Citation: | Guo Yong, Wu Shichao, He Yan-Bing, Kang Feiyu, Chen Liquan, Li Hong, Yang Quan-Hong. Solid-state lithium batteries: Safety and prospects[J]. eScience, 2022, 2(2): 138-163. doi: 10.1016/j.esci.2022.02.008 |
[1] |
C. Monroe, J. NewmanThe effect of interfacial deformation on electrodeposition kinetics. J.Electrochem. Soc., 151 (2004) A880-A886
|
[2] |
C. Monroe, J. NewmanThe impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J.Electrochem. Soc., 152 (2005) A396-A404 doi: 10.1149/1.1850854
|
[3] |
S. Song, W. Gao, G. Yang, Y. Zhai, J. Yao, L. Lin, W. Tang, N. Hu, L. LuHybrid poly-ether/carbonate ester electrolyte engineering enables high oxidative stability for quasi-solid-state lithium metal batteries. Mater. Today Energy, 23 (2022), p. 100893
|
[4] |
I. Shaji, D. Diddens, N. Ehteshami, M. Winter, J.R. NairMultisalt chemistry in ion transport and interface of lithium metal polymer batteries. Energy Stor. Mater., 44 (2022) 263-277
|
[5] |
X. Zhu, K. Wang, Y. Xu, G. Zhang, S. Li, C. Li, X. Zhang, X. Sun, X. Ge, Y. MaStrategies to boost ionic conductivity and interface compatibility of inorganic - organic solid composite electrolytes. Energy Stor. Mater., 36 (2021) 291-308
|
[6] |
Z. Liu, F. Zheng, W. Xiong, X. Li, A. Yuan, H. PangStrategies to improve electrochemical performances of pristine metal-organic frameworks-based electrodes for lithium/sodium-ion batteries. SmartMat, 2 (2021) 488-518 doi: 10.1002/smm2.1064
|
[7] |
M. Zhao, X.-Y. Li, X. Chen, B.-Q. Li, S. Kaskel, Q. Zhang, J.-Q. HuangPromoting the sulfur redox kinetics by mixed organodiselenides in high-energy-density lithium–sulfur batteries. eScience, 1 (2021) 44-52
|
[8] |
. D. Linden (Ed.), Handbook of Batteries and Fuel Cells, McGraw-Hill, New York (1984)
|
[9] |
X. Yu, J.B. Bates, G.E. Jellison, F.X. HartAstable thin-film lithium electrolyte: lithium phosphorus oxynitride. J.Electrochem. Soc., 144 (1997) 524-532 doi: 10.1149/1.1837443
|
[10] |
X.X. Xu, Z.Y. Wen, Z.H. Gu, X.H. Xu, Z.X. LinLithium ion conductive glass ceramics in the system Li1.4Al0.4(Ge1-xTix)1.6(PO4)3 (x=0-1.0). Solid State Ion., 171 (2004) 207-213
|
[11] |
P. Birke, F. Salam, S. Doring, W. WeppnerAfirst approach to a monolithic all solid state inorganic lithium battery. Solid State Ion., 118 (1999) 149-157
|
[12] |
S. Saffirio, M. Falco, G.B. Appetecchi, F. Smeacetto, C. GerbaldiLi1.4Al0.4Ge0.4Ti1.4(PO4)3 promising NASICON-structured glass-ceramic electrolyte for all-solid-state Li-based batteries: unravelling the effect of diboron trioxide. J.Eur. Ceram. Soc., 42 (2022) 1023-1032
|
[13] |
H. Hyooma, K. HayashiCrystal structures of La3Li5M2O12 (M=Nb, Ta). Mater. Res. Bull., 23 (1988) 1399-1407
|
[14] |
V. Thangadurai, H. Kaack, W.J.F. WeppnerNovel fast lithium ion conduction in garnet-type Li5La3M2O12 (M = Nb, Ta). J.Am. Ceram. Soc., 86 (2003) 437-440 doi: 10.1111/j.1151-2916.2003.tb03318.x
|
[15] |
V. Thangadurai, W. WeppnerLi6ALa2Ta2O12 (A = Sr, Ba): novel garnet-like oxides for fast lithium ion conduction. Adv. Funct. Mater., 15 (2005) 107-112 doi: 10.1002/adfm.200400044
|
[16] |
R. Murugan, V. Thangadurai, W. WeppnerFast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed., 46 (2007) 7778-7781 doi: 10.1002/anie.200701144
|
[17] |
Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta, M. WakiharaHigh ionic conductivity in lithium lanthanum titanate. Solid State Commun., 86 (1993) 689-693
|
[18] |
X.X. Xu, Z.Y. Wen, Z.H. Gu, Z.X. LinHigh lithium conductivity in Li1.3Cr0.3Ge1.7(PO4)3 glass-ceramics. Mater. Lett., 58 (2004) 3428-3431
|
[19] |
Y. Zhao, L.L. DaemenSuperionic conductivity in lithium-rich anti-perovskites. J.Am. Chem. Soc., 134 (2012) 15042-15047 doi: 10.1021/ja305709z
|
[20] |
R. Kanno, M. MurayamaLithium ionic conductor thio-LISICON: the Li2S-GeS2-P2S5 system. J.Electrochem. Soc., 148 (2001) A742-A746
|
[21] |
A. Mayer, D. Steinle, S. Passerini, D. BresserBlock copolymers as (single-ion conducting) lithium battery electrolytes. Nanotechnology, 33 (2022) 062002 doi: 10.1088/1361-6528/ac2e21
|
[22] |
H.-J. Deiseroth, S.-T. Kong, H. Eckert, J. Vannahme, C. Reiner, T. Zaiß, M. SchlosserLi6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew. Chem. Int. Ed., 47 (2008) 755-758 doi: 10.1002/anie.200703900
|
[23] |
H. Xu, G. Cao, Y. Shen, Y. Yu, J. Hu, Z. Wang, G. ShaoEnabling argyrodite sulfides as superb solid-state electrolyte with remarkable interfacial stability against electrodes. Energy Environ. Mater. (2021), p. 12282
|
[24] |
J. van den Broek, S. Afyon, J.L.M. RuppInterface-Engineered all-solid-state Li-ion batteries based on garnet-type fast Li+ conductors. Adv. Energy Mater., 6 (2016), p. 1600736 doi: 10.1002/aenm.201600736
|
[25] |
X. Tao, Y. Liu, W. Liu, G. Zhou, J. Zhao, D. Lin, C. Zu, O. Sheng, W. Zhang, H.-W. Lee, Y. CuiSolid-state lithium sulfur batteries operated at 37 degrees C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett., 17 (2017) 2967-2972 doi: 10.1021/acs.nanolett.7b00221
|
[26] |
H. Kitaura, H. ZhouElectrochemical performance and reaction mechanism of all-solid-state lithium-air batteries composed of lithium, Li1+xAlyGe2-y(PO4)3 solid electrolyte and carbon nanotube air electrode. Energy Environ. Sci., 5 (2012) 9077-9084 doi: 10.1039/c2ee22381c
|
[27] |
H. Kitaura, H. ZhouElectrochemical performance of solid-state lithium-air batteries using carbon nanotube catalyst in the air electrode. Adv. Energy Mater., 2 (2012) 889-894 doi: 10.1002/aenm.201100789
|
[28] |
Z. Zhang, Y. Shao, B.V. Lotsch, Y.-S. Hu, H. Li, J. Janek, C. Nan, L. Nazar, J. Maier, M. Armand, L. ChenNew horizons for inorganic solid state ion conductors. Energy Environ. Sci., 11 (2018) 1945-1976
|
[29] |
Park Kern Ho, Bai Qiang, Kim Dong Hyeon, Oh Dae Yang, Zhu Yizhou, Mo Yifei, Jung Yoon SeokDesign strategies, practical considerations, and new solution processes of sulfide solid electrolytes for all-solid-state batteries. Adv. Energy Mater., 8 (2018), p. 1800035
|
[30] |
L. Fan, S. Wei, S. Li, Q. Li, Y. LuRecent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv. Energy Mater., 8 (2018), p. 1702657 doi: 10.1002/aenm.201702657
|
[31] |
M. Balaish, J.C. Gonzalez-Rosillo, K.J. Kim, Y. Zhu, Z.D. Hood, J.L.M. RuppProcessing thin but robust electrolytes for solid-state batteries. Nat. Energy, 6 (2021) 227-239 doi: 10.1038/s41560-020-00759-5
|
[32] |
X. Yang, K. Adair, X. Gao, X. SunRecent advances and perspectives on thin electrolytes for high-energy-density solid-state lithium batteries. Energy Environ. Sci., 14 (2020) 643-671 doi: 10.3390/biom10040643
