Volume 2 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
Yang Hui, Liu Yanfang, Liu Xiaolu, Wang Xiangke, Tian He, Waterhouse Geoffrey I.N., Kruger Paul E., Telfer Shane G., Ma Shengqian. Large-scale synthesis of N-doped carbon capsules supporting atomically dispersed iron for efficient oxygen reduction reaction electrocatalysis[J]. eScience, 2022, 2(2): 227-234. doi: 10.1016/j.esci.2022.02.005
Citation: Yang Hui, Liu Yanfang, Liu Xiaolu, Wang Xiangke, Tian He, Waterhouse Geoffrey I.N., Kruger Paul E., Telfer Shane G., Ma Shengqian. Large-scale synthesis of N-doped carbon capsules supporting atomically dispersed iron for efficient oxygen reduction reaction electrocatalysis[J]. eScience, 2022, 2(2): 227-234. doi: 10.1016/j.esci.2022.02.005

Large-scale synthesis of N-doped carbon capsules supporting atomically dispersed iron for efficient oxygen reduction reaction electrocatalysis

doi: 10.1016/j.esci.2022.02.005
More Information
  • Corresponding author: Shengqian Ma shengqian.ma@unt.edu
  • Received Date: 2021-10-03
  • Revised Date: 2022-01-05
  • Accepted Date: 2022-02-21
  • Available Online: 2022-03-04
  • The large-scale synthesis of platinum-free electrocatalysts for the oxygen reduction reaction (ORR) remains a grand challenge. We report the large-scale production of stable and active ORR electrocatalysts based on iron, an earth-abundant element. A core–shell zeolitic imidazolate framework–tannic acid coordination polymer composite (ZIF-8@K-TA) was utilized as the catalyst precursor, which was transformed into iron atoms dispersed in hollow porous nitrogen-doped carbon capsules (H-Fe-Nx-C) through ion exchange and pyrolysis. H-Fe-Nx-C features site-isolated single-atom iron centers coordinated to nitrogen in graphitic layers, high levels of nitrogen doping, and high permeability to incoming gases. Benefiting from these characteristics, H-Fe-Nx-C demonstrated efficient electrocatalytic activity (E1/2 ​= ​0.92 ​V, vs. RHE) and stability towards the ORR in both alkaline and acidic media. In ORR performance, it surpassed the majority of recently reported Fe-N-C catalysts and the standard Pt/C catalyst. In addition, H-Fe-Nx-C showed outstanding tolerance to methanol.
  • ● H-Fe-Nx-C showed efficient electrocatalytic activity towards the ORR.
    ● A hollow Fe-Nx-C was synthesized through ion exchange and pyrolysis.
    ● H-Fe-Nx-C could be synthesized on a large scale if required.
  • loading
  • eScience-2-2-227.docx
  • [1]
    H.-F. Wang, Q. XuMaterials design for rechargeable metal-air batteries. Matter, 1 (2019) 565-595
    [2]
    X. Zhang, X.-G. Wang, Z. Xie, Z. ZhouRecent progress in rechargeable alkali metal–air batteries. Green Energy Environ., 1 (2016) 4-17
    [3]
    D.R. DekelReview of cell performance in anion exchange membrane fuel cells. J.Power Sources, 375 (2018) 158-169
    [4]
    G. Merle, M. Wessling, K. NijmeijerAnion exchange membranes for alkaline fuel cells: a review. J.Membr. Sci., 377 (2011) 1-35
    [5]
