Volume 2 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
Ni Lianshan, Guo Ruiting, Fang Susu, Chen Jun, Gao Jinqiang, Mei Yu, Zhang Shu, Deng Wentao, Zou Guoqiang, Hou Hongshuai, Ji Xiaobo. Crack-free single-crystalline Co-free Ni-rich LiNi0.95Mn0.05O2 layered cathode[J]. eScience, 2022, 2(1): 116-124. doi: 10.1016/j.esci.2022.02.006
Citation: Ni Lianshan, Guo Ruiting, Fang Susu, Chen Jun, Gao Jinqiang, Mei Yu, Zhang Shu, Deng Wentao, Zou Guoqiang, Hou Hongshuai, Ji Xiaobo. Crack-free single-crystalline Co-free Ni-rich LiNi0.95Mn0.05O2 layered cathode[J]. eScience, 2022, 2(1): 116-124. doi: 10.1016/j.esci.2022.02.006

Crack-free single-crystalline Co-free Ni-rich LiNi0.95Mn0.05O2 layered cathode

doi: 10.1016/j.esci.2022.02.006
More Information
  • Corresponding author: Xiaobo Ji xji@csu.edu.cn
  • Received Date: 2021-12-14
  • Revised Date: 2022-01-14
  • Accepted Date: 2022-02-21
  • Available Online: 2022-03-02
  • The rapid growth in global electric vehicles (EVs) sales has promoted the development of Co-free, Ni-rich layered cathodes for state-of-the-art high energy-density, inexpensive lithium-ion batteries (LIBs). However, progress in their commercial use has been seriously hampered by exasperating performance deterioration and safety concerns. Herein, a robust single-crystalline, Co-free, Ni-rich LiNi0.95Mn0.05O2 (SC-NM95) cathode is successfully designed using a molten salt-assisted method, and it exhibits better structural stability and cycling durability than those of polycrystalline LiNi0.95Mn0.05O2 (PC-NM95). Notably, the SC-NM95 cathode achieves a high discharge capacity of 218.2 mAh g−1, together with a high energy density of 837.3 ​Wh kg−1 ​at 0.1 C, mainly due to abundant Ni2+/Ni3+ redox. It also presents an outstanding capacity retention (84.4%) after 200 cycles at 1 ​C, because its integrated single-crystalline structure effectively inhibits particle microcracking and surface phase transformation. In contrast, the PC-NM95 cathode suffers from rapid capacity fading owing to the nucleation and propagation of intergranular microcracking during cycling, facilitating aggravated parasitic reactions and rock-salt phase accumulation. This work provides a fundamental strategy for designing high-performance single-crystalline, Co-free, Ni-rich cathode materials and also represents an important breakthrough in developing high-safe, low-cost, and high-energy LIBs.
  • ● It provides insights into the fundamental design of high-performance single-crystalline Co-free Ni-rich cathodes.
    ● Single-crystalline Co-free Ni-rich LiNi0.95Co0.05O2 cathode was firstly designed and systematically explored.
    ● The SC-NM95 cathode presents outstanding structural stability and cycling durability.
    ● The performance degradations of PC-NM95 were attributed to the microcracking formation and structural transformations.