|
[33] |
K.J. Huang, G. Ceder, E.A. OlivettiManufacturing scalability implications of materials choice in inorganic solid-state batteries. Joule, 5 (2020) 564-580
|
[34] |
Y. Wu, S. Wang, H. Li, L. Chen, F. WuProgress in thermal stability of all-solid-state-Li-ion-batteries. InfoMat, 3 (2021) 827-853 doi: 10.1002/inf2.12224
|
[35] |
Y. Meesala, A. Jena, H. Chang, R.-S. LiuRecent advancements in Li-ion conductors for all-solid-state Li-ion batteries. ACS Energy Lett., 2 (2017) 2734-2751 doi: 10.1021/acsenergylett.7b00849
|
[36] |
S.P. Culver, R. Koerver, T. Krauskopf, W.G. ZeierDesigning ionic conductors: the interplay between structural phenomena and interfaces in thiophosphate-based solid-state batteries. Chem. Mater., 30 (2018) 4179-4192 doi: 10.1021/acs.chemmater.8b01293
|
[37] |
Zhonghui Gao, Huabin Sun, Lin Fu, Fangliang Ye, Yi Zhang, Wei Luo, Yunhui HuangPromises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Adv. Mater., 30 (2018), p. 1705702 doi: 10.1002/adma.201705702
|
[38] |
A. Jena, Y. Meesala, S.-F. Hu, H. Chang, R.-S. LiuAmeliorating the interfacial ionic transportation in all-solid-state Li-ion batteries with interlayer modifications. ACS Energy Lett., 3 (2018) 2775-2795 doi: 10.1021/acsenergylett.8b01564
|
[39] |
K. Takada, T. Ohno, N. Ohta, T. Ohnishi, Y. TanakaPositive and negative aspects of interfaces in solid-state batteries. ACS Energy Lett., 3 (2018) 98-103 doi: 10.1021/acsenergylett.7b01105
|
[40] |
Junpei Yue, Min Yan, Ya-Xia Yin, Yu-Guo GuoProgress of the interface design in all-solid-state Li–S batteries. Adv. Funct. Mater., 28 (2018), p. 1707533 doi: 10.1002/adfm.201707533
|
[41] |
L. Xu, S. Tang, Y. Cheng, K. Wang, J. Liang, C. Liu, Y.-C. Cao, F. Wei, L. MaiInterfaces in solid-state lithium batteries. Joule, 2 (2018) 1991-2015
|
[42] |
K.J. Kim, M. Balaish, M. Wadaguchi, L. Kong, J.L.M. RuppSolid-state Li–metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces. Adv. Energy Mater., 11 (2020), p. 2002689
|
[43] |
R. Chen, Q. Li, X. Yu, L. Chen, H. LiApproaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev., 120 (2019) 6820-6877
|
[44] |
X. Judez, H. Zhang, C. Li, G.G. Eshetu, J.A. Gonzalez-Marcos, M. Armand, L.M. Rodriguez-MartinezReview-solid electrolytes for safe and high energy density lithium-sulfur batteries: promises and challenges. J.Electrochem. Soc., 165 (2018) A6008-A6016 doi: 10.1149/2.0041801jes
|
[45] |
P. Albertus, V. Anandan, C. Ban, N. Balsara, I. Belharouak, J. Buettner-Garrett, Z. Chen, C. Daniel, M. Doeff, N.J. Dudney, B. Dunn, S.J. Harris, S. Herle, E. Herbert, S. Kalnaus, J.A. Libera, D. Lu, S. Martin, B.D. McCloskey, M.T. McDowell, Y.S. Meng, J. Nanda, J. Sakamoto, E.C. Self, S. Tepavcevic, E. Wachsman, C. Wang, A.S. Westover, J. Xiao, T. YersakChallenges for and pathways toward Li-Metal-Based all-solid-state batteries. ACS Energy Lett. (2021) 1399-1404 doi: 10.1021/acsenergylett.1c00445
|
[46] |
T. Inoue, K. MukaiAre all-solid-state lithium-ion batteries really safe?-verification by differential scanning calorimetry with an all-inclusive microcell. ACS Appl. Mater. Interfaces, 9 (2017) 1507-1515 doi: 10.1021/acsami.6b13224
|
[47] |