    Q.Q. Zhang, J.Q. GuanSingle-atom catalysts for electrocatalytic applications. Adv. Funct. Mater., 30 (2020) 2000768 doi: 10.1002/adfm.202000768
    [6]
    Z.-F. Huang, J. Wang, Y. Peng, C.-Y. Jung, A. Fisher, X. WangDesign of efficient bifunctional oxygen reduction/evolution electrocatalyst: recent advances and perspectives. Adv. Energy Mater., 7 (2017) 1700544 doi: 10.1002/aenm.201700544
    [7]
    X. Ge, A. Sumboja, D. Wuu, T. An, B. Li, F.W.T. Goh, T.S.A. Hor, Y. Zong, Z. LiuOxygen reduction in alkaline media: from mechanisms to recent advances of catalysts. ACS Catal., 5 (2015) 4643-4667 doi: 10.1021/acscatal.5b00524
    [8]
    N. Zhang, L. Li, Y. Chu, L. Zheng, S. Sun, G. Zhang, H. He, J. ZhaoHigh Pt utilization efficiency of electrocatalysts for oxygen reduction reaction in alkaline media. Catal. Today, 332 (2019) 101-108
    [9]
    X. Ren, Q. Lv, L. Liu, B. Liu, Y. Wang, A. Liu, G. WuCurrent progress of Pt and Pt-based electrocatalysts used for fuel cells, Sustain. Energy Fuels, 4 (2020) 15-30 doi: 10.1039/c9se00460b
    [10]
    Y. Wang, J. Li, Z. WeiTransition-metal-oxide-based catalysts for the oxygen reduction reaction. J.Mater. Chem., 6 (2018) 8194-8209
    [11]
    H. Zhu, S. Zhang, Y.X. Huang, L. Wu, S. SunMonodisperse MxFe3-xO4 (M = Fe, Cu, Co, Mn) nanoparticles and their electrocatalysis for oxygen reduction reaction. Nano Lett., 13 (2013) 2947-2951 doi: 10.1021/nl401325u
    [12]
    H. Osgood, S.V. Devaguptapu, H. Xu, J. Cho, G. WuTransition metal (Fe, Co, Ni, and Mn) oxides for oxygen reduction and evolution bifunctional catalysts in alkaline media. Nano Today, 11 (2016) 601-625
    [13]
    K. Chen, X. Huang, C. Wan, H. LiuHybrids based on transition metal phosphide (Mn2P, Co2P, Ni2P) nanoparticles and heteroatom-doped carbon nanotubes for efficient oxygen reduction reaction. RSC Adv., 5 (2015) 92893-92898 doi: 10.1039/C5RA21385A
    [14]
    F. Bai, H. Huang, C. Hou, P. ZhangPorous carbon-coated cobalt sulfide nanocomposites derived from metal organic frameworks (MOFs) as an advanced oxygen reduction electrocatalyst. New J. Chem., 40 (2016) 1679-1684 doi: 10.1039/C5NJ02892B
    [15]
    S. Zhao, H. Yin, L. Du, L. He, K. Zhao, L. Chang, G. Yin, H. Zhao, S. Liu, Z. TangCarbonized nanoscale metal-organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano, 8 (2014) 12660-12668 doi: 10.1021/nn505582e
    [16]
    X. Qiao, J. Jin, H. Fan, Y. Li, S. LiaoIn situ growth of cobalt sulfide hollow nanospheres embedded in nitrogen and sulfur co-doped graphene nanoholes as a highly active electrocatalyst for oxygen reduction and evolution. J.Mater. Chem., 5 (2017) 12354-12360
    [17]
    C. Wan, X. Duan, Y. HuangMolecular Design of single-atom catalysts for oxygen reduction reaction. Adv. Energy Mater., 10 (2020) 1903815 doi: 10.1002/aenm.201903815
    [18]
    L. Peng, L. Shang, T. Zhang, G.I.N. WaterhouseRecent advances in the development of single-atom catalysts for oxygen electrocatalysis and zinc–air batteries. Adv. Energy Mater., 10 (2020) 2003018 doi: 10.1002/aenm.202003018
    [19]
