Volume 2 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
Hua Weibo, Yang Xiaoxia, Casati Nicola P.M., Liu Laijun, Wang Suning, Baran Volodymyr, Knapp Michael, Ehrenberg Helmut, Indris Sylvio. Probing thermally-induced structural evolution during the synthesis of layered Li-, Na-, or K-containing 3d transition-metal oxides[J]. eScience, 2022, 2(2): 183-191. doi: 10.1016/j.esci.2022.02.007
Citation: Hua Weibo, Yang Xiaoxia, Casati Nicola P.M., Liu Laijun, Wang Suning, Baran Volodymyr, Knapp Michael, Ehrenberg Helmut, Indris Sylvio. Probing thermally-induced structural evolution during the synthesis of layered Li-, Na-, or K-containing 3d transition-metal oxides[J]. eScience, 2022, 2(2): 183-191. doi: 10.1016/j.esci.2022.02.007

Probing thermally-induced structural evolution during the synthesis of layered Li-, Na-, or K-containing 3d transition-metal oxides

doi: 10.1016/j.esci.2022.02.007
More Information
  • Layered alkali-containing 3d transition-metal oxides are of the utmost importance in the use of electrode materials for advanced energy storage applications such as Li-, Na-, or K-ion batteries. A significant challenge in the field of materials chemistry is understanding the dynamics of the chemical reactions between alkali-free precursors and alkali species during the synthesis of these compounds. In this study, in situ high-resolution synchrotron-based X-ray diffraction was applied to reveal the Li/Na/K-ion insertion-induced structural transformation mechanism during high-temperature solid-state reaction. The in situ diffraction results demonstrate that the chemical reaction pathway strongly depends on the alkali-free precursor type, which is a structural matrix enabling phase transitions. Quantitative phase analysis identifies for the first time the decomposition of lithium sources as the most critical factor for the formation of metastable intermediates or impurities during the entire process of Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 formation. Since the alkali ions have different ionic radii, Na/K ions tend to be located on prismatic sites in the defective layered structure (Na[Ni0.25Mn0.75]O2 or K[Ni0.25Mn0.75]O2) during calcination, whereas the Li ions prefer to be localized on the tetrahedral and/or octahedral sites, forming O-type structures.
  • In situ high-resolution HT-sXRD techniques was used to unveil the Li/Na/K-ion insertion induced structural evolution during heating.
    ● High-temperature lithiation reaction pathway strongly depends on the alkali-free precursor type.
    ● The dynamics of chemical reaction between alkali-free precursor and alkali species upon calcination were systematically investigated.
    ● Site preferences of Li/Na/K-ion leads to the formation of various types of layered structures.
  • loading
  • eScience-2-2-183.docx
  • [1]
    J.E. Fröch, A. Bahm, M. Kianinia, Z. Mu, V. Bhatia, S. Kim, J.M. Cairney, W. Gao, C. Bradac, I. Aharonovich, M. TothVersatile direct-writing of dopants in a solid state host through recoil implantation. Nat. Commun., 11 (2020), p. 5039