T. Bartsch, F. Strauss, T. Hatsukade, A. Schiele, A.-Y. Kim, P. Hartmann, J. Janek, T. BrezesinskiGas evolution in all-solid-state battery cells. ACS Energy Lett., 3 (2018) 2539-2543 doi: 10.1021/acsenergylett.8b01457
|
[48] |
H. Chung, B. KangMechanical and thermal failure induced by contact between a Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte and Li metal in an all solid-state Li cell. Chem. Mater., 29 (2017) 8611-8619 doi: 10.1021/acs.chemmater.7b02301
|
[49] |
R. Chen, A.M. Nolan, J. Lu, J. Wang, X. Yu, Y. Mo, L. Chen, X. Huang, H. LiThe thermal stability of lithium solid electrolytes with metallic lithium. Joule, 4 (2020) 812-821
|
[50] |
X. Feng, D. Ren, X. He, M. OuyangMitigating thermal runaway of lithium-ion batteries. Joule, 4 (2020) 743-770
|
[51] |
V. Thangadurai, S. Narayanan, D. PinzaruGarnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev., 43 (2014) 4714-4727 doi: 10.1039/c4cs00020j
|
[52] |
K. Saranya, C. Deviannapoorani, L. Dhivya, S. Ramakumar, N. Janani, R. MuruganLi7-xLa3Sn2-xNbxO12 (x=0.25-1) cubic lithium garnet. Mater. Lett., 77 (2012) 57-59
|
[53] |
M. Kotobuki, S. Song, R. Takahashi, S. Yanagiya, L. LuImprovement of Li ion conductivity of Li5La3Ta2O12 solid electrolyte by substitution of Ge for Ta. J.Power Sources, 349 (2017) 105-110
|
[54] |
H. Peng, L. Feng, L. Li, Y. Zhang, Y. ZouEffect of Ge substitution for Nb on Li ion conductivity of Li5La3Nb2O12 solid state electrolyte. Electrochim. Acta, 251 (2017) 482-487
|
[55] |
J. Awaka, A. Takashima, K. Kataoka, N. Kijima, Y. Idemoto, J. AkimotoCrystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12. Chem. Lett., 40 (2011) 60-62 doi: 10.1246/cl.2011.60
|
[56] |
J. Awaka, N. Kijima, H. Hayakawa, J. AkimotoSynthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. J.Solid State Chem., 182 (2009) 2046-2052
|
[57] |
R. Jalem, Y. Yamamoto, H. Shiiba, M. Nakayama, H. Munakata, T. Kasuga, K. KanamuraConcerted migration mechanism in the Li ion dynamics of garnet-type Li7La3Zr2O12. Chem. Mater., 25 (2013) 425-430 doi: 10.1021/cm303542x
|
[58] |
K. Meier, T. Laino, A. CurioniSolid-state electrolytes: revealing the mechanisms of Li-ion conduction in tetragonal and cubic LLZO by first-principles calculations. J.Phys. Chem. C, 118 (2014) 6668-6679 doi: 10.1021/jp5002463
|
[59] |
M. Klenk, W. LaiLocal structure and dynamics of lithium garnet ionic conductors: tetragonal and cubic Li7La3Zr2O7. Phys. Chem. Chem. Phys., 17 (2015) 8758-8768 doi: 10.1039/C4CP05690F
|
[60] |
M.-J. Uddin, S.-J. ChoReassessing the bulk ionic conductivity of solid-state electrolytes. Sustain. Energy Fuels, 2 (2018) 1458-1462
|
[61] |
M. Murayama, R. Kanno, Y. Kawamoto, T. KamiyamaStructure of the thio-LISICON, Li4GeS4. Solid State Ion., 154–155 (2002) 789-794
|
[62] |
L. Zhou, K.-H. Park, X. Sun, F. Lalere, T. Adermann, P. Hartmann, L.F. NazarSolvent-engineered design of argyrodite Li6PS5X (X= Cl, Br, I) solid electrolytes with high ionic conductivity. ACS Energy Lett., 4 (2019) 265-270 doi: 10.1021/acsenergylett.8b01997
|
[63] |
H. Buschmann, J. Dölle, S. Berendts, A. Kuhn, P. Bottke, M. Wilkening, P. Heitjans, A. Senyshyn, H. Ehrenberg, A. Lotnyk, V. Duppel, L. Kienle, J. JanekStructure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12”. Phys. Chem. Chem. Phys., 13 (2011) 19378-19392 doi: 10.1039/c1cp22108f
|
[64] |
