Volume 2 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
Cosson Mickael, David Benjamin, Arzel Ludovic, Poizot Philippe, Rhallabi Ahmed. Modelling of photovoltaic production and electrochemical storage in an autonomous solar drone[J]. eScience, 2022, 2(2): 235-241. doi: 10.1016/j.esci.2022.02.004
Citation: Cosson Mickael, David Benjamin, Arzel Ludovic, Poizot Philippe, Rhallabi Ahmed. Modelling of photovoltaic production and electrochemical storage in an autonomous solar drone[J]. eScience, 2022, 2(2): 235-241. doi: 10.1016/j.esci.2022.02.004

Modelling of photovoltaic production and electrochemical storage in an autonomous solar drone

doi: 10.1016/j.esci.2022.02.004
More Information
  • A simple, efficient simulator has been developed to predict the generation of photovoltaic energy and its storage in Li-ion batteries, for an autonomous drone with four wings covered by solar panels based on thin-film gallium arsenide photovoltaic cells (III–V). This simulator allows prediction of the effective photovoltaic power produced by the solar panels as well as the battery pack voltage when the drone is flying. Flight parameters such as irradiance, sun inclination angles, and drone Euler angles are considered as input parameters. The measured photovoltaic power and battery pack voltage are in good agreement with the simulated values, making practical use by the XSun company possible. This parametric study shows the effects of climatic and geographic conditions on drone autonomy. In optimal weather conditions on a sunny day, drone flight can last 12 ​h.
  • ● The simulator was built using the Matlab© environment
    ● The simulator has been validated in real-flight conditions
    ● A simulator has been developed to predict the generation of photovoltaic energy and its storage in Li-ion batteries for an autonomous drone
    ● The simulator is composed of three main modules: the photovoltaic production, the energy storage unit and the energy management system
    ● A parametric study was performed to show the performance of the drone regarding the weather and geographical conditions
  • loading
  • eScience-2-2-235.docx
  • [1]
    B. CustersThe Future of Drone Use: Opportunities and Threats from Ethical and Legal Perspectives. Springer (2016)
    [2]
    A. Otto, N. Agatz, J. Campbell, B. Golden, E. PeschOptimization approaches for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: a survey. Networks, 72 (2018) 411-458, 10.1002/net.21818 doi: 10.1002/net.21818
    [3]
    F.A. D'Oliveira, F.C.L. de Melo, T.C. DevezasHigh-altitude platforms - present situation and technology trends. J.Aerosp. Technol. Manag., 8 (2016) 249-262 doi: 10.5028/jatm.v8i3.699
    [4]
    A. NothHistory of Solar Flight. ETH Zurich (July 2008)
    [5]
    A. NothPhD Thesis “Design of Solar Powered Airplanes for Continuous Flight”. ETH Zurich (2008)
    [6]

    10.1109/AERO.2016.7500855

    [7]
    A.T. Klesh, P.T. KabambaSolar-Powered aircraft: energy-optimal path planning and perpetual endurance. J.Guid. Control Dynam., 32 (2009) 1320-1329 doi: 10.2514/1.40139
    [8]
    S. Spangelo, E. Gilbert, A. Klesh, P. Kabamba, A. GirardPeriodic energy-optimal path planning for solar-powered aircraft. AIAA Guidance, Navigation, and Control Conference, American Institute of Aeronautics and Astronautics, Chicago, Illinois (2009)
    [9]

    10.1109/CDC.2012.6425972

    [10]

