Chen, P. Duchesne, J. Zhou, J. Wang, Y. Hu, M. N. Banis, P. Zhang, F. Li, J. Li, L. Chen, A highly active, stable and synergistic Pt nanoparticles/Mo2C nanotube catalyst for methanol electro-oxidation, NPG Asia Mater. 7 (2015) e153-e153
    [21]
    H. A. Gasteiger, N. Markovic, P. N. Ross, E. J. Cairns, Methanol electrooxidation on well-characterized platinum-ruthenium bulk alloys, J. Phys. Chem. 97 (1993) 12020-12029 doi: 10.1021/j100148a030
    [22]
    A. G. Hubert, M. Nenad, N. R. Philip, J. C. Elton, Temperature-dependent methanol electro-oxidation on well-characterized Pt-Ru alloys, J. Electrochem. Soc. 141 (1994) 1795-1803 doi: 10.1149/1.2055007
    [23]
    L. Yaqoob, T. Noor, N. Iqbal, Recent progress in development of efficient electrocatalyst for methanol oxidation reaction in direct methanol fuel cell, Int. J. Energy Res. 45 (2020) 6550-6583
    [24]
    A. Yuda, A. Ashok, A. Kumar, A comprehensive and critical review on recent progress in anode catalyst for methanol oxidation reaction, Catal. Rev. (2020) 1-103
    [25]
    S. Rezaee, S. Shahrokhian, Facile synthesis of petal-like NiCo/NiO-CoO/nanoporous carbon composite based on mixed-metallic MOFs and their application for electrocatalytic oxidation of methanol, Appl. Catal. B Environ. 244 (2019) 802-813 doi: 10.1016/j.apcatb.2018.12.013
    [26]
    M. Li, X. Deng, K. Xiang, Y. Liang, B. Zhao, J. Hao, J. L. Luo, X. Z. Fu, Value-Added formate production from selective methanol oxidation as anodic reaction to enhance electrochemical hydrogen cogeneration, ChemSusChem 13 (2020) 914-921 doi: 10.1002/cssc.201902921
    [27]
    K. Xiang, D. Wu, X. Deng, M. Li, S. Chen, P. Hao, X. Guo, J. L. Luo, X. Z. Fu, Boosting H2 generation coupled with selective oxidation of methanol into value-added chemical over cobalt Hydroxide@Hydroxysulfide nanosheets electrocatalysts, Adv. Funct. Mater. 30 (2020) doi: 10.1002/adfm.201909610
    [28]
    C. Liu, W. Zhou, J. Zhang, Z. Chen, S. Liu, Y. Zhang, J. Yang, L. Xu, W. Hu, Y. Chen, Y. Deng, Air-assisted transient synthesis of metastable nickel oxide boosting alkaline fuel oxidation reaction, Adv. Energy Mater. 10 (2020) doi: 10.1002/aenm.202001397
    [29]
    B. Miao, Z.-P. Wu, H. Xu, M. Zhang, Y. Chen, L. Wang, DFT studies on the key competing reaction steps towards complete ethanol oxidation on transition metal catalysts, Comput. Mater. Sci. 156 (2019) 175-186 doi: 10.1016/j.commatsci.2018.09.029
    [30]
    J. Hao, J. Liu, D. Wu, M. Chen, Y. Liang, Q. Wang, L. Wang, X.-Z. Fu, J.-L. Luo, In situ facile fabrication of Ni(OH)2 nanosheet arrays for electrocatalytic co-production of formate and hydrogen from methanol in alkaline solution, Appl. Catal. B Environ. 281 (2021)
    [31]
    J. Li, R. Wei, X. Wang, Y. Zuo, X. Han, J. Arbiol, J. Llorca, Y. Yang, A. Cabot, C. Cui, Selective methanol-to-formate electrocatalytic conversion on branched nickel carbide, Angew Chem. Int. Ed. Engl. 59 (2020) 20826-20830 doi: 10.1002/anie.202004301
    [32]