    Q. Wang, Y. Yang, F. Sun, G. Chen, J. Wang, L. Peng, W.-T. Chen, L. Shang, J. Zhao, D. Sun-Waterhouse, T. Zhang, G.I.N. WaterhouseMolten NaCl-assisted synthesis of porous Fe-N-C electrocatalysts with a high density of catalytically accessible FeN4 active sites and outstanding oxygen reduction reaction performance. Adv. Energy Mater., 11 (2021) 2100219 doi: 10.1002/aenm.202100219
    [20]
    Q. He, Y. Meng, H. Zhang, Y. Zhang, H. Chen, H. Xiao, X. He, M. Wu, H. JiFacile synthesis of impurity-free iron single atom catalysts for highly efficient oxygen reduction reaction and active-site identification. Catal. Sci. Technol., 9 (2019) 6556-6560 doi: 10.1039/c9cy01512d
    [21]
    J. Han, H. Bao, J.-Q. Wang, L. Zheng, S. Sun, Z.L. Wang, C. Sun3D N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc-air battery. Appl. Catal. B, 280 (2021) 119411
    [22]
    Y. Chen, S. Ji, Y. Wang, J. Dong, W. Chen, Z. Li, R. Shen, L. Zheng, Z. Zhuang, D. Wang, Y. LiIsolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed., 56 (2017) 6937-6941 doi: 10.1002/anie.201702473
    [23]
    X. Zhang, S. Zhang, Y. Yang, L. Wang, Z. Mu, H. Zhu, X. Zhu, H. Xing, H. Xia, B. Huang, J. Li, S. Guo, E. WangAgeneral method for transition metal single atoms anchored on honeycomb-like nitrogen-doped carbon nanosheets. Adv. Mater., 32 (2020) 1906905 doi: 10.1002/adma.201906905
    [24]
    G. Chen, P. Liu, Z. Liao, F. Sun, Y. He, H. Zhong, T. Zhang, E. Zschech, M. Chen, G. Wu, J. Zhang, X. FengZinc-mediated template synthesis of Fe-N-C electrocatalysts with densely accessible Fe-Nx active sites for efficient oxygen reduction. Adv. Mater., 32 (2020) 1907399 doi: 10.1002/adma.201907399
    [25]
    L. Lin, Q. Zhu, A.W. XuNoble-metal-free Fe-N/C catalyst for highly efficient oxygen reduction reaction under both alkaline and acidic conditions. J.Am. Chem. Soc., 136 (2014) 11027-11033 doi: 10.1021/ja504696r
    [26]
    J. Ding, P. Wang, S. Ji, H. Wang, V. Linkov, R. WangN-doped mesoporous FeNx/carbon as ORR and OER bifunctional electrocatalyst for rechargeable zinc-air batteries. Electrochim. Acta, 296 (2019) 653-661
    [27]
    X. Wan, X. Liu, Y. Li, R. Yu, L. Zheng, W. Yan, H. Wang, M. Xu, J. ShuiFe–N–C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal., 2 (2019) 259-268 doi: 10.1038/s41929-019-0237-3
    [28]
    Y.-Z. Chen, C. Wang, Z.-Y. Wu, Y. Xiong, Q. Xu, S.-H. Yu, H.-L. JiangFrom bimetallic metal-organic framework to porous carbon: high surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater., 27 (2015) 5010-5016 doi: 10.1002/adma.201502315
    [29]
    P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin, W. Liu, H. Ju, J. Zhu, X. Hong, Z. Deng, G. Zhou, S. Wei, Y. LiSingle cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed., 55 (2016) 10800-10805 doi: 10.1002/anie.201604802
    [30]
    C. Zhu, Q. Shi, B.Z. Xu, S. Fu, G. Wan, C. Yang, S. Yao, J. Song, H. Zhou, D. Du, S.P. Beckman, D. Su, Y. LinHierarchically porous M–N–C (M = Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance. Adv. Energy Mater., 8 (2018) 1801956 doi: 10.1002/aenm.201801956
    [31]
