Citation: | Cao Wenzhuo, Li Quan, Yu Xiqian, Li Hong. Controlling Li deposition below the interface[J]. eScience, 2022, 2(1): 47-78. doi: 10.1016/j.esci.2022.02.002 |
[1] |
Y. Nishi, Lithium ion secondary batteries; past 10 years and the future, Journal of Power Sources 100 (2001) 101-106 doi: 10.1016/S0378-7753(01)00887-4
|
[2] |
B. Dunn, H. Kamath, J. M. Tarascon, Electrical Energy Storage for the Grid: A Battery of Choices, Science 334 (2011) 928-935 doi: 10.1126/science.1212741
|
[3] |
P. V. Kamat, Lithium-Ion Batteries and Beyond: Celebrating the 2019 Nobel Prize in Chemistry - A Virtual Issue, ACS Energy Letters 4 (2019) 2757-2759 doi: 10.1021/acsenergylett.9b02280
|
[4] |
H. Li, Practical Evaluation of Li-Ion Batteries, Joule 3 (2019) 911-914 doi: 10.1016/j.joule.2019.03.028
|
[5] |
W. Cao, J. Zhang, H. Li, Batteries with high theoretical energy densities, Energy Stor. Mater. 26 (2020) 46-55 doi: 10.1016/j.ensm.2019.12.024
|
[6] |
J. Liu, Z. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Li, B. Y. Liaw, P. Liu, A. Manthiram, Pathways for practical high-energy long-cycling lithium metal batteries, Nature Energy 4 (2019) 180-186 doi: 10.1038/s41560-019-0338-x
|
[7] |
Y. L. a. Y. C. Dingchang Lin, Reviving the lithium metal anode for high-energy batteries, Nature Nanotechnology (2017) 13 doi: 10.1038/nnano.2017.16
|
[8] |
I. Yoshimatsu, Lithium Electrode Morphology during Cycling in Lithium Cells, J. Electrochem. Soc. 135 (1988) 2422 doi: 10.1149/1.2095351
|
[9] |
M. Rosso, C. Brissot, A. Teyssot, M. Dolle, L. Sannier, J.-M. Tarascon, R. Bouchet, S. Lascaud, Dendrite short-circuit and fuse effect on Li/polymer/Li cells, Electrochim. Acta 51 (2006) 5334-5340 doi: 10.1016/j.electacta.2006.02.004
|
[10] |
W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Lithium metal anodes for rechargeable batteries, Energy Environ. Sci. 7 (2014) 513-537 doi: 10.1039/C3EE40795K
|
[11] |
J. Xiang, L. Yuan, Y. Shen, Z. Cheng, K. Yuan, Z. Guo, Y. Zhang, X. Chen, Y. Huang, Improved Rechargeability of Lithium Metal Anode via Controlling Lithium-Ion Flux, Adv. Energy Mater. 8 (2018) doi: 10.1002/aenm.201802352
|
[12] |
X. B. Cheng, R. Zhang, C. Z. Zhao, Q. Zhang, Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review, Chem. Rev. 117 (2017) 10403-10473 doi: 10.1021/acs.chemrev.7b00115
|
[13] |
W. Liu, P. Liu, D. Mitlin, Tutorial review on structure - dendrite growth relations in metal battery anode supports, Chem. Soc. Rev. 49 (2020) 7284-7300 doi: 10.1039/d0cs00867b
|
[14] |
J. Zheng, M. S. Kim, Z. Tu, S. Choudhury, T. Tang, L. A. Archer, Regulating electrodeposition morphology of lithium: towards commercially relevant secondary Li metal batteries, Chem. Soc. Rev. 49 (2020) 2701-2750 doi: 10.1039/c9cs00883g
|
[15] |
Y. Han, B. Liu, Z. Xiao, W. Zhang, X. Wang, G. Pan, Y. Xia, X. Xia, J. Tu, Interface issues of lithium metal anode for high-energy batteries: Challenges, strategies, and perspectives, InfoMat 3 (2021) 155-174 doi: 10.1002/inf2.12166
|
[16] |
J. Li, Z. Kong, X. Liu, B. Zheng, Q. H. Fan, E. Garratt, T. Schuelke, K. Wang, H. Xu, H. Jin, Strategies to anode protection in lithium metal battery: A review, InfoMat 3 (2021) 1333-1363 doi: 10.1002/inf2.12189
|
[17] |
H. Zhang, G. G. Eshetu, X. Judez, C. Li, L. M. Rodriguez-Martinez, M. Armand, Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives, Angew. Chem. Int. Ed. Engl 57 (2018) 15002-15027 doi: 10.1002/anie.201712702
|
[18] |
S. S. Zhang, A review on electrolyte additives for lithium-ion batteries, Journal of Power Sources 162 (2006) 1379-1394 doi: 10.1016/j.jpowsour.2006.07.074
|
[19] |
X. Ren, Y. Zhang, M. H. Engelhard, Q. Li, J.-G. Zhang, W. Xu, Guided Lithium Metal Deposition and Improved Lithium Coulombic Efficiency through Synergistic Effects of LiAsF6 and Cyclic Carbonate Additives, ACS Energy Letters 3 (2017) 14-19
|
[20] |
A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes, Nature Reviews Materials 2 (2017) 1-16
|
[21] |
W. Zhou, S. Wang, Y. Li, S. Xin, A. Manthiram, J. B. Goodenough, Plating a Dendrite-Free Lithium Anode with a Polymer/Ceramic/Polymer Sandwich Electrolyte, J. Am. Chem. Soc. 138 (2016) 9385-9388 doi: 10.1021/jacs.6b05341
|
[22] |
D. Chen, Y. Liu, C. Xia, Y. Han, Q. Sun, X. Wang, W. Chen, X. Jian, W. Lv, J. Ma, W. He, Polybenzimidazole functionalized electrolyte with Li-wetting and self-fluorination functionalities for practical Li metal batteries, InfoMat (2021)
|
[23] |
A. C. Kozen, C. F. Lin, A. J. Pearse, M. A. Schroeder, X. Han, L. Hu, S. B. Lee, G. W. Rubloff, M. Noked, Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition, ACS Nano 9 (2015) 5884-5892 doi: 10.1021/acsnano.5b02166
|
[24] |
G. Zheng, S. W. Lee, Z. Liang, H. W. Lee, K. Yan, H. Yao, H. Wang, W. Li, S. Chu, Y. Cui, Interconnected hollow carbon nanospheres for stable lithium metal anodes, Nat. Nanotechnol. 9 (2014) 618-623 doi: 10.1038/nnano.2014.152
|
[25] |
Q. C. Liu, J. J. Xu, S. Yuan, Z. W. Chang, D. Xu, Y. B. Yin, L. Li, H. X. Zhong, Y. S. Jiang, J. M. Yan, X. B. Zhang, Artificial Protection Film on Lithium Metal Anode toward Long-Cycle-Life Lithium-Oxygen Batteries, Adv. Mater. 27 (2015) 5241-5247 doi: 10.1002/adma.201501490
|
[26] |
Q. Zhao, S. Stalin, L. A. Archer, Stabilizing metal battery anodes through the design of solid electrolyte interphases, Joule 5 (2021) 1119-1142 doi: 10.1016/j.joule.2021.03.024
|
[27] |
S. Jin, Y. Ye, Y. Niu, Y. Xu, H. Jin, J. Wang, Z. Sun, A. Cao, X. Wu, Y. Luo, H. Ji, L. J. Wan, Solid-solution based metal alloy phase for highly reversible lithium metal anode, J. Am. Chem. Soc. 142 (2020) 8818-8826 doi: 10.1021/jacs.0c01811
|
[28] |
D. Rehnlund, F. Lindgren, S. Bohme, T. Nordh, Y. Zou, J. Pettersson, U. Bexell, M. Boman, K. Edstrom, L. Nyholm, Lithium trapping in alloy forming electrodes and current collectors for lithium based batteries, Energy Environ. Sci. 10 (2017) 1350-1357 doi: 10.1039/C7EE00244K
|
[29] |
L. Fan, S. Li, L. Liu, W. Zhang, L. Gao, Y. Fu, F. Chen, J. Li, H. L. Zhuang, Y. Lu, Enabling Stable Lithium Metal Anode via 3D Inorganic Skeleton with Superlithiophilic Interphase, Adv. Energy Mater. 8 (2018) 1802350 doi: 10.1002/aenm.201802350
|
[30] |
Y. Liu, D. Lin, Z. Liang, J. Zhao, K. Yan, Y. Cui, Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode, Nat. Commun. 7 (2016) 10992 doi: 10.1038/ncomms10992
|
[31] |
K. Yan, Z. Lu, H.-W. Lee, F. Xiong, P.-C. Hsu, Y. Li, J. Zhao, S. Chu, Y. Cui, Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth, Nat. Energy 1 (2016) 16010 doi: 10.1038/nenergy.2016.10
|
[32] |
D. Aurbach, Y. Cohen, Morphological studies of Li deposition processes in LiAsF6/PC solutions by in situ atomic force microscopy, J. Electrochem. Soc. 144 (1997) 3355-3360 doi: 10.1149/1.1838018
|
[33] |
Y. Ein-Eli, D. Aurbach, The correlation between the cycling efficiency, surface chemistry and morphology of Li electrodes in electrolyte solutions based on methyl formate, Journal of Power Sources 54 (1995) 281-288 doi: 10.1016/0378-7753(94)02085-H
|
[34] |
A. Pei, G. Zheng, F. Shi, Y. Li, Y. Cui, Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal, Nano Lett. 17 (2017) 1132-1139 doi: 10.1021/acs.nanolett.6b04755
|
[35] |
R. Miao, J. Yang, Z. Xu, J. Wang, Y. Nuli, L. Sun, A new ether-based electrolyte for dendrite-free lithium-metal based rechargeable batteries, Scientific Reports 6 (2016) 21771 doi: 10.1038/srep21771
|
[36] |
C.-Y. Tang, S. J. Dillon, In Situ Scanning Electron Microscopy Characterization of the Mechanism for Li Dendrite Growth, J. Electrochem. Soc. 163 (2016) A1660-A1665 doi: 10.1149/2.0891608jes
|
[37] |
X. Bi, X. Ren, Z. Huang, M. Yu, E. Kreidler, Y. Wu, Investigating dendrites and side reactions in sodium-oxygen batteries for improved cycle lives, Chemical Communications 51 (2015) 7665-7668 doi: 10.1039/C5CC00825E
|
[38] |
B. Lee, E. Paek, D. Mitlin, S. W. Lee, Sodium metal anodes: Emerging solutions to dendrite growth, Chemical reviews 119 (2019) 5416-5460 doi: 10.1021/acs.chemrev.8b00642
|
[39] |
W. Lu, C. Xie, H. Zhang, X. Li, Inhibition of zinc dendrite growth in zinc-based batteries, ChemSusChem 11 (2018) 3996-4006 doi: 10.1002/cssc.201801657
|
[40] |
J. Diggle, A. Despic, J. M. Bockris, The mechanism of the dendritic electrocrystallization of zinc, J. Electrochem. Soc. 116 (1969) 1503 doi: 10.1149/1.2411588
|
[41] |
J. L. B. a. J. O. M. Bockris, The electrolytic growth of dendrites from ionic solutions, Proc. R. Soc. London, Ser. A 268 (1962) 485-505 doi: 10.1098/rspa.1962.0154
|
[42] |
B. Sun, P. Li, J. Zhang, D. Wang, P. Munroe, C. Wang, P. H. L. Notten, G. Wang, Dendrite-Free Sodium-Metal Anodes for High-Energy Sodium-Metal Batteries, Adv. Mater. (2018) e1801334 doi: 10.1002/adma.201801334
|
[43] |
J. Kan, H. Xue, S. Mu, Effect of inhibitors on Zn-dendrite formation for zinc-polyaniline secondary battery, Journal of Power Sources 74 (1998) 113-116 doi: 10.1016/S0378-7753(98)00040-8
|
[44] |
M.-C. Lin, M. Gong, B. Lu, Y. Wu, D.-Y. Wang, M. Guan, M. Angell, C. Chen, J. Yang, B.-J. Hwang, An ultrafast rechargeable aluminium-ion battery, Nature 520 (2015) 324-328 doi: 10.1038/nature14340
|
[45] |
H. Chen, H. Xu, B. Zheng, S. Wang, T. Huang, F. Guo, W. Gao, C. Gao, Oxide film efficiently suppresses dendrite growth in aluminum-ion battery, ACS Appl. Mater. Interfaces 9 (2017) 22628-22634 doi: 10.1021/acsami.7b07024
|
[46] |
Y. Long, H. Li, M. Ye, Z. Chen, Z. Wang, Y. Tao, Z. Weng, S.-Z. Qiao, Q.-H. Yang, Suppressing Al dendrite growth towards a long-life Al-metal battery, Energy Storage Materials 34 (2021) 194-202 doi: 10.1016/j.ensm.2020.09.013
|
[47] |