    [2]
    L.J. Rogers, K.D. Jahnke, T. Teraji, L. Marseglia, C. Müller, B. Naydenov, H. Schauffert, C. Kranz, J. Isoya, L.P. McGuinness, F. JelezkoMultiple intrinsically identical single-photon emitters in the solid state. Nat. Commun., 5 (2014), p. 4739
    [3]
    M. Huang, A. Jun Tan, F. Büttner, H. Liu, Q. Ruan, W. Hu, C. Mazzoli, S. Wilkins, C. Duan, J.K.W. Yang, G.S.D. BeachVoltage-gated optics and plasmonics enabled by solid-state proton pumping. Nat. Commun., 10 (2019), p. 5030
    [4]
    M.J. McDermott, S.S. Dwaraknath, K.A. PerssonAgraph-based network for predicting chemical reaction pathways in solid-state materials synthesis. Nat. Commun., 12 (2021), p. 3097
    [5]
    Y. Shen, G. Xue, Y. Dai, S.M. Quintero, H. Chen, D. Wang, F. Miao, F. Negri, Y. Zheng, J. CasadoNormal & reversed spin mobility in a diradical by electron-vibration coupling. Nat. Commun., 12 (2021), p. 6262
    [6]
    A. Ramirez, X. Gong, M. Caglayan, S.-A.F. Nastase, E. Abou-Hamad, L. Gevers, L. Cavallo, A. Dutta Chowdhury, J. GasconSelectivity descriptors for the direct hydrogenation of CO2 to hydrocarbons during zeolite-mediated bifunctional catalysis. Nat. Commun., 12 (2021), p. 5914
    [7]
    Y. Yang, P.-P. Wang, Z.-C. Zhang, H.-L. Liu, J. Zhang, J. Zhuang, X. WangNanowire membrane-based nanothermite: towards processable and tunable interfacial diffusion for solid state reactions. Sci. Rep., 3 (2013), p. 1694
    [8]
    M. Liu, C. Wang, C. Zhao, E. van der Maas, K. Lin, V.A. Arszelewska, B. Li, S. Ganapathy, M. WagemakerQuantification of the Li-ion diffusion over an interface coating in all-solid-state batteries via NMR measurements. Nat. Commun., 12 (2021), p. 5943
    [9]
    Y. Chen, Z. Wang, X. Li, X. Yao, C. Wang, Y. Li, W. Xue, D. Yu, S.Y. Kim, F. Yang, A. Kushima, G. Zhang, H. Huang, N. Wu, Y.-W. Mai, J.B. Goodenough, J. LiLi metal deposition and stripping in a solid-state battery via coble creep. Nature, 578 (2020) 251-255
    [10]
    H. Huo, J. Gao, N. Zhao, D. Zhang, N.G. Holmes, X. Li, Y. Sun, J. Fu, R. Li, X. Guo, X. SunAflexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries. Nat. Commun., 12 (2021), p. 176
    [11]
    S. Wang, W. Hua, A. Missyul, M.S.D. Darma, A. Tayal, S. Indris, H. Ehrenberg, L. Liu, M. KnappKinetic control of long-range cationic ordering in the synthesis of layered Ni-rich oxides. Adv. Funct. Mater., 31 (2021), p. 2009949 doi: 10.1002/adfm.202009949
    [12]
    T. Gao, X. Ji, S. Hou, X. Fan, X. Li, C. Yang, F. Han, F. Wang, J. Jiang, K. Xu, C. WangThermodynamics and kinetics of sulfur cathode during discharge in MgTFSI2-DME electrolyte. Adv. Mater., 30 (2018), p. 1704313 doi: 10.1002/adma.201704313
    [13]
    I.P. ParkinSolid state metathesis reaction for metal borides, silicides, pnictides and chalcogenides: ionic or elemental pathways. Chem. Soc. Rev., 25 (1996) 199-207
    [14]