  • loading
  • eScience-2-1-116.docx
  • [1]
    S. Budinis, Going Carbon Negative: what are the Technology Options. https://www.iea.org/commentaries/going-carbon-negative-what-are-the-technology-options
    [2]
    C.S. Yoon, H.-H. Ryu, G.-T. Park, J.-H. Kim, K.-H. Kim, Y.-K. Sun, J. Mater. Chem. A, 6 (2018) 4126-4132 doi: 10.1039/c7ta11346c
    [3]
    H. Hou, C.E. Banks, M. Jing, Y. Zhang, X. Ji, Adv. Mater., 27 (2015) 7861-7866 doi: 10.1002/adma.201503816
    [4]
    C.S. Yoon, D.-W. Jun, S.-T. Myung, Y.-K. Sun, ACS Energy Lett., 2 (2017) 1150-1155 doi: 10.1021/acsenergylett.7b00304
    [5]
    A. Aishova, G.T. Park, C.S. Yoon, Y.K. Sun, Adv. Energy Mater., 10 (2019) 1903179
    [6]
    S.-T. Myung, F. Maglia, K.-J. Park, C.S. Yoon, P. Lamp, S.-J. Kim, Y.-K. Sun, ACS Energy Lett., 2 (2016) 196-223
    [7]
    E.A. Olivetti, G. Ceder, G.G. Gaustad, X. Fu, Joule, 1 (2017) 229-243 doi: 10.1016/j.joule.2017.08.019
    [8]
    R. Ma, Z. Zhao, J. Fu, H. Lv, C. Li, B. Wu, D. Mu, F. Wu, ChemElectroChem, 7 (2020) 2637-2642 doi: 10.1002/celc.202000443
    [9]
    Y.K. Sun, D.J. Lee, Y.J. Lee, Z. Chen, S.T. Myung, ACS Appl. Mater. Interfaces, 5 (2013) 11434-11440 doi: 10.1021/am403684z
    [10]
    H. Li, M. Cormier, N. Zhang, J. Inglis, J. Li, J.R. Dahn, J. Electrochem. Soc., 166 (2019) A429 doi: 10.1149/2.1381902jes
    [11]
    N. Zhang, N. Zaker, H. Li, A. Liu, J. Inglis, L. Jing, J. Li, Y. Li, G.A. Botton, J.R. Dahn, Chem. Mater., 31 (2019) 10150-10160 doi: 10.1021/acs.chemmater.9b03515
    [12]
    C.S. Yoon, M.-J. Choi, D.-W. Jun, Q. Zhang, P. Kaghazchi, K.-H. Kim, Y.-K. Sun, Chem. Mater., 30 (2018) 1808-1814 doi: 10.1021/acs.chemmater.8b00619
    [13]
    P. Yan, J. Zheng, M. Gu, J. Xiao, J.G. Zhang, C.M. Wang, Nat. Commun., 8 (2017) 14101
    [14]
    L. Mu, R. Zhang, W.H. Kan, Y. Zhang, L. Li, C. Kuai, B. Zydlewski, M.M. Rahman, C.-J. Sun, S. Sainio, M. Avdeev, D. Nordlund, H.L. Xin, F. Lin, Chem. Mater., 31 (2019) 9769-9776 doi: 10.1021/acs.chemmater.9b03603
    [15]
    H.H. Ryu, K.J. Park, D.R. Yoon, A. Aishova, C.S. Yoon, Y.K. Sun, Adv. Energy Mater., 9 (2019) 1902698 doi: 10.1002/aenm.201902698
    [16]
    L. Mu, W.H. Kan, C. Kuai, Z. Yang, L. Li, C.J. Sun, S. Sainio, M. Avdeev, D. Nordlund, F. Lin, ACS Appl. Mater. Interfaces, 12 (2020) 12874-12882 doi: 10.1021/acsami.0c00111
    [17]
    R. Weber, H. Li, W. Chen, C.-Y. Kim, K. Plucknett, J.R. Dahn, J. Electrochem. Soc., 167 (2020) 100501 doi: 10.1149/1945-7111/ab94ef
    [18]
    A. Liu, N. Zhang, H. Li, J. Inglis, Y. Wang, S. Yin, H. Wu, J. Dahn, J. Electrochem. Soc., 166 (2019) A4025 doi: 10.1149/2.1101915jes
    [19]
    W. Li, S. Lee, A. Manthiram, Adv. Mater., 32 (2020) e2002718 doi: 10.1002/adma.202002718
    [20]
    K. Zhou, Q. Xie, B. Li, A. Manthiram, Energy Stor. Mater., 34 (2021) 229-240 doi: 10.1016/j.ensm.2020.09.015
    [21]
    X. Fan, G. Hu, B. Zhang, X. Ou, J. Zhang, W. Zhao, H. Jia, L. Zou, P. Li, Y. Yang, Nano Energy, 70 (2020) 104450 doi: 10.1016/j.nanoen.2020.104450
    [22]