C. Ling, D. Banerjee, M. Matsui, Study of the electrochemical deposition of Mg in the atomic level: Why it prefers the non-dendritic morphology, Electrochim. Acta 76 (2012) 270-274 doi: 10.1016/j.electacta.2012.05.001
|
[48] |
M. Jackle, K. Helmbrecht, M. Smits, D. Stottmeister, A. Gross, Self-diffusion barriers: possible descriptors for dendrite growth in batteries? , Energy Environ. Sci. 11 (2018) 3400-3407 doi: 10.1039/c8ee01448e
|
[49] |
M. Jackle, A. Gross, Microscopic properties of lithium, sodium, and magnesium battery anode materials related to possible dendrite growth, The Journal of chemical physics 141 (2014) 174710 doi: 10.1063/1.4901055
|
[50] |
Z. Shi, M. Liu, D. Naik, J. L. Gole, Electrochemical properties of Li-Mg alloy electrodes for lithium batteries, Journal of Power Sources 92 (2001) 70-80 doi: 10.1016/S0378-7753(00)00521-8
|
[51] |
J. Steiger, G. Richter, M. Wenk, D. Kramer, R. Monig, Comparison of the growth of lithium filaments and dendrites under different conditions, Electrochem. Commun. 50 (2015) 11-14 doi: 10.1016/j.elecom.2014.11.002
|
[52] |
A. Kushima, K. P. So, C. Su, P. Bai, N. Kuriyama, T. Maebashi, Y. Fujiwara, M. Z. Bazant, J. Li, Liquid cell transmission electron microscopy observation of lithium metal growth and dissolution: Root growth, dead lithium and lithium flotsams, Nano Energy 32 (2017) 271-279 doi: 10.1016/j.nanoen.2016.12.001
|
[53] |
K. Nishikawa, T. Mori, T. Nishida, Y. Fukunaka, M. Rosso, Li dendrite growth and Li+ ionic mass transfer phenomenon, Journal of Electroanalytical Chemistry 661 (2011) 84-89 doi: 10.1016/j.jelechem.2011.06.035
|
[54] |
P. Bai, J. Li, F. R. Brushett, M. Z. Bazant, Transition of lithium growth mechanisms in liquid electrolytes, Energy Environ. Sci. 9 (2016) 3221-3229 doi: 10.1039/C6EE01674J
|
[55] |
J. Steiger, D. Kramer, R. Monig, Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution, Electrochim. Acta 136 (2014) 529-536 doi: 10.1016/j.electacta.2014.05.120
|
[56] |
K.-H. Chen, K. N. Wood, E. Kazyak, W. S. LePage, A. L. Davis, A. J. Sanchez, N. P. Dasgupta, Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes, J. Mater. Chem. A 5 (2017) 11671-11681 doi: 10.1039/C7TA00371D
|
[57] |
X.-R. Chen, C. Yan, J.-F. Ding, H.-J. Peng, Q. Zhang, New insights into “dead lithium” during stripping in lithium metal batteries, Journal of Energy Chemistry 62 (2021) 289-294 doi: 10.3390/fi13110289
|
[58] |
C. Fang, J. Li, M. Zhang, Y. Zhang, F. Yang, J. Z. Lee, M. H. Lee, J. Alvarado, M. A. Schroeder, Y. Yang, B. Lu, N. Williams, M. Ceja, L. Yang, M. Cai, J. Gu, K. Xu, X. Wang, Y. S. Meng, Quantifying inactive lithium in lithium metal batteries, Nature 572 (2019) 511-515 doi: 10.1038/s41586-019-1481-z
|
[59] |
Y. Li, Y. Li, A. Pei, K. Yan, Y. Sun, C.-L. Wu, L.-M. Joubert, R. Chin, A. L. Koh, Y. Yu, J. Perrino, B. Butz, S. Chu, Y. Cui, Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy, Science 358 (2017) 506 doi: 10.1126/science.aam6014
|
[60] |
X. Wang, M. Zhang, J. Alvarado, S. Wang, M. Sina, B. Lu, J. Bouwer, W. Xu, J. Xiao, J.-G. Zhang, J. Liu, Y. S. Meng, New Insights on the Structure of Electrochemically Deposited Lithium Metal and Its Solid Electrolyte Interphases via Cryogenic TEM, Nano Lett. 17 (2017) 7606-7612 doi: 10.1021/acs.nanolett.7b03606
|
[61] |
L. Vitos, A. V. Ruban, H. L. Skriver, J. Kollar, The surface energy of metals, Surface science 411 (1998) 186-202 doi: 10.1016/S0039-6028(98)00363-X
|
[62] |
F. Shi, A. Pei, A. Vailionis, J. Xie, B. Liu, J. Zhao, Y. Gong, Y. Cui, Strong texturing of lithium metal in batteries, Proc. Natl. Acad. Sci. U. S. A. 114 (2017) 12138-12143 doi: 10.1073/pnas.1708224114
|
[63] |
Q. Zhao, Y. Deng, N. W. Utomo, J. Zheng, P. Biswal, J. Yin, L. A. Archer, On the crystallography and reversibility of lithium electrodeposits at ultrahigh capacity, Nat. Commun. 12 (2021) 6034 doi: 10.1038/s41467-021-26143-9
|
[64] |
M. Arakawa, S.-i. Tobishima, Y. Nemoto, M. Ichimura, J.-i. Yamaki, Lithium electrode cycleability and morphology dependence on current density, Journal of Power Sources 43 (1993) 27-35 doi: 10.1016/0378-7753(93)80099-B
|
[65] |
A.-L. Barabasi, H. E. Stanley, Fractal concepts in surface growth, Cambridge university press, 1995
|
[66] |
F. Orsini, A. Du Pasquier, B. Beaudoin, J. M. Tarascon, M. Trentin, N. Langenhuizen, E. De Beer, P. Notten, In situ Scanning Electron Microscopy (SEM) observation of interfaces within plastic lithium batteries, Journal of Power Sources 76 (1998) 19-29 doi: 10.1016/S0378-7753(98)00128-1
|
[67] |
D. Aurbach, In Situ Micromorphological Studies of Li Electrodes by Atomic Force Microscopy in a Glove Box System, Electrochemical and Solid-State Letters 2 (1999) 16 doi: 10.1149/1.1390719
|
[68] |
C. T. Love, O. A. Baturina, K. E. Swider-Lyons, Observation of Lithium Dendrites at Ambient Temperature and Below, ECS Electrochemistry Letters 4 (2014) A24-A27 doi: 10.1149/2.0041502eel
|
[69] |
C. Monroe, J. Newman, Dendrite Growth in Lithium/Polymer Systems: A Propagation Model for Liquid Electrolytes under Galvanostatic Conditions, J. Electrochem. Soc. 150 (2003) A1377-A1384 doi: 10.1149/1.1606686
|
[70] |
R. Akolkar, Mathematical model of the dendritic growth during lithium electrodeposition, J. Power Sources 232 (2013) 23-28 doi: 10.1016/j.jpowsour.2013.01.014
|
[71] |
R. Akolkar, Modeling dendrite growth during lithium electrodeposition at sub-ambient temperature, J. Power Sources 246 (2014) 84-89 doi: 10.1016/j.jpowsour.2013.07.056
|
[72] |
K. J. Harry, X. Liao, D. Y. Parkinson, A. M. Minor, N. P. Balsara, Electrochemical Deposition and Stripping Behavior of Lithium Metal across a Rigid Block Copolymer Electrolyte Membrane, J. Electrochem. Soc. 162 (2015) A2699-A2706 doi: 10.1149/2.0321514jes
|
[73] |
J. Steiger, D. Kramer, R. Monig, Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium, J. Power Sources 261 (2014) 112-119 doi: 10.1016/j.jpowsour.2014.03.029
|
[74] |
Y. S. Cohen, Y. Cohen, D. Aurbach, Micromorphological Studies of Lithium Electrodes in Alkyl Carbonate Solutions Using in Situ Atomic Force Microscopy, The Journal of Physical Chemistry B 104 (2000) 12282-12291 doi: 10.1021/jp002526b
|
[75] |
J.-i. Yamaki, S.-i. Tobishima, K. Hayashi, S. Keiichi, Y. Nemoto, M. Arakawa, A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte, J. Power Sources 74 (1998) 219-227 doi: 10.1016/S0378-7753(98)00067-6
|
[76] |
R. L. Sacci, N. J. Dudney, K. L. More, L. R. Parent, I. Arslan, N. D. Browning, R. R. Unocic, Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy, Chem. Comm. 50 (2014) 2104-2107 doi: 10.1039/c3cc49029g
|
[77] |
Z. Zeng, W.-I. Liang, H.-G. Liao, H. L. Xin, Y.-H. Chu, H. Zheng, Visualization of Electrode-Electrolyte Interfaces in LiPF6/EC/DEC Electrolyte for Lithium Ion Batteries via in Situ TEM, Nano Lett. 14 (2014) 1745-1750 doi: 10.1021/nl403922u
|
[78] |
K. J. Harry, D. T. Hallinan, D. Y. Parkinson, A. A. MacDowell, N. P. Balsara, Detection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes, Nat. Mater. 13 (2014) 69-73 doi: 10.1038/nmat3793
|
[79] |
M. l. Dolle, L. Sannier, B. Beaudoin, M. Trentin, J.-M. Tarascon, Live Scanning Electron Microscope Observations of Dendritic Growth in Lithium/Polymer Cells, Electrochem. Solid-State Lett. 5 (2002) doi: 10.1149/1.1519970
|
[80] |
J. K. Stark, Y. Ding, P. A. Kohl, Nucleation of electrodeposited lithium metal: dendritic growth and the effect of co-deposited sodium, J. Electrochem. Soc. 160 (2013) D337-D342 doi: 10.1149/2.028309jes
|
[81] |
M. Nagao, A. Hayashi, M. Tatsumisago, T. Kanetsuku, T. Tsuda, S. Kuwabata, In situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S-P2S5 solid electrolyte, Phys. Chem. Chem. Phys. 15 (2013) 18600-18606 doi: 10.1039/c3cp51059j
|
[82] |
E. J. Cheng, A. Sharafi, J. Sakamoto, Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte, Electrochim. Acta 223 (2017) 85-91 doi: 10.1016/j.electacta.2016.12.018
|
[83] |
Y. Li, Z. Wang, C. Li, Y. Cao, X. Guo, Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering, J. Power Sources 248 (2014) 642-646 doi: 10.1002/mop.28170
|
[84] |
S. Yu, D. Siegel, Grain Boundary Contributions to Li-ion Transport in the Solid Electrolyte Li7La3Zr2O12(LLZO), Chem. Mater. 29 (2017) 9639-9647 doi: 10.1021/acs.chemmater.7b02805
|
[85] |
R. Sudo, Y. Nakata, K. Ishiguro, M. Matsui, A. Hirano, Y. Takeda, O. Yamamoto, N. Imanishi, Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal, Solid State Ionics 262 (2014) 151-154 doi: 10.1016/j.ssi.2013.09.024
|
[86] |
R. Raj, J. Wolfenstine, Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries, J. Power Sources 343 (2017) 119-126 doi: 10.1016/j.jpowsour.2017.01.037
|
[87] |
S. Yu, D. J. Siegel, Grain Boundary Softening: A Potential Mechanism for Lithium Metal Penetration through Stiff Solid Electrolytes, ACS Appl. Mater. Interfaces 10 (2018) 38151-38158 doi: 10.1021/acsami.8b17223
|
[88] |
Federico M. Pesci, R. H. Brugge, A. K. O. Hekselman, A. Cavallaro, R. J. Chater, A. Aguadero, Elucidating the role of dopants in the critical current density for dendrite formation in garnet electrolytes, J. Mater. Chem. A 6 (2018) 19817-19827 doi: 10.1039/c8ta08366e
|
[89] |
F. Aguesse, W. Manalastas, L. Buannic, J. M. Lopez Del Amo, G. Singh, A. Llordes, J. Kilner, Investigating the Dendritic Growth during Full Cell Cycling of Garnet Electrolyte in Direct Contact with Li Metal, ACS Appl. Mater. Interfaces 9 (2017) 3808-3816 doi: 10.1021/acsami.6b13925
|
[90] |
Y. Ren, Y. Shen, Y. Lin, C.-W. Nan, Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte, Electrochem. Commun. 57 (2015) 27-30 doi: 10.1016/j.elecom.2015.05.001
|
[91] |
F. Han, A. S. Westover, J. Yue, X. Fan, F. Wang, M. Chi, D. N. Leonard, N. J. Dudney, H. Wang, C. Wang, High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes, Nat. Energy 4 (2019) 187-196 doi: 10.1038/s41560-018-0312-z