    X. Zhong, M. Oubla, X. Wang, Y. Huang, H. Zeng, S. Wang, K. Liu, J. Zhou, L. He, H. Zhong, N. Alonso-Vante, C.-W. Wang, W.-B. Wu, H.-J. Lin, C.-T. Chen, Z. Hu, Y. Huang, J. MaBoosting oxygen reduction activity and enhancing stability through structural transformation of layered lithium manganese oxide. Nat. Commun., 12 (2021), p. 3136
    [15]
    Y. Tokura, N. NagaosaOrbital physics in transition-metal oxides. Science, 288 (2000) 462-468
    [16]
    V. Kalinin Sergei, A. Spaldin NicolaFunctional ion defects in transition metal oxides. Science, 341 (2013) 858-859
    [17]
    C.N.R. Rao, A.K. CheethamGiant magnetoresistance in transition metal oxides. Science, 272 (1996) 369-370 doi: 10.1126/science.272.5260.369
    [18]
    J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-HornAperovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science, 334 (2011) 1383-1385 doi: 10.1126/science.1212858
    [19]
    Q. Yin, J.M. Tan, C. Besson, Y.V. Geletii, D.G. Musaev, A.E. Kuznetsov, Z. Luo, K.I. Hardcastle, C.L. HillAfast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science, 328 (2010) 342-345 doi: 10.1126/science.1185372
    [20]
    G. Chen, W. Zhou, D. Guan, J. Sunarso, Y. Zhu, X. Hu, W. Zhang, Z. ShaoTwo orders of magnitude enhancement in oxygen evolution reactivity on amorphous Ba0.5Sr0.5Co0.8Fe0.2O3-δ nanofilms with tunable oxidation state. Sci. Adv., 3 (2017) e1603206
    [21]
    M. Bianchini, J. Wang, R.J. Clement, B. Ouyang, P. Xiao, D. Kitchaev, T. Shi, Y. Zhang, Y. Wang, H. Kim, M. Zhang, J. Bai, F. Wang, W. Sun, G. CederThe interplay between thermodynamics and kinetics in the solid-state synthesis of layered oxides. Nat. Mater., 19 (2020) 1088-1095 doi: 10.1038/s41563-020-0688-6
    [22]
    Y. Xiao, N.M. Abbasi, Y.F. Zhu, S. Li, S.J. Tan, W. Ling, L. Peng, T. Yang, L. Wang, X.D. Guo, Y.X. Yin, H. Zhang, Y.G. GuoLayered oxide cathodes promoted by structure modulation Technology for sodium-ion batteries. Adv. Funct. Mater., 30 (2020), p. 2001334 doi: 10.1002/adfm.202001334
    [23]
    Z. Yang, L. Mu, D. Hou, M.M. Rahman, Z. Xu, J. Liu, D. Nordlund, C.J. Sun, X. Xiao, F. LinProbing dopant redistribution, phase propagation, and local chemical changes in the synthesis of layered oxide battery cathodes. Adv. Energy Mater., 11 (2021), p. 2002719 doi: 10.1002/aenm.202002719
    [24]
    W.C. Zhang, Y.J. Liu, Z.P. GuoApproaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci. Adv., 5 (2019) eaav7412
    [25]
    W. Hua, S. Wang, K. Wang, A. Missyul, Q. Fu, M.S. Dewi Darma, H. Li, V. Baran, L. Liu, C. Kübel, J.R. Binder, M. Knapp, H. Ehrenberg, S. IndrisLi+/Na+ ion exchange in layered Na2/3(Ni0.25Mn0.75)O2: a simple and fast way to synthesize O3/O2-type layered oxides. Chem. Mater., 33 (2021) 5606-5617 doi: 10.1021/acs.chemmater.1c00962
    [26]
    D. Luo, S. Fang, Y. Tamiya, L. Yang, S.I. HiranoCountering the segregation of transition-metal ions in LiMn1/3Co1/3Ni1/3O2 cathode for ultralong life and high-energy Li-ion batteries. Small, 12 (2016) 4421-4430 doi: 10.1002/smll.201601923
    [27]