Y. Li, J.-T. Han, C.-A. Wang, S.C. Vogel, H. Xie, M. Xu, J.B. GoodenoughIonic distribution and conductivity in lithium garnet Li7La3Zr2O12. J.Power Sources, 209 (2012) 278-281
|
[65] |
C. Bernuy-Lopez, W. Manalastas, J.M. Lopez del Amo, A. Aguadero, F. Aguesse, J.A. KilnerAtmosphere controlled processing of Ga-substituted garnets for high Li-ion conductivity ceramics. Chem. Mater., 26 (2014) 3610-3617 doi: 10.1021/cm5008069
|
[66] |
R. Wagner, G.J. Redhammer, D. Rettenwander, A. Senyshyn, W. Schmidt, M. Wilkening, G. AmthauerCrystal structure of garnet-related Li-ion conductor Li7-3xGaxLa3Zr2O12: fast Li-ion conduction caused by a different cubic modification?. Chem. Mater., 28 (2016) 1861-1871 doi: 10.1021/acs.chemmater.6b00038
|
[67] |
C. Deviannapoorani, L. Dhivya, S. Ramakumar, R. MuruganLithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets. J.Power Sources, 240 (2013) 18-25
|
[68] |
Y. Li, Z. Wang, Y. Cao, F. Du, C. Chen, Z. Cui, X. GuoW-doped Li7La3Zr2O12 ceramic electrolytes for solid state Li-ion batteries. Electrochim. Acta, 180 (2015) 37-42
|
[69] |
C. Shao, Z. Yu, H. Liu, Z. Zheng, N. Sun, C. DiaoEnhanced ionic conductivity of titanium doped Li7La3Zr2O12 solid electrolyte. Electrochim. Acta, 225 (2017) 345-349
|
[70] |
S. Song, B. Chen, Y. Ruan, J. Sun, L. Yu, Y. Wang, J. ThokchomGd-doped Li7La3Zr2O12 garnet-type solid electrolytes for all-solid-state Li-Ion batteries. Electrochim. Acta, 270 (2018) 501-508 doi: 10.3390/mi9100501
|
[71] |
X. Wang, J. Liu, R. Yin, Y. Xu, Y. Cui, L. Zhao, X. YuHigh lithium ionic conductivity of garnet-type oxide Li7+xLa3Zr2-xSmxO12 (x=0-0.1) ceramics. Mater. Lett., 231 (2018) 43-46 doi: 10.1504/ijris.2018.091129
|
[72] |
S. Ramakumar, L. Satyanarayana, S.V. Manorama, R. MuruganStructure and Li+ dynamics of Sb-doped Li7La3Zr2O12 fast lithium ion conductors. Phys. Chem. Chem. Phys., 15 (2013) 11327-11338 doi: 10.1039/c3cp50991e
|
[73] |
Y. Li, J.-T. Han, C.-A. Wang, H. Xie, J.B. GoodenoughOptimizing Li+ conductivity in a garnet framework. J.Mater. Chem., 22 (2012) 15357-15361 doi: 10.1039/c2jm31413d
|
[74] |
S. Ohta, T. Kobayashi, T. AsaokaHigh lithium ionic conductivity in the garnet-type oxide Li7-xLa3(Zr2-x, Nbx)O12 (x=0–2). J.Power Sources, 196 (2011) 3342-3345
|
[75] |
L. Buannic, B. Orayech, J.-M. Lopez Del Amo, J. Carrasco, N.A. Katcho, F. Aguesse, W. Manalastas, W. Zhang, J. Kilner, A. LlordesDual substitution strategy to enhance Li+ ionic conductivity in Li7La3Zr2O12 solid electrolyte. Chem. Mater., 29 (2017) 1769-1778 doi: 10.1021/acs.chemmater.6b05369
|
[76] |
E. Rangasamy, J. Wolfenstine, J. Allen, J. SakamotoThe effect of 24c-site (A) cation substitution on the tetragonal-cubic phase transition in Li7-xLa3-xAxZr2O12 garnet-based ceramic electrolyte. J.Power Sources, 230 (2013) 261-266
|
[77] |
M. Huang, W. Xu, Y. Shen, Y.-H. Lin, C.-W. NanX-ray absorption near-edge spectroscopy study on Ge-doped Li7La3Zr2O12: enhanced ionic conductivity and defect chemistry. Electrochim. Acta, 115 (2014) 581-586
|
[78] |
J.-F. Wu, W.K. Pang, V.K. Peterson, L. Wei, X. GuoGarnet-type fast Li-ion conductors with high ionic conductivities for all-solid-state batteries. ACS Appl. Mater. Interfaces, 9 (2017) 12461-12468 doi: 10.1021/acsami.7b00614
|
[79] |