|
[92] |
H.-K. Tian, B. Xu, Y. Qi, Computational study of lithium nucleation tendency in Li7La3Zr2O12 (LLZO) and rational design of interlayer materials to prevent lithium dendrites, J. Power Sources 392 (2018) 79-86 doi: 10.1016/j.jpowsour.2018.04.098
|
[93] |
C. Brissot, M. Rosso, J. N. Chazalviel, S. Lascaud, Dendritic growth mechanisms in lithium/polymer cells, J. Power Sources 81-82 (1999) 925-929
|
[94] |
H. J. Sand, III. On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid, The London, Edinburgh, Dublin Philosophical Magazine Journal of Science 1 (1901) 45-79 doi: 10.1080/14786440109462590
|
[95] |
M. Rosso, J. N. Chazalviel, V. Fleury, E. Chassaing, experimental evidence for gravity induced motion in the vicinity of ramified electrodeposits, Electrochim. Acta 39 (1994) 507-515 doi: 10.1016/0013-4686(94)80094-4
|
[96] |
J. N. Chazalviel, Electrochemical aspects of the generation of ramified metallic electrodeposits, Phys. Rev. A 42 (1990) 7355-7367 doi: 10.1103/PhysRevA.42.7355
|
[97] |
M. Rosso, T. Gobron, C. Brissot, J. N. Chazalviel, S. Lascaud, Onset of dendritic growth in lithium/polymer cells, J. Power Sources 97-98 (2001) 804-806
|
[98] |
C. Brissot, M. Rosso, J. N. Chazalviel, P. Baudry, S. Lascaud, In situ study of dendritic growth inlithium/PEO-salt/lithium cells, Electrochim. Acta 43 (1998) 1569-1574
|
[99] |
D. R. Ely, R. E. Garcia, Heterogeneous Nucleation and Growth of Lithium Electrodeposits on Negative Electrodes, J. Electrochem. Soc. 160 (2013) A662-A668 doi: 10.1149/1.057304jes
|
[100] |
Y. Sun, J. Zhou, H. Ji, J. Liu, T. Qian, C. Yan, Single-Atom Iron as Lithiophilic Site To Minimize Lithium Nucleation Overpotential for Stable Lithium Metal Full Battery, ACS Appl. Mater. Interfaces 11 (2019) 32008-32014 doi: 10.1021/acsami.9b10551
|
[101] |
M. Zhu, B. Li, S. Li, Z. Du, Y. Gong, S. Yang, Dendrite-Free Metallic Lithium in Lithiophilic Carbonized Metal-Organic Frameworks, Adv. Energy Mater. 8 (2018) 1703505 doi: 10.1002/aenm.201703505
|
[102] |
Q. Xu, Y. Yang, H. Shao, Substrate effects on Li+ electrodeposition in Li secondary batteries with a competitive kinetics model, Phys. Chem. Chem. Phys. 17 (2015) 20398-20406 doi: 10.1039/C5CP02789F
|
[103] |
F. Zhao, X. Zhou, W. Deng, Z. Liu, Entrapping lithium deposition in lithiophilic reservoir constructed by vertically aligned ZnO nanosheets for dendrite-free Li metal anodes, Nano Energy 62 (2019) 55-63 doi: 10.1016/j.nanoen.2019.04.087
|
[104] |
Y. Zhang, W. Luo, C. Wang, Y. Li, C. Chen, J. Song, J. Dai, E. M. Hitz, S. Xu, C. Yang, High-capacity, low-tortuosity, and channel-guided lithium metal anode, Proc. Natl. Acad. Sci. U.S.A 114 (2017) 3584-3589 doi: 10.1073/pnas.1618871114
|
[105] |
C. Jin, O. Sheng, J. Luo, H. Yuan, C. Fang, W. Zhang, H. Huang, Y. Gan, Y. Xia, C. Liang, 3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries, Nano Energy 37 (2017) 177-186 doi: 10.1016/j.nanoen.2017.05.015
|
[106] |
C. Zhang, W. Lv, G. Zhou, Z. Huang, Y. Zhang, R. Lyu, H. Wu, Q. Yun, F. Kang, Q.-H. Yang, Vertically Aligned Lithiophilic CuO Nanosheets on a Cu Collector to Stabilize Lithium Deposition for Lithium Metal Batteries, Adv. Energy Mater. 8 (2018) 1703404 doi: 10.1002/aenm.201703404
|
[107] |
K. Huang, Z. Li, Q. Xu, H. Liu, H. Li, Y. Wang, Lithiophilic CuO Nanoflowers on Ti-Mesh Inducing Lithium Lateral Plating Enabling Stable Lithium-Metal Anodes with Ultrahigh Rates and Ultralong Cycle Life, Adv. Energy Mater. 9 (2019) 1900853 doi: 10.1002/aenm.201900853
|
[108] |
S. Wu, Z. Zhang, M. Lan, S. Yang, J. Cheng, J. Cai, J. Shen, Y. Zhu, K. Zhang, W. Zhang, Lithiophilic Cu-CuO-Ni Hybrid Structure: Advanced Current Collectors Toward Stable Lithium Metal Anodes, Adv. Mater. 30 (2018) doi: 10.1002/adma.201705830
|
[109] |
S. Li, Q. Liu, J. Zhou, T. Pan, L. Gao, W. Zhang, L. Fan, Y. Lu, Hierarchical Co3O4 Nanofiber-Carbon Sheet Skeleton with Superior Na/Li-Philic Property Enabling Highly Stable Alkali Metal Batteries, Adv. Funct. Mater. 29 (2019) 1808847 doi: 10.1002/adfm.201808847
|
[110] |
G. Jiang, N. Jiang, N. Zheng, X. Chen, J. Mao, G. Ding, Y. Li, F. Sun, Y. Li, MOF-derived porous Co3O4-NC nanoflake arrays on carbon fiber cloth as stable hosts for dendrite-free Li metal anodes, Energy Storage Materials 23 (2019) 181-189 doi: 10.1016/j.ensm.2019.05.014
|
[111] |
N. Du, H. Zhang, B. D. Chen, J. B. Wu, X. Y. Ma, Z. H. Liu, Y. Q. Zhang, D. R. Yang, X. H. Huang, J. P. Tu, Porous Co3O4 Nanotubes Derived From Co4(CO)12 Clusters on Carbon Nanotube Templates: A Highly Efficient Material For Li-Battery Applications, Adv. Mater. 19 (2007) 4505-4509 doi: 10.1002/adma.200602513
|
[112] |
R. Zhang, X. R. Chen, X. Chen, X. B. Cheng, X. Q. Zhang, C. Yan, Q. Zhang, Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes, Angew. Chem. Int. Ed. Engl 56 (2017) 7764-7768 doi: 10.1002/anie.201702099
|
[113] |
Y.-W. Song, P. Shi, B.-Q. Li, X. Chen, C.-X. Zhao, W.-J. Chen, X.-Q. Zhang, X. Chen, Q. Zhang, Covalent Organic Frameworks Construct Precise Lithiophilic Sites for Uniform Lithium Deposition, Matter 4 (2021) 253-264 doi: 10.1016/j.matt.2020.10.014
|
[114] |
X. Chen, X. R. Chen, T. Z. Hou, B. Q. Li, X. B. Cheng, R. Zhang, Q. Zhang, Lithiophilicity chemistry of heteroatom-doped carbon to guide uniform lithium nucleation in lithium metal anodes, Sci. Adv. 5 (2019) eaau7728 doi: 10.1126/sciadv.aau7728
|
[115] |
J. Betz, J. P. Brinkmann, R. Nolle, C. Lurenbaum, M. Kolek, M. C. Stan, M. Winter, T. Placke, Cross Talk between Transition Metal Cathode and Li Metal Anode: Unraveling Its Influence on the Deposition/Dissolution Behavior and Morphology of Lithium, Adv. Energy Mater. 9 (2019) doi: 10.1002/aenm.201900574
|
[116] |
Q. Li, B. Quan, W. Li, J. Lu, J. Zheng, X. Yu, J. Li, H. Li, Electro-plating and stripping behavior on lithium metal electrode with ordered three-dimensional structure, Nano Energy 45 (2018) 463-470 doi: 10.1016/j.nanoen.2018.01.019
|
[117] |
S. H. Wang, Y. X. Yin, T. T. Zuo, W. Dong, J. Y. Li, J. L. Shi, C. H. Zhang, N. W. Li, C. J. Li, Y. G. Guo, Stable Li Metal Anodes via Regulating Lithium Plating/Stripping in Vertically Aligned Microchannels, Adv. Mater. 29 (2017) doi: 10.1002/adma.201703729
|
[118] |
J. Park, J. Jeong, Y. Lee, M. Oh, M.-H. Ryou, Y. M. Lee, Micro-Patterned Lithium Metal Anodes with Suppressed Dendrite Formation for Post Lithium-Ion Batteries, Adv. Mater. Interfaces 3 (2016) doi: 10.1002/admi.201600140
|
[119] |
Z. Liang, D. Lin, J. Zhao, Z. Lu, Y. Liu, C. Liu, Y. Lu, H. Wang, K. Yan, X. Tao, Y. Cui, Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating, Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 2862-2867 doi: 10.1073/pnas.1518188113
|
[120] |
E. Peled, The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems-The Solid Electrolyte Interphase Model, J. Electrochem. Soc. 126 (1979) 2047 doi: 10.1149/1.2128859
|
[121] |
M. Winter, The Solid Electrolyte Interphase - The Most Important and the Least Understood Solid Electrolyte in Rechargeable Li Batteries, 223 (2009) 1395 doi: 10.1524/zpch.2009.6086
|
[122] |
J. B. Goodenough, Y. Kim, Challenges for Rechargeable Li Batteries, Chem. Mater. 22 (2010) 587-603 doi: 10.1021/cm901452z
|
[123] |
P. Peljo, H. H. Girault, Electrochemical potential window of battery electrolytes: the HOMO-LUMO misconception, Energy Environ. Sci. 11 (2018) 2306-2309 doi: 10.1039/c8ee01286e
|
[124] |
O. Borodin, X. Ren, J. Vatamanu, A. von Wald Cresce, J. Knap, K. Xu, Modeling Insight into Battery Electrolyte Electrochemical Stability and Interfacial Structure, Acc. Chem. Res. 50 (2017) 2886-2894 doi: 10.1021/acs.accounts.7b00486
|
[125] |
J.-N. Zhang, Q. Li, Y. Wang, J. Zheng, X. Yu, H. Li, Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode, Energy Storage Materials 14 (2018) 1-7 doi: 10.1016/j.ensm.2018.02.016
|
[126] |
E. Peled, Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes, J. Electrochem. Soc. 144 (1997) L208 doi: 10.1149/1.1837858
|
[127] |
D. Aurbach, B. Markovsky, M. D. Levi, E. Levi, A. Schechter, M. Moshkovich, Y. Cohen, New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries, J. Power Sources 81-82 (1999) 95-111
|
[128] |
H. Zhang, U. Oteo, X. Judez, G. G. Eshetu, M. Martinez-Ibanez, J. Carrasco, C. Li, M. Armand, Designer Anion Enabling Solid-State Lithium-Sulfur Batteries, Joule 3 (2019) 1689-1702 doi: 10.1016/j.joule.2019.05.003
|
[129] |
D. Aurbach, I. Weissman, On the possibility of LiH formation on Li surfaces in wet electrolyte solutions, Electrochem. Commun. 1 (1999) 324-331 doi: 10.1016/S1388-2481(99)00064-8
|
[130] |
Y. Li, R. Huang, G. Pan, J. Yao, Z. Zou, High-Tap-Density Fe-Doped Nickel Hydroxide with Enhanced Lithium Storage Performance, ACS Omega 4 (2019) 7759-7765 doi: 10.1021/acsomega.9b00579
|
[131] |
D. Aurbach, Y. Ein-Ely, A. Zaban, The Surface Chemistry of Lithium Electrodes in Alkyl Carbonate Solutions, J. Electrochem. Soc. 141 (1994) L1-L3 doi: 10.1149/1.2054718
|
[132] |
D. Aurbach, Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries, J. Power Sources 89 (2000) 206-218 doi: 10.1016/S0378-7753(00)00431-6
|
[133] |
A. L. Michan, M. Leskes, C. P. Grey, Voltage Dependent Solid Electrolyte Interphase Formation in Silicon Electrodes: Monitoring the Formation of Organic Decomposition Products, Chem. Mater. 28 (2016) 385-398 doi: 10.1021/acs.chemmater.5b04408
|
[134] |
K. Tasaki, S. J. Harris, Computational Study on the Solubility of Lithium Salts Formed on Lithium Ion Battery Negative Electrode in Organic Solvents, J. Phys. Chem. C 114 (2010) 8076-8083 doi: 10.1021/jp100013h
|
[135] |
K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev. 104 (2004) 4303-4417 doi: 10.1021/cr030203g