    L. Shang, H. Yu, X. Huang, T. Bian, R. Shi, Y. Zhao, G.I.N. Waterhouse, L.-Z. Wu, C.-H. Tung, T. ZhangWell-dispersed ZIF-derived Co,N-Co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts. Adv. Mater., 28 (2016) 1668-1674 doi: 10.1002/adma.201505045
    [32]
    T. Sun, Y. Li, T. Cui, L. Xu, Y.-G. Wang, W. Chen, P. Zhang, T. Zheng, X. Fu, S. Zhang, Z. Zhang, D. Wang, Y. LiEngineering of coordination environment and multiscale structure in single-site copper catalyst for superior electrocatalytic oxygen reduction. Nano Lett., 20 (2020) 6206-6214 doi: 10.1021/acs.nanolett.0c02677
    [33]
    G. Han, Y. Zheng, X. Zhang, Z. Wang, Y. Gong, C. Du, M.N. Banis, Y.-M. Yiu, T.-K. Sham, L. Gu, Y. Sun, Y. Wang, J. Wang, Y. Gao, G. Yin, X. SunHigh loading single-atom Cu dispersed on graphene for efficient oxygen reduction reaction. Nano Energy, 66 (2019) 104088
    [34]
    Q. Zhou, J. Cai, Z. Zhang, R. Gao, B. Chen, G. Wen, L. Zhao, Y. Deng, H. Dou, X. Gong, Y. Zhang, Y. Hu, A. Yu, X. Sui, Z. Wang, Z. ChenAgas-phase migration strategy to synthesize atomically dispersed Mn-N-C catalysts for Zn–Air batteries. Small Methods, 5 (2021) 2100024 doi: 10.1002/smtd.202100024
    [35]
    H.-Y. Kim, Y.-W. JuFabrication of Mn-N-C catalyst for oxygen reduction reactions using Mn-embedded carbon nanofiber. Energies, 13 (2020), p. 2561 doi: 10.3390/en13102561
    [36]
    Y. Wang, X. Zhang, S. Xi, X. Xiang, Y. Du, P. Chen, D. Lyu, S. Wang, Z.Q. Tian, P.K. ShenRational design and synthesis of hierarchical porous Mn–N–C nanoparticles with atomically dispersed MnNx moieties for highly efficient oxygen reduction reaction. ACS Sustain. Chem. Eng., 8 (2020) 9367-9376 doi: 10.1021/acssuschemeng.0c01882
    [37]
    X. Wei, D. Zheng, M. Zhao, H. Chen, X. Fan, B. Gao, L. Gu, Y. Guo, J. Qin, J. Wei, Y. Zhao, G. ZhangCross-linked polyphosphazene hollow nanosphere-derived N/P-doped porous carbon with single nonprecious metal atoms for the oxygen reduction reaction. Angew. Chem. Int. Ed., 59 (2020) 14639-14646 doi: 10.1002/anie.202006175
    [38]
    D. Geng, Y. Chen, Y. Chen, Y. Li, R. Li, X. Sun, S. Ye, S. KnightsHigh oxygen-reduction activity and durability of nitrogen-doped graphene. Energy Environ. Sci., 4 (2011) 760-764 doi: 10.1039/c0ee00326c
    [39]
    H. Yang, S.J. Bradley, A. Chan, G.I.N. Waterhouse, T. Nann, P.E. Kruger, S.G. TelferCatalytically active bimetallic nanoparticles supported on porous carbon capsules derived from metal-organic framework composites. J.Am. Chem. Soc., 138 (2016) 11872-11881 doi: 10.1021/jacs.6b06736
    [40]
    H. Yang, S.J. Bradley, X. Wu, A. Chan, G.I.N. Waterhouse, T. Nann, J. Zhang, P.E. Kruger, S. Ma, S.G. TelferGeneral synthetic strategy for libraries of supported multicomponent metal nanoparticles. ACS Nano, 12 (2018) 4594-4604 doi: 10.1021/acsnano.8b01022
    [41]
    H. Yang, X. Chen, W.T. Chen, Q. Wang, N.C. Cuello, A. Nafady, A.M. Al-Enizi, G.I.N. Waterhouse, G.A. Goenaga, T.A. Zawodzinski, T. Nann, P.E. Kruger, J.E. Clements, J. Zhang, H. Tian, S.G. Telfer, S. MaTunable synthesis of hollow metal-nitrogen-carbon capsules for efficient oxygen reduction catalysis in proton exchange membrane fuel cells. ACS Nano, 13 (2019) 8087-8098 doi: 10.1021/acsnano.9b02930