X. Chen, T. Cao, M. Xue, H. Lv, B. Li, C. ZhangImproved room temperature ionic conductivity of Ta and Ca doped Li7La3Zr2O12 via a modified solution method. Solid State Ion., 314 (2018) 92-97
|
[80] |
M.A. Kraft, S.P. Culver, M. Calderon, F. Boecher, T. Krauskopf, A. Senyshyn, C. Dietrich, A. Zevalkink, J. Janek, W.G. ZeierInfluence of lattice polarizability on the ionic conductivity in the lithium superionic argyrodites Li6PS5X (X = Cl, Br, I). J.Am. Chem. Soc., 139 (2017) 10909-10918 doi: 10.1021/jacs.7b06327
|
[81] |
K. Mori, T. Ichida, K. Iwase, T. Otomo, S. Kohara, H. Arai, Y. Uchimoto, Z. Ogumi, Y. Onodera, T. FukunagaVisualization of conduction pathways in lithium superionic conductors: Li2S-P2S5 glasses and Li7P3S11 glass–ceramic. Chem. Phys. Lett., 584 (2013) 113-118
|
[82] |
N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto, A. MitsuiAlithium superionic conductor. Nat. Mater., 10 (2011) 682-686 doi: 10.1038/nmat3066
|
[83] |
F. Mizuno, A. Hayashi, K. Tadanaga, M. TatsumisagoNew, highly ion-conductive crystals precipitated from Li2S–P2S5 glasses. Adv. Mater., 17 (2005) 918-921 doi: 10.1002/adma.200401286
|
[84] |
Y. Seino, T. Ota, K. Takada, A. Hayashi, M. TatsumisagoAsulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci., 7 (2014) 627-631
|
[85] |
D.A. Weber, A. Senyshyn, K.S. Weldert, S. Wenzel, W. Zhang, R. Kaiser, S. Berendts, J. Janek, W.G. ZeierStructural insights and 3D diffusion pathways within the lithium superionic conductor Li10GeP2S12. Chem. Mater., 28 (2016) 5905-5915 doi: 10.1021/acs.chemmater.6b02424
|
[86] |
R.H. Basappa, T. Ito, H. YamadaContact between garnet-type solid electrolyte and lithium metal anode: influence on charge transfer resistance and short circuit prevention. J.Electrochem. Soc., 164 (2017) A666-A671 doi: 10.1149/2.0841704jes
|
[87] |
K. Ishiguro, Y. Nakata, M. Matsui, I. Uechi, Y. Takeda, O. Yamamoto, N. ImanishiStability of Nb-doped cubic Li7La3Zr2O12 with lithium metal. J.Electrochem. Soc., 160 (2013) A1690-A1693 doi: 10.1149/2.036310jes
|
[88] |
Y. Ren, Y. Shen, Y. Lin, C.-W. NanDirect observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte. Electrochem. Commun., 57 (2015) 27-30
|
[89] |
A. Sharafi, H.M. Meyer, J. Nanda, J. Wolfenstine, J. SakamotoCharacterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density. J.Power Sources, 302 (2016) 135-139
|
[90] |
E. Kazyak, R. Garcia-Mendez, W.S. LePage, A. Sharafi, A.L. Davis, A.J. Sanchez, K.-H. Chen, C. Haslam, J. Sakamoto, N.P. DasguptaLi penetration in ceramic solid electrolytes: operando microscopy analysis of morphology, propagation, and reversibility. Matter, 2 (2020) 1025-1048
|
[91] |
E.J. Cheng, A. Sharafi, J. SakamotoIntergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim. Acta, 223 (2017) 85-91
|
[92] |
Y. Song, L. Yang, W. Zhao, Z. Wang, Y. Zhao, Z. Wang, Q. Zhao, H. Liu, F. PanRevealing the short-circuiting mechanism of garnet-based solid-state electrolyte. Adv. Energy Mater., 9 (2019), p. 1900671 doi: 10.1002/aenm.201900671
|
[93] |
W. Luo, Y. Gong, Y. Zhu, K.K. Fu, J. Dai, S.D. Lacey, C. Wang, B. Liu, X. Han, Y. Mo, E.D. Wachsman, L. HuTransition from superlithiophobicity to superlithiophilicity of garnet solid-state electrolyte. J.Am. Chem. Soc., 138 (2016) 12258-12262 doi: 10.1021/jacs.6b06777
|