|
[136] |
W. Liu, P. Liu, D. Mitlin, Review of Emerging Concepts in SEI Analysis and Artificial SEI Membranes for Lithium, Sodium, and Potassium Metal Battery Anodes, Adv. Energy Mater. 10 (2020) 2002297 doi: 10.1002/aenm.202002297
|
[137] |
S. Shi, P. Lu, Z. Liu, Y. Qi, L. G. Hector, Jr., H. Li, S. J. Harris, Direct calculation of Li-ion transport in the solid electrolyte interphase, J. Am. Chem. Soc. 134 (2012) 15476-15487 doi: 10.1021/ja305366r
|
[138] |
K. Xu, A. von Cresce, U. Lee, Differentiating contributions to "ion transfer" barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface, Langmuir 26 (2010) 11538-11543 doi: 10.1021/la1009994
|
[139] |
T. Yoshida, M. Takahashi, S. Morikawa, C. Ihara, H. Katsukawa, T. Shiratsuchi, J.-i. Yamaki, Degradation Mechanism and Life Prediction of Lithium-Ion Batteries, J. Electrochem. Soc. 153 (2006) A576 doi: 10.1149/1.2162467
|
[140] |
A. Wang, S. Kadam, H. Li, S. Shi, Y. Qi, Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries, npj Computational Materials 4 (2018) 1-26 doi: 10.1038/s41524-017-0060-9
|
[141] |
K. Edstrom, M. Herstedt, D. P. Abraham, A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries, J. Power Sources 153 (2006) 380-384 doi: 10.1016/j.jpowsour.2005.05.062
|
[142] |
J. Zhang, R. Wang, X. Yang, W. Lu, X. Wu, X. Wang, H. Li, L. Chen, Direct observation of inhomogeneous solid electrolyte interphase on MnO anode with atomic force microscopy and spectroscopy, Nano Lett. 12 (2012) 2153-2157 doi: 10.1021/nl300570d
|
[143] |
X. R. Liu, X. Deng, R. R. Liu, H. J. Yan, Y. G. Guo, D. Wang, L. J. Wan, Single nanowire electrode electrochemistry of silicon anode by in situ atomic force microscopy: solid electrolyte interphase growth and mechanical properties, ACS Appl. Mater. Interfaces 6 (2014) 20317-20323 doi: 10.1021/am505847s
|
[144] |
X. Shen, R. Zhang, X. Chen, X. B. Cheng, X. Li, Q. Zhang, The Failure of Solid Electrolyte Interphase on Li Metal Anode: Structural Uniformity or Mechanical Strength? , Adv. Energy Mater. 10 (2020) 1903645 doi: 10.1002/aenm.201903645
|
[145] |
M. Wang, L. Huai, G. Hu, S. Yang, F. Ren, S. Wang, Z. Zhang, Z. Chen, Z. Peng, C. Shen, D. Wang, Effect of LiFSI Concentrations To Form Thickness- and Modulus-Controlled SEI Layers on Lithium Metal Anodes, J. Phys. Chem. C 122 (2018) 9825-9834 doi: 10.1021/acs.jpcc.8b02314
|
[146] |
P. Lu, S. J. Harris, Lithium transport within the solid electrolyte interphase, Electrochem. Commun. 13 (2011) 1035-1037 doi: 10.1016/j.elecom.2011.06.026
|
[147] |
J. Pan, Y.-T. Cheng, Y. Qi, General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes, Physical Review B 91 (2015) doi: 10.1103/PhysRevB.91.134116
|
[148] |
L. Benitez, J. M. Seminario, Ion Diffusivity through the Solid Electrolyte Interphase in Lithium-Ion Batteries, J. Electrochem. Soc. 164 (2017) E3159-E3170 doi: 10.1149/2.0181711jes
|
[149] |
T. Abe, H. Fukuda, Y. Iriyama, Z. Ogumi, Solvated Li-Ion Transfer at Interface Between Graphite and Electrolyte, J. Electrochem. Soc. 151 (2004) A1120 doi: 10.1149/1.1763141
|
[150] |
R. M. Brady, R. C. Ball, Fractal growth of copper electrodeposits, Nature 309 (1984) 225-229 doi: 10.1038/309225a0
|
[151] |
D. Grier, E. Ben-Jacob, R. Clarke, L.-M. Sander, Morphology and microstructure in electrochemical deposition of zinc, Phy. Rev. Lett. 56 (1986) 1264 doi: 10.1103/PhysRevLett.56.1264
|
[152] |
R. Meziane, J.-P. Bonnet, M. Courty, K. Djellab, M. Armand, Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries, Electrochim. Acta 57 (2011) 14-19 doi: 10.1016/j.electacta.2011.03.074
|
[153] |
J. Janek, W. G. Zeier, A solid future for battery development, Nat. Energy 1 (2016) 1-4
|
[154] |
R. Chen, W. Qu, X. Guo, L. Li, F. Wu, The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons, Mater. Horizons 3 (2016) 487-516 doi: 10.1039/C6MH00218H
|
[155] |
R. Chen, Q. Li, X. Yu, L. Chen, H. Li, Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces, Chem. Rev. 120 (2019) 6820-6877
|
[156] |
C. Monroe, J. Newman, The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces, J. Electrochem. Soc. 152 (2005) A396-A404 doi: 10.1149/1.1850854
|
[157] |
D. Cao, X. Sun, Q. Li, A. Natan, P. Xiang, H. Zhu, Lithium Dendrite in All-Solid-State Batteries: Growth Mechanisms, Suppression Strategies, and Characterizations, Matter 3 (2020) 57-94 doi: 10.1016/j.matt.2020.03.015
|
[158] |
K. J. Harry, K. Higa, V. Srinivasan, N. P. Balsara, Influence of Electrolyte Modulus on the Local Current Density at a Dendrite Tip on a Lithium Metal Electrode, J. Electrochem. Soc. 163 (2016) A2216-A2224 doi: 10.1149/2.0191610jes
|
[159] |
J. Wolfenstine, J. L. Allen, J. Sakamoto, D. J. Siegel, H. Choe, Mechanical behavior of Li-ion-conducting crystalline oxide-based solid electrolytes: a brief review, Ionics 24 (2018) 1271-1276 doi: 10.1007/s11581-017-2314-4
|
[160] |
J. E. Ni, E. D. Case, J. S. Sakamoto, E. Rangasamy, J. B. Wolfenstine, Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet, J. Mater. Sci 47 (2012) 7978-7985 doi: 10.1007/s10853-012-6687-5
|
[161] |
S. D. Jackman, R. A. Cutler, Effect of microcracking on ionic conductivity in LATP, J. Power Sources 218 (2012) 65-72 doi: 10.1016/j.jpowsour.2012.06.081
|
[162] |
Y.-H. Cho, J. Wolfenstine, E. Rangasamy, H. Kim, H. Choe, J. Sakamoto, Mechanical properties of the solid Li-ion conducting electrolyte: Li0.33La0.57TiO3, Journal of Materials Science 47 (2012) 5970-5977 doi: 10.1007/s10853-012-6500-5
|
[163] |
L. L. Baranowski, C. M. Heveran, V. L. Ferguson, C. R. Stoldt, Multi-Scale Mechanical Behavior of the Li3PS4 Solid-Phase Electrolyte, ACS Appl. Mater. Interfaces 8 (2016) 29573-29579 doi: 10.1021/acsami.6b06612
|
[164] |
A. Sharafi, H. M. Meyer, J. Nanda, J. Wolfenstine, J. Sakamoto, Characterizing the Li-Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density, J. Power Sources 302 (2016) 135-139 doi: 10.1016/j.jpowsour.2015.10.053
|
[165] |
L. Cheng, W. Chen, M. Kunz, K. Persson, N. Tamura, G. Chen, M. Doeff, Effect of surface microstructure on electrochemical performance of garnet solid electrolytes, ACS Appl. Mater. Interfaces 7 (2015) 2073-2081 doi: 10.1021/am508111r
|
[166] |
R. Garcia-Mendez, F. Mizuno, R. Zhang, T. S. Arthur, J. Sakamoto, Effect of Processing Conditions of 75Li2S-25P2S5 Solid Electrolyte on its DC Electrochemical Behavior, Electrochim. Acta 237 (2017) 144-151 doi: 10.1016/j.electacta.2017.03.200
|
[167] |
F. Han, J. Yue, X. Zhu, C. Wang, Suppressing Li dendrite formation in Li2S-P2S5 solid electrolyte by LiI incorporation, Adv. Energy Mater. 8 (2018) 1703644 doi: 10.1002/aenm.201703644
|
[168] |
J. Qian, W. A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, J. G. Zhang, High rate and stable cycling of lithium metal anode, Nat. Commun. 6 (2015) 6362 doi: 10.1038/ncomms7362
|
[169] |
X.-B. Cheng, C.-Z. Zhao, Y.-X. Yao, H. Liu, Q. Zhang, Recent Advances in Energy Chemistry between Solid-State Electrolyte and Safe Lithium-Metal Anodes, Chem 5 (2019) 74-96 doi: 10.1016/j.chempr.2018.12.002
|
[170] |
C. L. Campion, W. T. Li, B. L. Lucht, Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries, J. Electrochem. Soc. 152 (2005) A2327-A2334 doi: 10.1149/1.2083267
|
[171] |
E. P. Roth, D. H. Doughty, J. Franklin, DSC investigation of exothermic reactions occurring at elevated temperatures in lithium-ion anodes containing PVDF-based binders, J. Power Sources 134 (2004) 222-234 doi: 10.1016/j.jpowsour.2004.03.074
|
[172] |
J. Wang, W. Huang, A. Pei, Y. Li, F. Shi, X. Yu, Y. Cui, Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy, Nat. Energy 4 (2019) 664-670 doi: 10.1038/s41560-019-0413-3
|
[173] |
H. Ota, K. Shima, M. Ue, J.-i. Yamaki, Effect of vinylene carbonate as additive to electrolyte for lithium metal anode, Electrochim. Acta 49 (2004) 565-572 doi: 10.1016/j.electacta.2003.09.010
|
[174] |
X. Yin, W. Tang, I. D. Jung, K. C. Phua, S. Adams, S. W. Lee, G. W. Zheng, Insights into morphological evolution and cycling behaviour of lithium metal anode under mechanical pressure, Nano Energy 50 (2018) 659-664 doi: 10.1016/j.nanoen.2018.06.003
|
[175] |
C. Fang, B. Lu, G. Pawar, M. Zhang, D. Cheng, S. Chen, M. Ceja, J.-M. Doux, H. Musrock, M. Cai, B. Liaw, Y. S. Meng, Pressure-tailored lithium deposition and dissolution in lithium metal batteries, Nat. Energy 6 (2021) 987-994 doi: 10.1038/s41560-021-00917-3
|
[176] |
J.-M. Doux, Y. Yang, D. H. S. Tan, H. Nguyen, E. A. Wu, X. Wang, A. Banerjee, Y. S. Meng, Pressure effects on sulfide electrolytes for all solid-state batteries, J. Mater. Chem. A 8 (2020) 5049-5055 doi: 10.1039/c9ta12889a
|
[177] |
J.-M. Doux, H. Nguyen, D. H. S. Tan, A. Banerjee, X. Wang, E. A. Wu, C. Jo, H. Yang, Y. S. Meng, Stack Pressure Considerations for Room-Temperature All-Solid-State Lithium Metal Batteries, Adv. Energy Mater. 10 (2020) 1903253 doi: 10.1002/aenm.201903253
|
[178] |
C. Peabody, C. B. Arnold, The role of mechanically induced separator creep in lithium-ion battery capacity fade, J. Power Sources 196 (2011) 8147-8153 doi: 10.1016/j.jpowsour.2011.05.023
|
[179] |
J. Cannarella, C. B. Arnold, Ion transport restriction in mechanically strained separator membranes, J. Power Sources 226 (2013) 149-155 doi: 10.1016/j.jpowsour.2012.10.093
|
[180] |
W. Zhang, D. Schroder, T. Arlt, I. Manke, R. Koerver, R. Pinedo, D. A. Weber, J. Sann, W. G. Zeier, J. Janek, (Electro)chemical expansion during cycling: monitoring the pressure changes in operating solid-state lithium batteries, J. Mater. Chem. A 5 (2017) 9929-9936 doi: 10.1039/C7TA02730C
|
[181] |