    10.1109/AERO.2015.7119284

    [11]
    J. Wu, H. Wang, N. Li, P. Yao, Y. Huang, H. YangPath planning for solar-powered UAV in urban environment. Neurocomputing, 275 (2018) 2055-2065
    [12]
    H. Huang, A.V. SavkinEnergy-efficient autonomous navigation of solar-powered UAVs for surveillance of mobile ground targets in urban environments. Energies, 13 (2020), p. 5563 doi: 10.3390/en13215563
    [13]
    P. Rajendran, H. SmithImplications of longitude and latitude on the size of solar-powered UAV. Energy Convers. Manag., 98 (2015) 107-114
    [14]
    P. Oettershagen, A. Melzer, T. Mantel, K. Rudin, T. Stastny, B. Wawrzacz, T. Hinzmann, S. Leutenegger, K. Alexis, R. SiegwartDesign of small hand-launched solar-powered UAVs: from concept study to a multi-day world endurance record flight. J.Field Robot., 34 (2017)
    [15]
    H. Hwang, J. Cha, J. AhnSolar UAV design framework for a HALE flight. Aircraft Eng. Aero. Technol., 91 (2019) 927-937 doi: 10.1108/aeat-03-2017-0093
    [16]
    S. Jung, Y. Jo, Y.-J. KimFlight time estimation for continuous surveillance missions using a multirotor UAV. Energies, 12 (2019), p. 867 doi: 10.3390/en12050867
    [17]
    . XSun (2021)
    [18]
    P. Blanc, B. Gschwind, M. Lefèvre, L. WaldThe HelioClim project: surface solar irradiance data for climate applications. Rem. Sens., 3 (2011) 343-361 doi: 10.3390/rs3020343
    [19]
    M.G. Villalva, J.R. Gazoli, E.R. FilhoComprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Trans. Power Electron., 24 (2009) 1198-1208
    [20]
    F. Ghani, G. Rosengarten, M. Duke, J.K. CarsonThe numerical calculation of single-diode solar-cell modelling parameters. Renew. Energy, 72 (2014) 105-112
    [21]
    C.W. HansenEstimation of parameters for single diode models using measured IV curves. 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), IEEE, Tampa, FL (2013) 223-228
    [22]
    M. Rasheed, S. Shihab, T. RashidEstimation of single-diode model parameters of PV cell. J.Al-Qadisiyah Comput. Sci. Math., 13 (2021) 139-146
    [23]
    W. Xiao, W.G. Dunford, A. CapelAnovel modeling method for photovoltaic cells. 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551), vol. 3 (2004) 1950-1956
    [24]
    J. Newman, K.E. Thomas, H. Hafezi, D.R. WheelerModeling of lithium-ion batteries. J.Power Sources, 119–121 (2003) 838-843
    [25]
    H. He, R. Xiong, J. FanEvaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach. Energies, 4 (2011) 582-598 doi: 10.1038/s41563-020-0720-x
    [26]
    S.M. Mousavi, M. NikdelVarious battery models for various simulation studies and applications. Renew. Sustain. Energy Rev., 32 (2014) 477-485
    [27]
    A. Seaman, T.-S. Dao, J. McPheeAsurvey of mathematics-based equivalent-circuit and electrochemical battery models for hybrid and electric vehicle simulation. J.Power Sources, 256 (2014) 410-423
    [28]
    B.M. Kayes, H. Nie, R. Twist, S.G. Spruytte, F. Reinhardt, I.C. Kizilyalli, G.S. Higashi27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. 2011 37th IEEE Photovoltaic Specialists Conference (2011) 4-8
    [29]
    Md.N.I. SarkarEffect of various model parameters on solar photovoltaic cell simulation: a SPICE analysis. Renewables, 3 (2016), p. 13 doi: 10.3390/en4040582
    [30]
    O. Astakhov, T. Merdzhanova, L.-C. Kin, U. RauFrom room to roof: how feasible is direct coupling of solar-battery power unit under variable irradiance?. Sol. Energy, 206 (2020) 732-740
    [31]
    W. Li, J. Zheng, B. Hu, H.-C. Fu, M. Hu, A. Veyssal, Y. Zhao, J.-H. He, T.L. Liu, A. Ho-Baillie, S. JinHigh-performance solar flow battery powered by a perovskite/silicon tandem solar cell. Nat. Mater., 19 (2020) 1326-1331
    [32]
    R. Gelaro, W. McCarty, M.J. Suárez, R. Todling, A. Molod, L. Takacs, C.A. Randles, A. Darmenov, M.G. Bosilovich, R. Reichle, K. Wargan, L. Coy, R. Cullather, C. Draper, S. Akella, V. Buchard, A. Conaty, A.M. da Silva, W. Gu, G.-K. Kim, R. Koster, R. Lucchesi, D. Merkova, J.E. Nielsen, G. Partyka, S. Pawson, W. Putman, M. Rienecker, S.D. Schubert, M. Sienkiewicz, B. ZhaoThe modern-era retrospective analysis for Research and applications, version 2 (MERRA-2). J.Clim., 30 (2017) 5419-5454
    [33]
    T.J. Silverman, M.G. Deceglie, B. Marion, S. Cowley, B. Kayes, S. KurtzOutdoor performance of a thin-film gallium-arsenide photovoltaic module. 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC) (2013) 103-108
    [34]
    T. Hubert, E. VidalencRenewable electricity potentials in France: a long term perspective. Energy Proc., 20 (2012) 247-257
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(1)

    Article Metrics

    Article views (134) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return