    W. Hua, S. Wang, M. Knapp, S.J. Leake, A. Senyshyn, C. Richter, M. Yavuz, J.R. Binder, C.P. Grey, H. Ehrenberg, S. Indris, B. SchwarzStructural insights into the formation and voltage degradation of lithium- and manganese-rich layered oxides. Nat. Commun., 10 (2019), p. 5365
    [28]
    Y. Pei, C.Y. Xu, Y.C. Xiao, Q. Chen, B. Huang, B. Li, S. Li, L. Zhen, G. CaoPhase transition induced synthesis of layered/spinel heterostructure with enhanced electrochemical properties. Adv. Funct. Mater., 27 (2017), p. 1604349 doi: 10.1002/adfm.201604349
    [29]
    J. Bai, W. Sun, J. Zhao, D. Wang, P. Xiao, J.Y.P. Ko, A. Huq, G. Ceder, F. WangKinetic pathways templated by low-temperature intermediates during solid-state synthesis of layered oxides. Chem. Mater., 32 (2020) 9906-9913 doi: 10.1021/acs.chemmater.0c02568
    [30]
    J. Lee, D.A. Kitchaev, D.H. Kwon, C.W. Lee, J.K. Papp, Y.S. Liu, Z. Lun, R.J. Clement, T. Shi, B.D. McCloskey, J. Guo, M. Balasubramanian, G. CederReversible Mn2+/Mn4+ double redox in lithium-excess cathode materials. Nature, 556 (2018) 185-190 doi: 10.1038/s41586-018-0015-4
    [31]
    J. Hong, W.E. Gent, P. Xiao, K. Lim, D.-H. Seo, J. Wu, P.M. Csernica, C.J. Takacs, D. Nordlund, C.-J. Sun, K.H. Stone, D. Passarello, W. Yang, D. Prendergast, G. Ceder, M.F. Toney, W.C. ChuehMetal-oxygen decoordination stabilizes anion redox in Li-rich oxides. Nat. Mater., 18 (2019) 256-265 doi: 10.1038/s41563-018-0276-1
    [32]
    S. Saha, G. Assat, M.T. Sougrati, D. Foix, H. Li, J. Vergnet, S. Turi, Y. Ha, W. Yang, J. Cabana, G. Rousse, A.M. Abakumov, J.-M. TarasconExploring the bottlenecks of anionic redox in Li-rich layered sulfides. Nat. Energy, 4 (2019) 977-987 doi: 10.1038/s41560-019-0493-0
    [33]
    F. Wang, J. BaiSynthesis and processing by design of high-nickel cathode materials. Batteries Supercaps, 5 (2022) e202100174
    [34]
    T. Liu, L. Yu, J. Lu, T. Zhou, X. Huang, Z. Cai, A. Dai, J. Gim, Y. Ren, X. Xiao, M.V. Holt, Y.S. Chu, I. Arslan, J. Wen, K. AmineRational design of mechanically robust Ni-rich cathode materials via concentration gradient strategy. Nat. Commun., 12 (2021), p. 6024
    [35]
    D. Wang, R. Kou, Y. Ren, C.J. Sun, H. Zhao, M.J. Zhang, Y. Li, A. Huq, J.Y.P. Ko, F. Pan, Y.K. Sun, Y. Yang, K. Amine, J. Bai, Z. Chen, F. WangSynthetic control of kinetic reaction pathway and cationic ordering in high-Ni layered oxide cathodes. Adv. Mater., 29 (2017), p. 1606715 doi: 10.1002/adma.201606715
    [36]
    W.-S. Yoon, O. Haas, S. Muhammad, H. Kim, W. Lee, D. Kim, D.A. Fischer, C. Jaye, X.-Q. Yang, M. Balasubramanian, K.-W. NamIn situ soft XAS study on nickel-based layered cathode material at elevated temperatures: a novel approach to study thermal stability. Sci. Rep., 4 (2014), p. 6827
    [37]
    M.J. Zhang, G. Teng, Y.K. Chen-Wiegart, Y. Duan, J.Y.P. Ko, J. Zheng, J. Thieme, E. Dooryhee, Z. Chen, J. Bai, K. Amine, F. Pan, F. WangCationic ordering coupled to reconstruction of basic building units during synthesis of high-Ni layered oxides. J.Am. Chem. Soc., 140 (2018) 12484-12492 doi: 10.1021/jacs.8b06150
    [38]