Y. Xu, H. Wu, H. Jia, J.-G. Zhang, W. Xu, C. Wang, Current density regulated atomic to nanoscale process on Li deposition and solid electrolyte interphase revealed by cryogenic transmission electron microscopy, ACS Nano 14 (2020) 8766-8775 doi: 10.1021/acsnano.0c03344
|
[182] |
L. Li, S. Basu, Y. Wang, Z. Chen, P. Hundekar, B. Wang, J. Shi, Y. Shi, S. Narayanan, N. Koratkar, Self-heating-induced healing of lithium dendrites, Science 359 (2018) 1513 doi: 10.1126/science.aap8787
|
[183] |
P. Hundekar, S. Basu, J. Pan, S. F. Bartolucci, S. Narayanan, Z. Yang, N. Koratkar, Exploiting self-heat in a lithium metal battery for dendrite healing, Energy Storage Materials 20 (2019) 291-298 doi: 10.1016/j.ensm.2019.04.013
|
[184] |
Z. Hong, V. Viswanathan, Prospect of Thermal Shock Induced Healing of Lithium Dendrite, ACS Energy Lett. 4 (2019) 1012-1019 doi: 10.1021/acsenergylett.9b00433
|
[185] |
M.-H. Ryou, Y. M. Lee, Y. Lee, M. Winter, P. Bieker, Mechanical Surface Modification of Lithium Metal: Towards Improved Li Metal Anode Performance by Directed Li Plating, Adv. Funct. Mater. 25 (2015) 834-841 doi: 10.1002/adfm.201402953
|
[186] |
W. Li, H. Yao, K. Yan, G. Zheng, Z. Liang, Y. M. Chiang, Y. Cui, The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth, Nat. Commun. 6 (2015) 7436 doi: 10.1038/ncomms8436
|
[187] |
Y. Lu, Z. Tu, L. A. Archer, Stable lithium electrodeposition in liquid and nanoporous solid electrolytes, Nat. Mater. 13 (2014) 961-969 doi: 10.1038/nmat4041
|
[188] |
F. Ding, W. Xu, G. L. Graff, J. Zhang, M. L. Sushko, X. Chen, Y. Shao, M. H. Engelhard, Z. Nie, J. Xiao, X. Liu, P. V. Sushko, J. Liu, J. G. Zhang, Dendrite-free lithium deposition via self-healing electrostatic shield mechanism, J. Am. Chem. Soc. 135 (2013) 4450-4456 doi: 10.1021/ja312241y
|
[189] |
C. M. Park, J. H. Kim, H. Kim, H. J. Sohn, Li-alloy based anode materials for Li secondary batteries, Chem. Soc. Rev. 39 (2010) 3115-3141 doi: 10.1039/b919877f
|
[190] |
Y. Zhang, Z. Han, Z. Huang, C. Zhang, C. Luo, G. Zhou, W. Lv, Q.-H. Yang, Dendrite-Free Non-Newtonian Semisolid Lithium Metal Anode, ACS Energy Lett. 6 (2021) 3761-3768 doi: 10.1021/acsenergylett.1c01977
|
[191] |
C. P. Yang, Y. X. Yin, S. F. Zhang, N. W. Li, Y. G. Guo, Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes, Nat. Commun. 6 (2015) 8058 doi: 10.1038/ncomms9058
|
[192] |
L. L. Lu, J. Ge, J. N. Yang, S. M. Chen, H. B. Yao, F. Zhou, S. H. Yu, Free-Standing Copper Nanowire Network Current Collector for Improving Lithium Anode Performance, Nano Lett. 16 (2016) 4431-4437 doi: 10.1021/acs.nanolett.6b01581
|
[193] |
Q. Yun, Y. B. He, W. Lv, Y. Zhao, B. Li, F. Kang, Q. H. Yang, Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes, Adv. Mater. 28 (2016) 6932-6939 doi: 10.1002/adma.201601409
|
[194] |
W. Li, H. Zheng, G. Chu, F. Luo, J. Zheng, D. Xiao, X. Li, L. Gu, H. Li, X. Wei, Q. Chen, L. Chen, Effect of electrochemical dissolution and deposition order on lithium dendrite formation: a top view investigation, Faraday Discuss 176 (2014) 109-124 doi: 10.1039/C4FD00124A
|
[195] |
H. Liu, X. B. Cheng, R. Xu, X. Q. Zhang, C. Yan, J. Q. Huang, Q. Zhang, Plating/Stripping Behavior of Actual Lithium Metal Anode, Adv. Energy Mater. 9 (2019) 1902254 doi: 10.1002/aenm.201902254
|
[196] |
B. J. Neudecker, N. J. Dudney, J. B. Bates, “Lithium-Free” Thin-Film Battery with In Situ Plated Li Anode, J. Electrochem. Soc. 147 (2000) 517 doi: 10.1149/1.1393226
|
[197] |
R. Weber, M. Genovese, A. J. Louli, S. Hames, C. Martin, I. G. Hill, J. R. Dahn, Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte, Nat. Energy 4 (2019) 683-689 doi: 10.1038/s41560-019-0428-9
|
[198] |
J.-G. Zhang, Anode-less, Nat. Energy 4 (2019) 637-638 doi: 10.1038/s41560-019-0449-4
|
[199] |
C. Niu, H. Lee, S. Chen, Q. Li, J. Du, W. Xu, J.-G. Zhang, M. S. Whittingham, J. Xiao, J. Liu, High-energy lithium metal pouch cells with limited anode swelling and long stable cycles, Nat. Energy 4 (2019) 551-559 doi: 10.1038/s41560-019-0390-6
|
[200] |
S. Chen, C. Niu, H. Lee, Q. Li, L. Yu, W. Xu, J.-G. Zhang, E. J. Dufek, M. S. Whittingham, S. Meng, J. Xiao, J. Liu, Critical Parameters for Evaluating Coin Cells and Pouch Cells of Rechargeable Li-Metal Batteries, Joule 3 (2019) 1094-1105 doi: 10.1016/j.joule.2019.02.004
|
[201] |
H. Zhang, X. Liao, Y. Guan, Y. Xiang, M. Li, W. Zhang, X. Zhu, H. Ming, L. Lu, J. Qiu, Y. Huang, G. Cao, Y. Yang, L. Mai, Y. Zhao, H. Zhang, Lithiophilic-lithiophobic gradient interfacial layer for a highly stable lithium metal anode, Nat. Commun. 9 (2018) 3729 doi: 10.1038/s41467-018-06126-z
|
[202] |
P. Zou, S.-W. Chiang, H. Zhan, Y. Sui, K. Liu, S. Hu, S. Su, J. Li, F. Kang, C. Yang, A Periodic “Self-Correction” Scheme for Synchronizing Lithium Plating/Stripping at Ultrahigh Cycling Capacity, Adv. Funct. Mater. 30 (2020) 1910532 doi: 10.1002/adfm.201910532
|
[203] |
Y.-G. Lee, S. Fujiki, C. Jung, N. Suzuki, N. Yashiro, R. Omoda, D.-S. Ko, T. Shiratsuchi, T. Sugimoto, S. Ryu, J. H. Ku, T. Watanabe, Y. Park, Y. Aihara, D. Im, I. T. Han, High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes, Nat. Energy 5 (2020) 299-308 doi: 10.1038/s41560-020-0575-z
|
[204] |
Q. Sun, W. Zhai, G. Hou, J. Feng, L. Zhang, P. Si, S. Guo, L. Ci, In Situ Synthesis of a Lithiophilic Ag-Nanoparticles-Decorated 3D Porous Carbon Framework toward Dendrite-Free Lithium Metal Anodes, ACS Sustain. Chem. Eng. 6 (2018) 15219-15227 doi: 10.1021/acssuschemeng.8b03708
|
[205] |
C. Yang, Y. Yao, S. He, H. Xie, E. Hitz, L. Hu, Ultrafine Silver Nanoparticles for Seeded Lithium Deposition toward Stable Lithium Metal Anode, Adv. Mater. 29 (2017) 1702714 doi: 10.1002/adma.201702714
|
[206] |
Y. Chen, Z. Wang, X. Li, X. Yao, C. Wang, Y. Li, W. Xue, D. Yu, S. Y. Kim, F. Yang, A. Kushima, G. Zhang, H. Huang, N. Wu, Y. W. Mai, J. B. Goodenough, J. Li, Li metal deposition and stripping in a solid-state battery via Coble creep, Nature 578 (2020) 251-255 doi: 10.1038/s41586-020-1972-y
|
[207] |
M. Wan, S. Kang, L. Wang, H. W. Lee, G. W. Zheng, Y. Cui, Y. Sun, Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode, Nat. Commun. 11 (2020) 829 doi: 10.1038/s41467-020-14550-3
|
[208] |
R. Zhang, X. B. Cheng, C. Z. Zhao, H. J. Peng, J. L. Shi, J. Q. Huang, J. Wang, F. Wei, Q. Zhang, Conductive Nanostructured Scaffolds Render Low Local Current Density to Inhibit Lithium Dendrite Growth, Adv. Mater. 28 (2016) 2155-2162 doi: 10.1002/adma.201504117
|
[209] |
S.-S. Chi, Y. Liu, W.-L. Song, L.-Z. Fan, Q. Zhang, Prestoring Lithium into Stable 3D Nickel Foam Host as Dendrite-Free Lithium Metal Anode, Adv. Funct. Mater. 27 (2017) 1700348 doi: 10.1002/adfm.201700348
|
[210] |
M. Gauthier, T. J. Carney, A. Grimaud, L. Giordano, N. Pour, H.-H. Chang, D. P. Fenning, S. F. Lux, O. Paschos, C. Bauer, F. Maglia, S. Lupart, P. Lamp, Y. Shao-Horn, Electrode-Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights, J. Phys. Chem. Lett. 6 (2015) 4653-4672 doi: 10.1021/acs.jpclett.5b01727
|
[211] |
Y.-j. Zhang, W.-q. Bai, X.-l. Wang, X.-h. Xia, C.-d. Gu, J.-p. Tu, In situ confocal microscopic observation on inhibiting the dendrite formation of a-CNx/Li electrode, J. Mater. Chem. A 4 (2016) 15597-15604 doi: 10.1039/C6TA06612G
|
[212] |
K. Park, J. B. Goodenough, Dendrite-Suppressed Lithium Plating from a Liquid Electrolyte via Wetting of Li3N, Adv. Energy Mater. 7 (2017) 1700732 doi: 10.1002/aenm.201700732
|
[213] |
L. Fan, H. L. Zhuang, L. Gao, Y. Lu, L. A. Archer, Regulating Li deposition at artificial solid electrolyte interphases, J. Mater. Chem. A 5 (2017) 3483-3492 doi: 10.1039/C6TA10204B
|
[214] |
J. Xie, L. Liao, Y. Gong, Y. Li, F. Shi, A. Pei, J. Sun, R. Zhang, B. Kong, R. Subbaraman, J. Christensen, Y. Cui, Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode, Sci. Adv. 3 (2017) eaao3170 doi: 10.1126/sciadv.aao3170
|
[215] |
L. Wang, L. Zhang, Q. Wang, W. Li, B. Wu, W. Jia, Y. Wang, J. Li, H. Li, Long lifespan lithium metal anodes enabled by Al2O3 sputter coating, Energy Storage Materials 10 (2018) 16-23 doi: 10.1016/j.ensm.2017.08.001
|
[216] |
H.-K. Jing, L.-L. Kong, S. Liu, G.-R. Li, X.-P. Gao, Protected lithium anode with porous Al2O3 layer for lithium-sulfur battery, J. Mater. Chem. A 3 (2015) 12213-12219
|
[217] |
L. Wang, Q. Wang, W. Jia, S. Chen, P. Gao, J. Li, Li metal coated with amorphous Li3PO4 via magnetron sputtering for stable and long-cycle life lithium metal batteries, J. Power Sources 342 (2017) 175-182 doi: 10.1016/j.jpowsour.2016.11.097
|
[218] |
Z. Tu, S. Choudhury, M. J. Zachman, S. Wei, K. Zhang, L. F. Kourkoutis, L. A. Archer, Designing Artificial Solid-Electrolyte Interphases for Single-Ion and High-Efficiency Transport in Batteries, Joule 1 (2017) 394-406 doi: 10.1016/j.joule.2017.06.002
|
[219] |
K. Fu, O. Yildiz, H. Bhanushali, Y. Wang, K. Stano, L. Xue, X. Zhang, P. D. Bradford, Aligned Carbon Nanotube-Silicon Sheets: A Novel Nano-architecture for Flexible Lithium Ion Battery Electrodes, Adv. Mater. 25 (2013) 5109-5114 doi: 10.1002/adma.201301920
|
[220] |
X. Han, Y. Gong, K. Fu, X. He, G. T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E. D. Wachsman, L. Hu, Negating interfacial impedance in garnet-based solid-state Li metal batteries, Nat. Mater. 16 (2017) 572-579 doi: 10.1038/nmat4821
|
[221] |
G. Ai, Z. Wang, H. Zhao, W. Mao, Y. Fu, R. Yi, Y. Gao, V. Battaglia, D. Wang, S. Lopatin, G. Liu, Scalable process for application of stabilized lithium metal powder in Li-ion batteries, J. Power Sources 309 (2016) 33-41 doi: 10.1016/j.jpowsour.2016.01.061
|
[222] |
M. Marcinek, L. J. Hardwick, T. J. Richardson, X. Song, R. Kostecki, Microwave plasma chemical vapor deposition of nano-structured Sn/C composite thin-film anodes for Li-ion batteries, J. Power Sources 173 (2007) 965-971 doi: 10.1016/j.jpowsour.2007.08.084