[94] |
K. (Kelvin) Fu, Y. Gong, B. Liu, Y. Zhu, S. Xu, Y. Yao, W. Luo, C. Wang, S.D. Lacey, J. Dai, Y. Chen, Y. Mo, E. Wachsman, L. HuToward garnet electrolyte–based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci. Adv., 3 (2017) e1601659
|
[95] |
K. Fu, Y. Gong, Z. Fu, H. Xie, Y. Yao, B. Liu, M. Carter, E. Wachsman, L. HuTransient behavior of the metal interface in Li metal-garnet batteries. Angew. Chem. Int. Ed., 56 (2017) 14942-14947 doi: 10.1002/anie.201708637
|
[96] |
X. Han, Y. Gong, K. (Kelvin) Fu, X. He, G.T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E.D. Wachsman, L. HuNegating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater., 16 (2017) 572-579 doi: 10.1038/nmat4821
|
[97] |
W. Luo, Y. Gong, Y. Zhu, Y. Li, Y. Yao, Y. Zhang, K. Fu, G. Pastel, C.-F. Lin, Y. Mo, E.D. Wachsman, L. HuReducing interfacial resistance between garnet-structured solid-state electrolyte and Li-metal anode by a germanium layer. Adv. Mater., 29 (2017), p. 1606042 doi: 10.1002/adma.201606042
|
[98] |
C. Wang, Y. Gong, B. Liu, K. Fu, Y. Yao, E. Hitz, Y. Li, J. Dai, S. Xu, W. Luo, E.D. Wachsman, L. HuConformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano Lett., 17 (2017) 565-571 doi: 10.1021/acs.nanolett.6b04695
|
[99] |
C. Wang, H. Xie, L. Zhang, Y. Gong, G. Pastel, J. Dai, B. Liu, E.D. Wachsman, L. HuUniversal soldering of lithium and sodium alloys on various substrates for batteries. Adv. Energy Mater., 8 (2017), p. 1701963
|
[100] |
J. Dai, C. Yang, C. Wang, G. Pastel, L. HuInterface engineering for garnet-based solid-state lithium-metal batteries: materials, structures, and characterization. Adv. Mater., 30 (2018), p. 1802068 doi: 10.1002/adma.201802068
|
[101] |
L. Porz, T. Swamy, B.W. Sheldon, D. Rettenwander, T. Froemling, H.L. Thaman, S. Berendts, R. Uecker, W.C. Carter, Y.-M. ChiangMechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater., 7 (2017), p. 1701003 doi: 10.1002/aenm.201701003
|
[102] |
T. Krauskopf, R. Dippel, H. Hartmann, K. Peppler, B. Mogwitz, F.H. Richter, W.G. Zeier, J. JanekLithium-metal growth kinetics on LLZO garnet-type solid electrolytes. Joule, 3 (2019) 2030-2049
|
[103] |
M. Yang, Y. MoInterfacial defect of lithium metal in solid-state batteries. Angew. Chem. Int. Ed., 60 (2021) 21494-21501 doi: 10.1002/anie.202108144
|
[104] |
S. Kim, C. Jung, H. Kim, K.E. Thomas-Alyea, G. Yoon, B. Kim, M.E. Badding, Z. Song, J. Chang, J. Kim, D. Im, K. KangThe role of interlayer chemistry in Li-metal growth through a garnet-type solid electrolyte. Adv. Energy Mater., 10 (2020), p. 1903993 doi: 10.1002/aenm.201903993
|
[105] |
H.-K. Tian, B. Xu, Y. QiComputational study of lithium nucleation tendency in Li7La3Zr2O12 (LLZO) and rational design of interlayer materials to prevent lithium dendrites. J.Power Sources, 392 (2018) 79-86
|
[106] |
A. Sharafi, C.G. Haslam, R.D. Kerns, J. Wolfenstine, J. SakamotoControlling and correlating the effect of grain size with the mechanical and electrochemical properties of Li7La3Zr2O12 solid-state electrolyte. J.Mater. Chem., 5 (2017) 21491-21504
|
[107] |
H. Huo, J. Luo, V. Thangadurai, X. Guo, C.-W. Nan, X. SunLi2CO3: a critical issue for developing solid garnet batteries. ACS Energy Lett., 5 (2019) 252-262
|
[108] |