    [42]
    H. Yang, X. Liu, M. Hao, Y. Xie, X. Wang, H. Tian, G.I.N. Waterhouse, P.E. Kruger, S.G. Telfer, S. MaFunctionalized iron-nitrogen-carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater. Adv. Mater. (2021) 2106621 doi: 10.1002/adma.202106621
    [43]
    H. Yang, X. Wang, T. Zheng, N.C. Cuello, G. Goenaga, T.A. Zawodzinski, H. Tian, J.T. Wright, R.W. Meulenberg, X. Wang, Z. Xia, S. MaCrN-encapsulated hollow Cr-N-C capsules boosting oxygen reduction catalysis in PEMFC. CCS Chem., 3 (2021) 208-218 doi: 10.31635/ccschem.020.202000645
    [44]
    H. Zhang, S. Hwang, M. Wang, Z. Feng, S. Karakalos, L. Luo, Z. Qiao, X. Xie, C. Wang, D. Su, Y. Shao, G. WuSingle atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation. J.Am. Chem. Soc., 139 (2017) 14143-14149 doi: 10.1021/jacs.7b06514
    [45]
    Z. Miao, X. Wang, Z. Zhao, W. Zuo, S. Chen, Z. Li, Y. He, J. Liang, F. Ma, H.-L. Wang, G. Lu, Y. Huang, G. Wu, Q. LiImproving the stability of non-noble-metal M-N-C catalysts for proton-exchange-membrane fuel cells through M-N bond length and coordination regulation. Adv. Mater., 33 (2021) 2006613 doi: 10.1002/adma.202006613
    [46]
    L. Jiao, J. Li, L.L. Richard, Q. Sun, T. Stracensky, E. Liu, M.T. Sougrati, Z. Zhao, F. Yang, S. Zhong, H. Xu, S. Mukerjee, Y. Huang, D.A. Cullen, J.H. Park, M. Ferrandon, D.J. Myers, F. Jaouen, Q. JiaChemical vapour deposition of Fe-N-C oxygen reduction catalysts with full utilization of dense Fe-N4 sites. Nat. Mater., 20 (2021) 1385-1391 doi: 10.1038/s41563-021-01030-2
    [47]
    D. Menga, J.L. Low, Y.S. Li, I. Arcon, B. Koyuturk, F. Wagner, F. Ruiz-Zepeda, M. Gaberšček, B. Paulus, T.-P. PaulusResolving the dilemma of Fe-N-C catalysts by the selective synthesis of tetrapyrrolic active sites via an imprinting strategy. J.Am. Chem. Soc., 143 (2021) 18010-18019 doi: 10.1021/jacs.1c04884
    [48]
    X. Ning, Y. Li, J. Ming, Q. Wang, H. Wang, Y. Cao, F. Peng, Y. Yang, H. YuElectronic synergism of pyridinic- and graphitic-nitrogen on N-doped carbons for the oxygen reduction reaction. Chem. Sci., 10 (2019) 1589-1596 doi: 10.1039/c8sc04596h
    [49]
    K.V. Kumar, K. Preuss, Z.X. Guo, M.M. TitiriciUnderstanding the hydrophilicity and water adsorption behavior of nanoporous nitrogen-doped carbons. J.Phys. Chem. C, 120 (2016) 18167-18179 doi: 10.1021/acs.jpcc.6b06555
    [50]
    L. Liu, G. Zeng, J. Chen, L. Bi, L. Dai, Z. WenN-doped porous carbon nanosheets as pH-universal ORR electrocatalyst in various fuel cell devices. Nano Energy, 49 (2018) 393-402 doi: 10.5194/piahs-379-393-2018
    [51]
    Y. Zhao, J. Wan, H. Yao, L. Zhang, K. Lin, L. Wang, N. Yang, D. Liu, L. Song, J. Zhu, L. Gu, L. Liu, H. Zhao, Y. Li, D. WangFew-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat. Chem., 10 (2018) 924-931 doi: 10.1038/s41557-018-0100-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (139) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return