|
[223] |
M. S. Kim, L. Ma, S. Choudhury, S. S. Moganty, S. Wei, L. A. Archer, Fabricating multifunctional nanoparticle membranes by a fast layer-by-layer Langmuir-Blodgett process: application in lithium-sulfur batteries, J. Mater. Chem. A 4 (2016) 14709-14719 doi: 10.1039/C6TA06018H
|
[224] |
Y. Zhu, X. He, Y. Mo, Strategies Based on Nitride Materials Chemistry to Stabilize Li Metal Anode, Adv Sci (Weinh) 4 (2017) 1600517 doi: 10.1002/advs.201600517
|
[225] |
T. Lapp, S. Skaarup, A. Hooper, Ionic conductivity of pure and doped Li3N, Solid State Ionics 11 (1983) 97-103 doi: 10.1016/0167-2738(83)90045-0
|
[226] |
N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. Mitsui, A lithium superionic conductor, Nat. Mater 10 (2011) 682-686 doi: 10.1038/nmat3066
|
[227] |
M. Baloch, D. Shanmukaraj, O. Bondarchuk, E. Bekaert, T. Rojo, M. Armand, Variations on Li3N protective coating using ex-situ and in-situ techniques for Li° in sulphur batteries, Energy Storage Materials 9 (2017) 141-149 doi: 10.1016/j.ensm.2017.06.016
|
[228] |
K. Leung, K. L. Jungjohann, Spatial Heterogeneities and Onset of Passivation Breakdown at Lithium Anode Interfaces, J. Phys. Chem. C 121 (2017) 20188-20196 doi: 10.1021/acs.jpcc.7b06983
|
[229] |
Y.-X. Lin, Z. Liu, K. Leung, L.-Q. Chen, P. Lu, Y. Qi, Connecting the irreversible capacity loss in Li-ion batteries with the electronic insulating properties of solid electrolyte interphase (SEI) components, J. Power Sources 309 (2016) 221-230 doi: 10.1016/j.jpowsour.2016.01.078
|
[230] |
J. Qian, W. Xu, P. Bhattacharya, M. Engelhard, W. A. Henderson, Y. Zhang, J.-G. Zhang, Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive, Nano Energy 15 (2015) 135-144 doi: 10.1016/j.nanoen.2015.04.009
|
[231] |
X.-Q. Zhang, X.-B. Cheng, X. Chen, C. Yan, Q. Zhang, Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries, Adv. Funct. Mater. 27 (2017) 1605989 doi: 10.1002/adfm.201605989
|
[232] |
X. Fan, X. Ji, F. Han, J. Yue, J. Chen, L. Chen, T. Deng, J. Jiang, C. Wang, Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery, Sci. Adv. 4 (2018) eaau9245 doi: 10.1126/sciadv.aau9245
|
[233] |
E. Markevich, G. Salitra, D. Aurbach, Fluoroethylene Carbonate as an Important Component for the Formation of an Effective Solid Electrolyte Interphase on Anodes and Cathodes for Advanced Li-Ion Batteries, ACS Energy Lett. 2 (2017) 1337-1345 doi: 10.1021/acsenergylett.7b00163
|
[234] |
H. Yildirim, A. Kinaci, M. K. Chan, J. P. Greeley, First-Principles Analysis of Defect Thermodynamics and Ion Transport in Inorganic SEI Compounds: LiF and NaF, ACS Appl. Mater. Interfaces 7 (2015) 18985-18996 doi: 10.1021/acsami.5b02904
|
[235] |
W. Huang, H. Wang, D. T. Boyle, Y. Li, Y. Cui, Resolving Nanoscopic and Mesoscopic Heterogeneity of Fluorinated Species in Battery Solid-Electrolyte Interphases by Cryogenic Electron Microscopy, ACS Energy Lett. 5 (2020) 1128-1135 doi: 10.1021/acsenergylett.0c00194
|
[236] |
C. Yang, K. Fu, Y. Zhang, E. Hitz, L. Hu, Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid, Adv. Mater. 29 (2017) 1701169 doi: 10.1002/adma.201701169
|
[237] |
Y. Wang, E. Sahadeo, G. Rubloff, C.-F. Lin, S. B. Lee, High-capacity lithium sulfur battery and beyond: a review of metal anode protection layers and perspective of solid-state electrolytes, Journal of Materials Science 54 (2019) 3671-3693 doi: 10.1007/s10853-018-3093-7
|
[238] |
K. Liu, A. Pei, H. R. Lee, B. Kong, N. Liu, D. Lin, Y. Liu, C. Liu, P.-c. Hsu, Z. Bao, Y. Cui, Lithium Metal Anodes with an Adaptive “Solid-Liquid” Interfacial Protective Layer, Journal of the American Chemical Society 139 (2017) 4815-4820 doi: 10.1021/jacs.6b13314
|
[239] |
R. Cross, Elastic and viscous properties of Silly Putty, American Journal of Physics 80 (2012) 870-875 doi: 10.1119/1.4732086
|
[240] |
R. Weijermars, Flow behaviour and physical chemistry of bouncing putties and related polymers in view of tectonic laboratory applications, Tectonophysics 124 (1986) 325-358 doi: 10.1016/0040-1951(86)90208-8
|
[241] |
M. Wu, Z. Wen, Y. Liu, X. Wang, L. Huang, Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries, J. Power Sources 196 (2011) 8091-8097 doi: 10.1016/j.jpowsour.2011.05.035
|
[242] |
Y. J. Zhang, W. Wang, H. Tang, W. Q. Bai, X. Ge, X. L. Wang, C. D. Gu, J. P. Tu, An ex-situ nitridation route to synthesize Li3N-modified Li anodes for lithium secondary batteries, J. Power Sources 277 (2015) 304-311 doi: 10.1016/j.jpowsour.2014.12.023
|
[243] |
D. Lin, Y. Liu, W. Chen, G. Zhou, K. Liu, B. Dunn, Y. Cui, Conformal Lithium Fluoride Protection Layer on Three-Dimensional Lithium by Nonhazardous Gaseous Reagent Freon, Nano Lett. 17 (2017) 3731-3737 doi: 10.1021/acs.nanolett.7b01020
|
[244] |
J. Zhao, L. Liao, F. Shi, T. Lei, G. Chen, A. Pei, J. Sun, K. Yan, G. Zhou, J. Xie, C. Liu, Y. Li, Z. Liang, Z. Bao, Y. Cui, Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability, J. Am. Chem. Soc. 139 (2017) 11550-11558 doi: 10.1021/jacs.7b05251
|
[245] |
S. L. Koch, B. J. Morgan, S. Passerini, G. Teobaldi, Density functional theory screening of gas-treatment strategies for stabilization of high energy-density lithium metal anodes, J. Power Sources 296 (2015) 150-161 doi: 10.1016/j.jpowsour.2015.07.027
|
[246] |
N.-W. Li, Y.-X. Yin, C.-P. Yang, Y.-G. Guo, An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes, Adv. Mater. 28 (2016) 1853-1858 doi: 10.1002/adma.201504526
|
[247] |
W. Jia, Q. Wang, J. Yang, C. Fan, L. Wang, J. Li, Pretreatment of Lithium Surface by Using Iodic Acid (HIO3) To Improve Its Anode Performance in Lithium Batteries, ACS Appl. Mate. Interfaces 9 (2017) 7068-7074 doi: 10.1021/acsami.6b14614
|
[248] |
A. Basile, A. I. Bhatt, A. P. O'Mullane, Stabilizing lithium metal using ionic liquids for long-lived batteries, Nat. Commun. 7 (2016) ncomms11794
|
[249] |
N.-W. Li, Y.-X. Yin, J.-Y. Li, C.-H. Zhang, Y.-G. Guo, Passivation of Lithium Metal Anode via Hybrid Ionic Liquid Electrolyte toward Stable Li Plating/Stripping, Adv. Sci. 4 (2017) 1600400 doi: 10.1002/advs.201600400
|
[250] |
G. A. Umeda, E. Menke, M. Richard, K. L. Stamm, F. Wudl, B. Dunn, Protection of lithium metal surfaces using tetraethoxysilane, J. Mater. Chem. 21 (2011) 1593-1599 doi: 10.1039/C0JM02305A
|
[251] |
X.-B. Cheng, C. Yan, X. Chen, C. Guan, J.-Q. Huang, H.-J. Peng, R. Zhang, S.-T. Yang, Q. Zhang, Implantable Solid Electrolyte Interphase in Lithium-Metal Batteries, Chem 2 (2017) 258-270 doi: 10.1016/j.chempr.2017.01.003
|
[252] |
L. Ma, M. S. Kim, L. A. Archer, Stable Artificial Solid Electrolyte Interphases for Lithium Batteries, Chem. Mater. 29 (2017) 4181-4189 doi: 10.1021/acs.chemmater.6b03687
|
[253] |
S. Wei, S. Choudhury, Z. Tu, K. Zhang, L. A. Archer, Electrochemical Interphases for High-Energy Storage Using Reactive Metal Anodes, Acc. Chem. Res. 51 (2018) 80-88 doi: 10.1021/acs.accounts.7b00484
|
[254] |
Q. Zhao, Z. Tu, S. Wei, K. Zhang, S. Choudhury, X. Liu, L. A. Archer, Building Organic/Inorganic Hybrid Interphases for Fast Interfacial Transport in Rechargeable Metal Batteries, Angew. Chem. Int. Ed 57 (2018) 992-996 doi: 10.1002/anie.201711598
|
[255] |
G. Li, Q. Huang, X. He, Y. Gao, D. Wang, S. H. Kim, D. Wang, Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium-Sulfur Batteries, ACS Nano 12 (2018) 1500-1507 doi: 10.1021/acsnano.7b08035
|
[256] |
Y. Gu, W. W. Wang, Y. J. Li, Q. H. Wu, S. Tang, J. W. Yan, M. S. Zheng, D. Y. Wu, C. H. Fan, W. Q. Hu, Z. B. Chen, Y. Fang, Q. H. Zhang, Q. F. Dong, B. W. Mao, Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes, Nat. Commun. 9 (2018) 1339 doi: 10.1038/s41467-018-03466-8
|
[257] |
C. Yan, X. B. Cheng, Y. X. Yao, X. Shen, B. Q. Li, W. J. Li, R. Zhang, J. Q. Huang, H. Li, Q. Zhang, An Armored Mixed Conductor Interphase on a Dendrite-Free Lithium-Metal Anode, Adv. Mater. 30 (2018) e1804461 doi: 10.1002/adma.201804461
|
[258] |
Q. Li, H. Pan, W. Li, Y. Wang, J. Wang, J. Zheng, X. Yu, H. Li, L. Chen, Homogeneous Interface Conductivity for Lithium Dendrite-Free Anode, ACS Energy Lett. 3 (2018) 2259-2266 doi: 10.1021/acsenergylett.8b01244
|
[259] |
R. Jung, M. Metzger, D. Haering, S. Solchenbach, C. Marino, N. Tsiouvaras, C. Stinner, H. A. Gasteiger, Consumption of Fluoroethylene Carbonate (FEC) on Si-C Composite Electrodes for Li-Ion Batteries, J. Electrochem. Soc. 163 (2016) A1705-A1716 doi: 10.1149/2.0951608jes
|
[260] |
N.-S. Choi, K. H. Yew, K. Y. Lee, M. Sung, H. Kim, S.-S. Kim, Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode, J. Power Sources 161 (2006) 1254-1259 doi: 10.1016/j.jpowsour.2006.05.049
|
[261] |
A. Bordes, K. Eom, T. F. Fuller, The effect of fluoroethylene carbonate additive content on the formation of the solid-electrolyte interphase and capacity fade of Li-ion full-cell employing nano Si-graphene composite anodes, J. Power Sources 257 (2014) 163-169 doi: 10.1016/j.jpowsour.2013.12.144
|
[262] |
J. Heine, P. Hilbig, X. Qi, P. Niehoff, M. Winter, P. Bieker, Fluoroethylene Carbonate as Electrolyte Additive in Tetraethylene Glycol Dimethyl Ether Based Electrolytes for Application in Lithium Ion and Lithium Metal Batteries, J. Electrochem. Soc. 162 (2015) A1094-A1101 doi: 10.1149/2.0011507jes
|
[263] |
D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt, U. Heider, On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries, Electrochim. Acta 47 (2002) 1423-1439 doi: 10.1016/S0013-4686(01)00858-1
|
[264] |
S. Grugeon, P. Jankowski, D. Cailleu, C. Forestier, L. Sannier, M. Armand, P. Johansson, S. Laruelle, Towards a better understanding of vinylene carbonate derived SEI-layers by synthesis of reduction compounds, J. Power Sources 427 (2019) 77-84 doi: 10.1016/j.jpowsour.2019.04.061