    Y.-Y. Hu, Z. Liu, K.-W. Nam, O.J. Borkiewicz, J. Cheng, X. Hua, M.T. Dunstan, X. Yu, K.M. Wiaderek, L.-S. Du, K.W. Chapman, P.J. Chupas, X.-Q. Yang, C.P. GreyOrigin of additional capacities in metal oxide lithium-ion battery electrodes. Nat. Mater., 12 (2013) 1130-1136 doi: 10.1038/nmat3784
    [39]
    Y. Zhu, J.W. Wang, Y. Liu, X. Liu, A. Kushima, Y. Liu, Y. Xu, S.X. Mao, J. Li, C. Wang, J.Y. HuangIn situ atomic-scale imaging of phase boundary migration in FePO4 microparticles during electrochemical lithiation. Adv. Mater., 25 (2013) 5461-5466 doi: 10.1002/adma.201301374
    [40]
    P.S. Maram, S.V. Ushakov, R.J.K. Weber, C.J. Benmore, A. NavrotskyProbing disorder in pyrochlore oxides using in situ synchrotron diffraction from levitated solids–A thermodynamic perspective. Sci. Rep., 8 (2018), p. 10658
    [41]
    J. Gustafson, M. Shipilin, C. Zhang, A. Stierle, U. Hejral, U. Ruett, O. Gutowski, P.A. Carlsson, M. Skoglundh, E. LundgrenHigh-energy surface X-ray diffraction for fast surface structure determination. Science, 343 (2014) 758-761 doi: 10.1126/science.1246834
    [42]
    A. Johannes, D. Salomon, G. Martinez-Criado, M. Glaser, A. Lugstein, C. RonningOperando X-ray imaging of nanoscale devices: composition, valence, and internal electrical fields. Sci. Adv., 3 (2017) eaao4044
    [43]
    W. Hua, K. Wang, M. Knapp, B. Schwarz, S. Wang, H. Liu, J. Lai, M. Müller, A. Schökel, A. Missyul, D. Ferreira Sanchez, X. Guo, J.R. Binder, J. Xiong, S. Indris, H. EhrenbergChemical and structural evolution during the synthesis of layered Li(Ni,Co,Mn)O2 oxides. Chem. Mater., 32 (2020) 4984-4997 doi: 10.1021/acs.chemmater.9b05279
    [44]
    W. Hua, M. Chen, B. Schwarz, M. Knapp, M. Bruns, J. Barthel, X. Yang, F. Sigel, R. Azmi, A. Senyshyn, A. Missiul, L. Simonelli, M. Etter, S. Wang, X. Mu, A. Fiedler, J.R. Binder, X. Guo, S. Chou, B. Zhong, S. Indris, H. EhrenbergLithium/oxygen incorporation and microstructural evolution during synthesis of Li-rich layered Li[Li0.2Ni0.2Mn0.6]O2 oxides. Adv. Energy Mater., 9 (2019), p. 1803094 doi: 10.1002/aenm.201803094
    [45]
    J. Zhao, W. Zhang, A. Huq, S.T. Misture, B. Zhang, S. Guo, L. Wu, Y. Zhu, Z. Chen, K. Amine, F. Pan, J. Bai, F. WangIn situ probing and synthetic control of cationic ordering in Ni-rich layered oxide cathodes. Adv. Energy Mater., 7 (2017), p. 1601266 doi: 10.1002/aenm.201601266
    [46]
    H. Sheng, X.H. Meng, D.D. Xiao, M. Fan, W.P. Chen, J. Wan, J. Tang, Y.G. Zou, F. Wang, R. Wen, J.L. Shi, Y.G. GuoAir-stable high-nickel cathode with reinforced electrochemical performance enabled by convertible amorphous Li2CO3 modification. Adv. Mater 35 (2022) e2108947
    [47]
    H. Xie, J. Cui, Z. Yao, X. Ding, Z. Zhang, D. Luo, Z. LinRevealing the role of spinel phase on Li-rich layered oxides: a review. Chem. Eng. J., 427 (2022), p. 131978
    [48]
    R.D. ShannonRevised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A, 32 (1976) 751-767
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (187) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return