    J. Lv, W. Feng, S. Yang, H. Liu, X. Huang, Methanol dissociation and oxidation on single Fe atom supported on graphitic carbon nitride, Appl. Organomet. Chem. 33 (2019)
    [33]
    J. Li, C. Xing, Y. Zhang, T. Zhang, M. C. Spadaro, Q. Wu, Y. Yi, S. He, J. Llorca, J. Arbiol, A. Cabot, C. Cui, Nickel iron diselenide for highly efficient and selective electrocatalytic conversion of methanol to formate, Small 17 (2021) e2006623 doi: 10.1002/smll.202006623
    [34]
    Y. Duan, S. Sun, S. Xi, X. Ren, Y. Zhou, G. Zhang, H. Yang, Y. Du, Z. J. Xu, Tailoring the Co 3d-O 2p covalency in LaCoO3 by Fe substitution to promote oxygen evolution reaction, Chem. Mater. 29 (2017) 10534-10541 doi: 10.1021/acs.chemmater.7b04534
    [35]
    M. Wang, B. Han, J. Deng, Y. Jiang, M. Zhou, M. Lucero, Y. Wang, Y. Chen, Z. Yang, A. T. N'Diaye, Q. Wang, Z. J. Xu, Z. Feng, Influence of Fe substitution into LaCoO3 electrocatalysts on oxygen-reduction activity, ACS Appl. Mater. Interfaces 11 (2019) 5682-5686 doi: 10.1021/acsami.8b20780
    [36]
    M. Sivakumar, M. Sakthivel, S.-M. Chen, P. Veerakumar, S.-B. Liu, Sol-gel synthesis of carbon-coated LaCoO3 for effective electrocatalytic oxidation of salicylic acid, Chemelectrochem 4 (2017) 935-940 doi: 10.1002/celc.201600714
    [37]
    C. Sun, J. A. Alonso, J. Bian, Recent advances in perovskite-type oxides for energy conversion and storage applications, Adv. Energy Mater. 11 (2021) 2000459 doi: 10.1002/aenm.202000459
    [38]
    R. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A 32 (1976) 751-767 doi: 10.1107/S0567739476001551
    [39]
    H. Liang, Y. Hong, C. Zhu, S. Li, Y. Chen, Z. Liu, D. Ye, Influence of partial Mn-substitution on surface oxygen species of LaCoO3 catalysts, Catal. Today 201 (2013) 98-102 doi: 10.1016/j.cattod.2012.04.036
    [40]
    X. Li, H. Zhang, S. Li, W. Fan, M. Zhao, IR transmission spectra of nanocrystalline powder materials of the composite oxides La1 − xSrxFe1 − yCoyO3 with the perovskite structure, Mater. Chem. Phys. 41 (1995) 41-45 doi: 10.1016/0254-0584(95)01502-7
    [41]
    J. Y. Chang, B. N. Lin, Y. Y. Hsu, H. C. Ku, Co K-edge XANES and spin-state transition of RCoO3 (R=La, Eu), Phys. B Condens. Matter 329-333 (2003) 826-828
    [42]
    C. Wei, S. Sun, D. Mandler, X. Wang, S. Z. Qiao, Z. J. Xu, Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity, Chem. Soc. Rev. 48 (2019) 2518-2534 doi: 10.1039/c8cs00848e
    [43]
    N. A. Karim, S. K. Kamarudin, L. K. Shyuan, Z. Yaakob, W. R. W. Daud, A. A. H. Khadum, Novel cathode catalyst for DMFC: study of the density of states of oxygen adsorption using density functional theory, Int. J. Hydrogen Energy 39 (2014) 17295-17305 doi: 10.1016/j.ijhydene.2014.06.110
    [44]
    C. Dai, Y. Sun, G. Chen, A. C. Fisher, Z. J. Xu, Electrochemical oxidation of nitrogen towards direct nitrate production on spinel oxides, Angew. Chem. Int. Ed. 59 (2020) 9418-9422 doi: 10.1002/anie.202002923
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (210) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return