|
[265] |
Z.-i. Takehara, Future prospects of the lithium metal anode, J. Power Sources 68 (1997) 82-86 doi: 10.1016/S0378-7753(96)02546-3
|
[266] |
S. Shiraishi, Surface Condition Changes in Lithium Metal Deposited in Nonaqueous Electrolyte Containing HF by Dissolution-Deposition Cycles, J. Electrochem. Soc. 146 (1999) 1633 doi: 10.1149/1.1391818
|
[267] |
Y. Zhang, J. Qian, W. Xu, S. M. Russell, X. Chen, E. Nasybulin, P. Bhattacharya, M. H. Engelhard, D. Mei, R. Cao, F. Ding, A. V. Cresce, K. Xu, J. G. Zhang, Dendrite-free lithium deposition with self-aligned nanorod structure, Nano Lett. 14 (2014) 6889-6896 doi: 10.1021/nl5039117
|
[268] |
Y. Yamada, A. Yamada, Review-Superconcentrated Electrolytes for Lithium Batteries, J. Electrochem. Soc. 162 (2015) A2406-A2423 doi: 10.1149/2.0041514jes
|
[269] |
K. Xu, Electrolytes and interphases in Li-ion batteries and beyond, Chem. Rev. 114 (2014) 11503-11618 doi: 10.1021/cr500003w
|
[270] |
O. Borodin, J. Self, K. A. Persson, C. Wang, K. Xu, Uncharted Waters: Super-Concentrated Electrolytes, Joule 4 (2020) 69-100 doi: 10.1016/j.joule.2019.12.007
|
[271] |
Y. Yamada, K. Furukawa, K. Sodeyama, K. Kikuchi, M. Yaegashi, Y. Tateyama, A. Yamada, Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries, J. Am. Chem. Soc. 136 (2014) 5039-5046 doi: 10.1021/ja412807w
|
[272] |
D. W. McOwen, D. M. Seo, O. Borodin, J. Vatamanu, P. D. Boyle, W. A. Henderson, Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms, Energy Environ. Sci. 7 (2014) 416-426 doi: 10.1039/C3EE42351D
|
[273] |
K. Yoshida, M. Tsuchiya, N. Tachikawa, K. Dokko, M. Watanabe, Change from glyme solutions to quasi-ionic liquids for binary mixtures consisting of lithium bis (trifluoromethanesulfonyl) amide and glymes, J. Phys. Chem. C 115 (2011) 18384-18394 doi: 10.1021/jp206881t
|
[274] |
S.-K. Jeong, H.-Y. Seo, D.-H. Kim, H.-K. Han, J.-G. Kim, Y. B. Lee, Y. Iriyama, T. Abe, Z. Ogumi, Suppression of dendritic lithium formation by using concentrated electrolyte solutions, Electrochem. Commun. 10 (2008) 635-638 doi: 10.1016/j.elecom.2008.02.006
|
[275] |
L. Suo, Y. S. Hu, H. Li, M. Armand, L. Chen, A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries, Nat. Commun. 4 (2013) 1481 doi: 10.1038/ncomms2513
|
[276] |
J. Alvarado, M. A. Schroeder, T. P. Pollard, X. Wang, J. Z. Lee, M. Zhang, T. Wynn, M. Ding, O. Borodin, Y. S. Meng, K. Xu, Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes, Energy Environ. Sci. 12 (2019) 780-794 doi: 10.1039/c8ee02601g
|
[277] |
H. Kim, F. Wu, J. T. Lee, N. Nitta, H.-T. Lin, M. Oschatz, W. I. Cho, S. Kaskel, O. Borodin, G. Yushin, In Situ Formation of Protective Coatings on Sulfur Cathodes in Lithium Batteries with LiFSI-Based Organic Electrolytes, Adv. Energy Mater. 5 (2015) 1401792 doi: 10.1002/aenm.201401792
|
[278] |
L. E. Camacho-Forero, T. W. Smith, P. B. Balbuena, Effects of High and Low Salt Concentration in Electrolytes at Lithium-Metal Anode Surfaces, J. Phys. Chem. C 121 (2017) 182-194 doi: 10.1021/acs.jpcc.6b10774
|
[279] |
S. Jiao, X. Ren, R. Cao, M. H. Engelhard, Y. Liu, D. Hu, D. Mei, J. Zheng, W. Zhao, Q. Li, N. Liu, B. D. Adams, C. Ma, J. Liu, J.-G. Zhang, W. Xu, Stable cycling of high-voltage lithium metal batteries in ether electrolytes, Nat. Energy 3 (2018) 739-746 doi: 10.1038/s41560-018-0199-8
|
[280] |
T. Osaka, T. Homma, T. Momma, H. Yarimizu, In situ observation of lithium deposition processes in solid polymer and gel electrolytes, J. Electroal. Chem. 421 (1997) 153-156 doi: 10.1016/S0022-0728(96)04870-X
|
[281] |
M. Singh, O. Odusanya, G. M. Wilmes, H. B. Eitouni, E. D. Gomez, A. J. Patel, V. L. Chen, M. J. Park, P. Fragouli, H. Iatrou, N. Hadjichristidis, D. Cookson, N. P. Balsara, Effect of Molecular Weight on the Mechanical and Electrical Properties of Block Copolymer Electrolytes, Macromolecules 40 (2007) 4578-4585 doi: 10.1021/ma0629541
|
[282] |
D. R. Sadoway, Block and graft copolymer electrolytes for high-performance, solid-state, lithium batteries, J. Power Sources 129 (2004) 1-3 doi: 10.1016/j.jpowsour.2003.11.016
|
[283] |
P. E. Trapa, Y.-Y. Won, S. C. Mui, E. A. Olivetti, B. Huang, D. R. Sadoway, A. M. Mayes, S. Dallek, Rubbery Graft Copolymer Electrolytes for Solid-State, Thin-Film Lithium Batteries, J. Electrochem. Soc. 152 (2005) A1 doi: 10.1149/1.1824032
|
[284] |
X. X. Zeng, Y. X. Yin, N. W. Li, W. C. Du, Y. G. Guo, L. J. Wan, Reshaping Lithium Plating/Stripping Behavior via Bifunctional Polymer Electrolyte for Room-Temperature Solid Li Metal Batteries, J. Am. Chem. Soc. 138 (2016) 15825-15828 doi: 10.1021/jacs.6b10088
|
[285] |
R. Khurana, J. L. Schaefer, L. A. Archer, G. W. Coates, Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries, J. Am. Chem. Soc. 136 (2014) 7395-7402 doi: 10.1021/ja502133j
|
[286] |
H. Zhang, C. Li, M. Piszcz, E. Coya, T. Rojo, L. M. Rodriguez-Martinez, M. Armand, Z. Zhou, Single lithium-ion conducting solid polymer electrolytes: advances and perspectives, Chem. Soc. Rev. 46 (2017) 797-815 doi: 10.1039/C6CS00491A
|
[287] |
C. Cao, Y. Li, Y. Feng, C. Peng, Z. Li, W. Feng, A solid-state single-ion polymer electrolyte with ultrahigh ionic conductivity for dendrite-free lithium metal batteries, Energy Stor. Mater. 19 (2019) 401-407 doi: 10.1016/j.ensm.2019.03.004
|
[288] |
M. D. Tikekar, L. A. Archer, D. L. Koch, Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions, Sci. Adv. 2 (2016) e1600320 doi: 10.1126/sciadv.1600320
|
[289] |
R. Bouchet, S. Maria, R. Meziane, A. Aboulaich, L. Lienafa, J. P. Bonnet, T. N. Phan, D. Bertin, D. Gigmes, D. Devaux, R. Denoyel, M. Armand, Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries, Nat. Mater. 12 (2013) 452-457 doi: 10.1038/nmat3602
|
[290] |
Z. Tu, P. Nath, Y. Lu, M. D. Tikekar, L. A. Archer, Nanostructured Electrolytes for Stable Lithium Electrodeposition in Secondary Batteries, Acc. Chem. Res. 48 (2015) 2947-2956 doi: 10.1021/acs.accounts.5b00427
|
[291] |
Y. Lu, S. K. Das, S. S. Moganty, L. A. Archer, Ionic Liquid-Nanoparticle Hybrid Electrolytes and their Application in Secondary Lithium-Metal Batteries, Adv. Mater. 24 (2012) 4430-4435 doi: 10.1002/adma.201201953
|
[292] |
Y. Lu, K. Korf, Y. Kambe, Z. Tu, L. A. Archer, Ionic-Liquid-Nanoparticle Hybrid Electrolytes: Applications in Lithium Metal Batteries, Angew. Chem. Int. Ed. 53 (2014) 488-492 doi: 10.1002/anie.201307137
|
[293] |
X. Zhang, S. Wang, C. Xue, C. Xin, Y. Lin, Y. Shen, L. Li, C. W. Nan, Self-Suppression of Lithium Dendrite in All-Solid-State Lithium Metal Batteries with Poly(vinylidene difluoride)-Based Solid Electrolytes, Adv. Mater. 31 (2019) e1806082 doi: 10.1002/adma.201806082
|
[294] |
J. M. Whiteley, S. Hafner, C. Zhu, W. Zhang, S.-H. Lee, Stable Lithium Deposition Using a Self-Optimizing Solid Electrolyte Composite, J. Electrochem. Soc. 164 (2017) A2962 doi: 10.1149/2.0331713jes
|
[295] |
G. Cui, Reasonable Design of High-Energy-Density Solid-State Lithium-Metal Batteries, Matter 2 (2020) 805-815 doi: 10.1016/j.matt.2020.02.003
|
[296] |
F.-Q. Liu, W.-P. Wang, Y.-X. Yin, S.-F. Zhang, J.-L. Shi, L. Wang, X.-D. Zhang, Y. Zheng, J.-J. Zhou, L. Li, Y.-G. Guo, Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries, Sci. Adv. 4 (2018) eaat5383 doi: 10.1126/sciadv.aat5383
|
[297] |
J. F. Wu, B. W. Pu, D. Wang, S. Q. Shi, N. Zhao, X. Guo, X. Guo, In Situ Formed Shields Enabling Li2CO3-Free Solid Electrolytes: A New Route to Uncover the Intrinsic Lithiophilicity of Garnet Electrolytes for Dendrite-Free Li-Metal Batteries, ACS Appl. Mater. Interfaces 11 (2019) 898-905 doi: 10.1021/acsami.8b18356
|
[298] |
H. Huo, J. Luo, V. Thangadurai, X. Guo, C.-W. Nan, X. Sun, Li2CO3: A Critical Issue for Developing Solid Garnet Batteries, ACS Energy Lett. 5 (2020) 252-262 doi: 10.1021/acsenergylett.9b02401
|
[299] |
L. Cheng, E. J. Crumlin, W. Chen, R. Qiao, H. Hou, S. Franz Lux, V. Zorba, R. Russo, R. Kostecki, Z. Liu, K. Persson, W. Yang, J. Cabana, T. Richardson, G. Chen, M. Doeff, The origin of high electrolyte-electrode interfacial resistances in lithium cells containing garnet type solid electrolytes, Phys. Chem. Chem. Phys. 16 (2014) 18294-18300 doi: 10.1039/C4CP02921F
|
[300] |
Y. Li, X. Chen, A. Dolocan, Z. Cui, S. Xin, L. Xue, H. Xu, K. Park, J. B. Goodenough, Garnet Electrolyte with an Ultralow Interfacial Resistance for Li-Metal Batteries, J. Am. Chem. Soc. 140 (2018) 6448-6455 doi: 10.1021/jacs.8b03106
|
[301] |
H. Huo, Y. Chen, N. Zhao, X. Lin, J. Luo, X. Yang, Y. Liu, X. Guo, X. Sun, In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries, Nano Energy 61 (2019) 119-125 doi: 10.1016/j.nanoen.2019.04.058
|
[302] |
A. Sharafi, E. Kazyak, A. L. Davis, S. Yu, T. Thompson, D. J. Siegel, N. P. Dasgupta, J. Sakamoto, Surface Chemistry Mechanism of Ultra-Low Interfacial Resistance in the Solid-State Electrolyte Li7La3Zr2O12, Chem. Mater. 29 (2017) 7961-7968 doi: 10.1021/acs.chemmater.7b03002
|
[303] |
L. Cheng, M. Liu, A. Mehta, H. Xin, F. Lin, K. Persson, G. Chen, E. J. Crumlin, M. Doeff, Garnet Electrolyte Surface Degradation and Recovery, ACS Appl. Energy Mater. 1 (2018) 7244-7252 doi: 10.1021/acsaem.8b01723
|
[304] |
C. Wang, H. Xie, W. Ping, J. Dai, G. Feng, Y. Yao, S. He, J. Weaver, H. Wang, K. Gaskell, L. Hu, A general, highly efficient, high temperature thermal pulse toward high performance solid state electrolyte, Energy Storage Materials 17 (2019) 234-241 doi: 10.1016/j.ensm.2018.11.007
|
[305] |
H. Duan, W. P. Chen, M. Fan, W. P. Wang, L. Yu, S. J. Tan, X. Chen, Q. Zhang, S. Xin, L. J. Wan, Y. G. Guo, Building an Air Stable and Lithium Deposition Regulable Garnet Interface from Moderate-Temperature Conversion Chemistry, Angew. Chem. Int. Ed. (2020) doi: 10.1002/anie.202003177