    H.-H. Ryu, B. Namkoong, J.-H. Kim, I. Belharouak, C.S. Yoon, Y.-K. Sun, ACS Energy Lett., (2021) 2726-2734 doi: 10.1021/acsenergylett.1c01089
    [23]
    A. Liu, N. Zhang, J.E. Stark, P. Arab, H. Li, J. Dahn, J. Electrochem. Soc., 168 (2021) 040531 doi: 10.1149/1945-7111/abf7e8
    [24]
    J. Zhu, G. Chen, J. Mater. Chem. A, 7 (2019) 5463-5474 doi: 10.1039/c8ta10329a
    [25]
    Y. Bi, J. Tao, Y. Wu, L. Li, Y. Xu, E. Hu, B. Wu, J. Hu, C. Wang, J.G. Zhang, Y. Qi, J. Xiao, Science, 370 (2020) 1313-1317 doi: 10.1126/science.abc3167
    [26]
    Y.G. Zou, H. Mao, X.H. Meng, Y.H. Du, H. Sheng, X. Yu, J.L. Shi, Y.G. Guo, Angew. Chem. Int. Ed., 60 (2021) 26535-26539 doi: 10.1002/anie.202111954
    [27]
    S. Yin, W. Deng, J. Chen, X. Gao, G. Zou, H. Hou, X. Ji, Nano Energy, 83 (2021) 105854
    [28]
    G.W. Nam, N.-Y. Park, K.-J. Park, J. Yang, J. Liu, C.S. Yoon, Y.-K. Sun, ACS Energy Lett., 4 (2019) 2995-3001 doi: 10.1021/acsenergylett.9b02302
    [29]
    Y. Huang, Y. Zhu, H. Fu, M. Ou, C. Hu, S. Yu, Z. Hu, C.T. Chen, G. Jiang, H. Gu, H. Lin, W. Luo, Y. Huang, Angew. Chem. Int. Ed., 60 (2021) 4682-4688 doi: 10.1002/anie.202014226
    [30]
    T. Liu, L. Yu, J. Liu, J. Lu, X. Bi, A. Dai, M. Li, M. Li, Z. Hu, L. Ma, D. Luo, J. Zheng, T. Wu, Y. Ren, J. Wen, F. Pan, K. Amine, Nat. Energy, 6 (2021) 277-286 doi: 10.1038/s41560-021-00776-y
    [31]
    L. Ni, R. Guo, W. Deng, B. Wang, J. Chen, Y. Mei, J. Gao, X. Gao, S. Yin, H. Liu, Chem. Eng. J., (2021) 133731
    [32]
    C.H. Jung, D.H. Kim, D. Eum, K.H. Kim, J. Choi, J. Lee, H.H. Kim, K. Kang, S.H. Hong, Adv. Funct. Mater., 31 (2021) 2010095 doi: 10.1002/adfm.202010095
    [33]
    Z. Feng, R. Rajagopalan, S. Zhang, D. Sun, Y. Tang, Y. Ren, H. Wang, Adv. Sci., 8 (2021) 2001809 doi: 10.1002/advs.202001809
    [34]
    H. Li, P. Zhou, F. Liu, H. Li, F. Cheng, J. Chen, Chem. Sci., 10 (2019) 1374-1379 doi: 10.1039/c8sc03385d
    [35]
    R. Robert, C. Bunzli, E.J. Berg, P. Novak, Chem. Mater., 27 (2015) 526-536 doi: 10.1021/cm503833b
    [36]
    C. Yang, Int. J. Electrochem. Sci., (2020) 5031-5041 doi: 10.20964/2020.06.03
    [37]
    P. Pang, X. Tan, Z. Wang, Z. Cai, J. Nan, Z. Xing, H. Li, Electrochim. Acta, 365 (2021) 137380 doi: 10.1016/j.electacta.2020.137380
    [38]
    M. Yoon, Y. Dong, J. Hwang, J. Sung, H. Cha, K. Ahn, Y. Huang, S.J. Kang, J. Li, J. Cho, Nat. Energy, 6 (2021) 362-371 doi: 10.1038/s41560-021-00782-0
    [39]
    C. Zhang, S. Liu, J. Su, C. Chen, M. Liu, X. Chen, J. Wu, T. Huang, A. Yu, Nanoscale, 10 (2018) 8820-8831 doi: 10.1039/C8NR01707G
    [40]
    Y. Han, S. Heng, Y. Wang, Q. Qu, H. Zheng, ACS Energy Lett., 5 (2020) 2421-2433 doi: 10.1021/acsenergylett.0c01032
    [41]
    X. Fan, X. Ou, W. Zhao, Y. Liu, B. Zhang, J. Zhang, L. Zou, L. Seidl, Y. Li, G. Hu, C. Battaglia, Y. Yang, Nat. Commun., 12 (2021) 5320
    [42]
    L. Ni, H. Chen, W. Deng, B. Wang, J. Chen, Y. Mei, G. Zou, H. Hou, R. Guo, J. Xie, Adv. Energy Mater. 12 (2022) 2103757 doi: 10.1002/aenm.202103757
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (171) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return