|
[306] |
C.-L. Tsai, V. Roddatis, C. V. Chandran, Q. Ma, S. Uhlenbruck, M. Bram, P. Heitjans, O. Guillon, Li7La3Zr2O12 Interface Modification for Li Dendrite Prevention, ACS Appl. Mater. Interfaces 8 (2016) 10617-10626 doi: 10.1021/acsami.6b00831
|
[307] |
S. Wenzel, T. Leichtweiss, D. Kruger, J. Sann, J. Janek, Interphase formation on lithium solid electrolytes-An in situ approach to study interfacial reactions by photoelectron spectroscopy, Solid State Ionics 278 (2015) 98-105 doi: 10.1016/j.ssi.2015.06.001
|
[308] |
W. L. Huang, N. Zhao, Z. J. Bi, C. Shi, X. X. Guo, L. Z. Fan, C. W. Nan, Can we find solution to eliminate Li penetration through solid garnet electrolytes? , Materials Today Nano 10 (2020) 100075 doi: 10.1016/j.mtnano.2020.100075
|
[309] |
N. Zhao, R. Fang, M.-H. He, C. Chen, Y.-Q. Li, Z.-J. Bi, X.-X. Guo, Cycle stability of lithium/garnet/lithium cells with different intermediate layers, Rare Metals 37 (2018) 473-479 doi: 10.1007/s12598-018-1057-3
|
[310] |
M. He, Z. Cui, C. Chen, Y. Li, X. Guo, Formation of self-limited, stable and conductive interfaces between garnet electrolytes and lithium anodes for reversible lithium cycling in solid-state batteries, J. Mater. Chem. A 6 (2018) 11463-11470
|
[311] |
K. Fu, Y. Gong, B. Liu, Y. Zhu, S. Xu, Y. Yao, W. Luo, C. Wang, S. D. Lacey, J. Dai, Y. Chen, Y. Mo, E. Wachsman, L. Hu, Toward garnet electrolyte-based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface, Sci. Adv. 3 (2017) e1601659 doi: 10.1126/sciadv.1601659
|
[312] |
K. Fu, Y. Gong, Z. Fu, H. Xie, Y. Yao, B. Liu, M. Carter, E. Wachsman, L. Hu, Transient Behavior of the Metal Interface in Lithium Metal-Garnet Batteries, Angew. Chem. Int. Ed. 56 (2017) 14942-14947 doi: 10.1002/anie.201708637
|
[313] |
W. Feng, X. Dong, Z. Lai, X. Zhang, Y. Wang, C. Wang, J. Luo, Y. Xia, Building an Interfacial Framework: Li/Garnet Interface Stabilization through a Cu6Sn5 Layer, ACS Energy Lett. 4 (2019) 1725-1731 doi: 10.1021/acsenergylett.9b01158
|
[314] |
J. A. Lewis, F. J. Q. Cortes, M. G. Boebinger, J. Tippens, T. S. Marchese, N. Kondekar, X. Liu, M. Chi, M. T. McDowell, Interphase Morphology between a Solid-State Electrolyte and Lithium Controls Cell Failure, ACS Energy Lett. 4 (2019) 591-599 doi: 10.1021/acsenergylett.9b00093
|
[315] |
H. Xu, Y. Li, A. Zhou, N. Wu, S. Xin, Z. Li, J. B. Goodenough, Li3N-Modified Garnet Electrolyte for All-Solid-State Lithium Metal Batteries Operated at 40 °C, Nano Lett. 18 (2018) 7414-7418 doi: 10.1021/acs.nanolett.8b03902
|
[316] |
W. Zhou, Y. Zhu, N. Grundish, X. Sen, S. Wang, Y. You, N. Wu, J. Gao, Z. Cui, Y. Li, J. B. Goodenough, Polymer lithium-garnet interphase for an all-solid-state rechargeable battery, Nano Energy 53 (2018) 926-931 doi: 10.1016/j.nanoen.2018.09.004
|
[317] |
K. Kataoka, H. Nagata, J. Akimoto, Lithium-ion conducting oxide single crystal as solid electrolyte for advanced lithium battery application, Sci. Rep. 8 (2018) 9965 doi: 10.1038/s41598-018-27851-x
|
[318] |
T. Swamy, R. Park, B. W. Sheldon, D. Rettenwander, L. Porz, S. Berendts, R. Uecker, W. C. Carter, Y.-M. Chiang, Lithium Metal Penetration Induced by Electrodeposition through Solid Electrolytes: Example in Single-Crystal Li6La3ZrTaO12 Garnet, J. Electrochem. Soc. 165 (2018) A3648-A3655 doi: 10.1149/2.1391814jes
|
[319] |
Y. Suzuki, K. Kami, K. Watanabe, A. Watanabe, N. Saito, T. Ohnishi, K. Takada, R. Sudo, N. Imanishi, Transparent cubic garnet-type solid electrolyte of Al2O3-doped Li7La3Zr2O12, Solid State Ionics 278 (2015) 172-176 doi: 10.1016/j.ssi.2015.06.009
|
[320] |
S. Patra, V. Krupa B R, S. Chakravarty, R. Murugan, Microstructural engineering in lithium garnets by hot isostatic press to cordon lithium dendrite growth and negate interfacial resistance for all solid state battery applications, Electrochim. Acta 312 (2019) 320-328 doi: 10.1016/j.electacta.2019.05.003
|
[321] |
M. Botros, R. Djenadic, O. Clemens, M. Moller, H. Hahn, Field assisted sintering of fine-grained Li7−3xLa3Zr2AlxO12 solid electrolyte and the influence of the microstructure on the electrochemical performance, J. Power Sources 309 (2016) 108-115 doi: 10.1016/j.jpowsour.2016.01.086
|
[322] |
S. Sugata, N. Saito, A. Watanabe, K. Watanabe, J.-D. Kim, K. Kitagawa, Y. Suzuki, I. Honma, Quasi-solid-state lithium batteries using bulk-size transparent Li7La3Zr2O12 electrolytes, Solid State Ionics 319 (2018) 285-290 doi: 10.1016/j.ssi.2018.02.029
|
[323] |
S. Xu, D. W. McOwen, L. Zhang, G. T. Hitz, C. Wang, Z. Ma, C. Chen, W. Luo, J. Dai, Y. Kuang, E. M. Hitz, K. Fu, Y. Gong, E. D. Wachsman, L. Hu, All-in-one lithium-sulfur battery enabled by a porous-dense-porous garnet architecture, Energy Stor. Mater. 15 (2018) 458-464 doi: 10.1016/j.ensm.2018.08.009
|
[324] |
D. W. McOwen, S. Xu, Y. Gong, Y. Wen, G. L. Godbey, J. E. Gritton, T. R. Hamann, J. Dai, G. T. Hitz, L. Hu, E. D. Wachsman, 3D-Printing Electrolytes for Solid-State Batteries, Adv. Mater. 30 (2018) 1707132 doi: 10.1002/adma.201707132
|
[325] |
G. T. Hitz, D. W. McOwen, L. Zhang, Z. Ma, Z. Fu, Y. Wen, Y. Gong, J. Dai, T. R. Hamann, L. Hu, E. D. Wachsman, High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture, Mater. Today 22 (2019) 50-57 doi: 10.1016/j.mattod.2018.04.004
|
[326] |
K. E. Thomas-Alyea, Design of Porous Solid Electrolytes for Rechargeable Metal Batteries, J. Electrochem. Soc. 165 (2018) A1523-A1528 doi: 10.1149/2.1151807jes
|
[327] |
H. Huo, Y. Chen, J. Luo, X. Yang, X. Guo, X. Sun, Rational Design of Hierarchical “Ceramic-in-Polymer” and “Polymer-in-Ceramic” Electrolytes for Dendrite-Free Solid-State Batteries, Adv. Energy Mater. 9 (2019) 1804004 doi: 10.1002/aenm.201804004
|
[328] |
I. Gurevitch, R. Buonsanti, A. A. Teran, B. Gludovatz, R. O. Ritchie, J. Cabana, N. P. Balsara, Nanocomposites of Titanium Dioxide and Polystyrene-Poly(ethylene oxide) Block Copolymer as Solid-State Electrolytes for Lithium Metal Batteries, J. Electrochem. Soc. 160 (2013) A1611-A1617 doi: 10.1149/2.117309jes
|
[329] |
K. Fu, Y. Gong, J. Dai, A. Gong, X. Han, Y. Yao, C. Wang, Y. Wang, Y. Chen, C. Yan, Y. Li, E. D. Wachsman, L. Hu, Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries, Proc. Natl. Acad. Sci. U.S.A. 113 (2016) 7094 doi: 10.1073/pnas.1600422113
|
[330] |
M. A. K. L. Dissanayake, P. A. R. D. Jayathilaka, R. S. P. Bokalawala, I. Albinsson, B. E. Mellander, Effect of concentration and grain size of alumina filler on the ionic conductivity enhancement of the (PEO)9LiCF3SO3:Al2O3 composite polymer electrolyte, J. Power Sources 119 (2003) 409-414
|
[331] |
C. Hu, Y. Shen, M. Shen, X. Liu, H. Chen, C. Liu, T. Kang, F. Jin, L. Li, J. Li, Y. Li, N. Zhao, X. Guo, W. Lu, B. Hu, L. Chen, Superionic Conductors via Bulk Interfacial Conduction, J. Am. Chem. Soc. 142 (2020) 18035-18041 doi: 10.1021/jacs.0c07060
|
[332] |
D. Lin, P. Y. Yuen, Y. Liu, W. Liu, N. Liu, R. H. Dauskardt, Y. Cui, A Silica-Aerogel-Reinforced Composite Polymer Electrolyte with High Ionic Conductivity and High Modulus, Adv. Mater. 30 (2018) 1802661 doi: 10.1002/adma.201802661
|
[333] |
X. Zhang, J. Xie, F. Shi, D. Lin, Y. Liu, W. Liu, A. Pei, Y. Gong, H. Wang, K. Liu, Vertically aligned and continuous nanoscale ceramic-polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity, Nano Lett. 18 (2018) 3829-3838 doi: 10.1021/acs.nanolett.8b01111
|
[334] |
L. Chen, Y. Li, S.-P. Li, L.-Z. Fan, C.-W. Nan, J. B. Goodenough, PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”, Nano Energy 46 (2018) 176-184 doi: 10.1016/j.nanoen.2017.12.037
|
[335] |
J. Syzdek, M. Armand, M. Gizowska, M. Marcinek, E. Sasim, M. Szafran, W. Wieczorek, Ceramic-in-polymer versus polymer-in-ceramic polymeric electrolytes-A novel approach, J. Power Sources 194 (2009) 66-72 doi: 10.1016/j.jpowsour.2009.01.070
|
[336] |
J. Y. Liang, X. X. Zeng, X. D. Zhang, T. T. Zuo, M. Yan, Y. X. Yin, J. L. Shi, X. W. Wu, Y. G. Guo, L. J. Wan, Engineering Janus Interfaces of Ceramic Electrolyte via Distinct Functional Polymers for Stable High-Voltage Li-Metal Batteries, J. Am. Chem. Soc. 141 (2019) 9165-9169 doi: 10.1021/jacs.9b03517
|
[337] |
Z. Zou, Y. Li, Z. Lu, D. Wang, Y. Cui, B. Guo, Y. Li, X. Liang, J. Feng, H. Li, C. W. Nan, M. Armand, L. Chen, K. Xu, S. Shi, Mobile Ions in Composite Solids, Chem. Rev. 120 (2020) 4169-4221 doi: 10.1021/acs.chemrev.9b00760
|
[338] |
L. P. Hou, X. Q. Zhang, B. Q. Li, Q. Zhang, Cycling a Lithium Metal Anode at 90° C in a Liquid Electrolyte, Angew. Chem. Int. Ed. 132 (2020) 15221-15225 doi: 10.1002/ange.202002711
|
[339] |
Y. Zhu, J. Xie, A. Pei, B. Liu, Y. Wu, D. Lin, J. Li, H. Wang, H. Chen, J. Xu, A. Yang, C.-L. Wu, H. Wang, W. Chen, Y. Cui, Fast lithium growth and short circuit induced by localized-temperature hotspots in lithium batteries, Nat. Comm. 10 (2019) 2067 doi: 10.3390/w11102067
|
[340] |
C. Martin, M. Genovese, A. J. Louli, R. Weber, J. R. Dahn, Cycling Lithium Metal on Graphite to Form Hybrid Lithium-Ion/Lithium Metal Cells, Joule 4 (2020) 1296-1310 doi: 10.1016/j.joule.2020.04.003
|
[341] |
H. Chung, B. Kang, Mechanical and Thermal Failure Induced by Contact between a Li1.5Al0.5Ge1.5(PO4)3 Solid Electrolyte and Li Metal in an All Solid-State Li Cell, Chem. Mater. 29 (2017) 8611-8619 doi: 10.1021/acs.chemmater.7b02301
|
[342] |
R. Chen, A. M. Nolan, J. Lu, J. Wang, X. Yu, Y. Mo, L. Chen, X. Huang, H. Li, The Thermal Stability of Lithium Solid Electrolytes with Metallic Lithium, Joule 4 (2020) 812-821 doi: 10.1016/j.joule.2020.03.012
|
[343] |
A. Perea, M. Dontigny, K. Zaghib, Safety of solid-state Li metal battery: Solid polymer versus liquid electrolyte, J. Power Sources 359 (2017) 182-185 doi: 10.1016/j.jpowsour.2017.05.061
|