F. Han, A.S. Westover, J. Yue, X. Fan, F. Wang, M. Chi, D.N. Leonard, N.J. Dudney, H. Wang, C. WangHigh electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy, 4 (2019) 187-196 doi: 10.1038/s41560-018-0312-z
|
[109] |
C. Wang, H. Xie, W. Ping, J. Dai, G. Feng, Y. Yao, S. He, J. Weaver, H. Wang, K. Gaskell, L. HuAgeneral, highly efficient, high temperature thermal pulse toward high performance solid state electrolyte. Energy Stor. Mater., 17 (2019) 234-241
|
[110] |
W. Ping, C. Wang, Z. Lin, E. Hitz, C. Yang, H. Wang, L. HuReversible short-circuit behaviors in garnet-based solid-state batteries. Adv. Energy Mater., 10 (2020), p. 2000702 doi: 10.1002/aenm.202000702
|
[111] |
F. Yonemoto, A. Nishimura, M. Motoyama, N. Tsuchimine, S. Kobayashi, Y. IriyamaTemperature effects on cycling stability of Li plating/stripping on Tadoped Li7La3Zr2O12. J.Power Sources, 343 (2017) 207-215
|
[112] |
M. Nagao, A. Hayashi, M. Tatsumisago, T. Kanetsuku, T. Tsuda, S. KuwabataIn situ SEM study of a lithium deposition and dissolution mechanism in a bulk-type solid-state cell with a Li2S-P2S5 solid electrolyte. Phys. Chem. Chem. Phys., 15 (2013) 18600-18606 doi: 10.1039/c3cp51059j
|
[113] |
M. Sun, T. Liu, Y. Yuan, M. Ling, N. Xu, Y. Liu, L. Yan, H. Li, C. Liu, Y. Lu, Y. Shi, Y. He, Y. Guo, X. Tao, C. Liang, J. LuVisualizing lithium dendrite formation within solid-state electrolytes. ACS Energy Lett., 6 (2021) 451-458 doi: 10.1021/acsenergylett.0c02314
|
[114] |
Z. Ning, D.S. Jolly, G. Li, R. De Meyere, S.D. Pu, Y. Chen, J. Kasemchainan, J. Ihli, C. Gong, B. Liu, D.L.R. Melvin, A. Bonnin, O. Magdysyuk, P. Adamson, G.O. Hartley, C.W. Monroe, T.J. Marrow, P.G. BruceVisualizing plating-induced cracking in lithium-anode solid-electrolyte cells. Nat. Mater., 20 (2021) 1121-1129 doi: 10.1038/s41563-021-00967-8
|
[115] |
C. Jiang, N. Dunlap, Y. Li, H. Guthrey, P. Liu, S. Lee, M.M. Al-JassimNonuniform ionic and electronic transport of ceramic and polymer/ceramic hybrid electrolyte by nanometer-scale operando imaging for solid-state battery. Adv. Energy Mater., 10 (2020), p. 2000219 doi: 10.1002/aenm.202000219
|
[116] |
F. Han, J. Yue, X. Zhu, C. WangSuppressing Li dendrite formation in Li2S-P2S5 solid electrolyte by LiI incorporation. Adv. Energy Mater., 8 (2018), p. 1703644 doi: 10.1002/aenm.201703644
|
[117] |
J. Kasemchainan, S. Zekoll, D.S. Jolly, Z. Ning, G.O. Hartley, J. Marrow, P.G. BruceCritical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater., 18 (2019) 1105-1111 doi: 10.1038/s41563-019-0438-9
|
[118] |
M. Yang, Y. Liu, A.M. Nolan, Y. MoInterfacial atomistic mechanisms of lithium metal stripping and plating in solid-state batteries. Adv. Mater., 11 (2021), p. 2008081 doi: 10.1002/adma.202008081
|
[119] |
Y. Qi, C. Ban, S.J. HarrisAnew general paradigm for understanding and preventing Li metal penetration through solid electrolytes. Joule, 4 (2020) 2599-2608
|
[120] |
T. Krauskopf, F.H. Richter, W.G. Zeier, J. JanekPhysicochemical concepts of the lithium metal anode in solid-state batteries. Chem. Rev., 120 (2020) 7745-7794 doi: 10.1021/acs.chemrev.0c00431
|
[121] |
Z. Wang, X. Li, Y. Chen, K. Pei, Y.-W. Mai, S. Zhang, J. LiCreep-enabled 3D solid-state lithium-metal battery. Inside Chem., 6 (2020) 2878-2892
|
[122] |
A. Masias, N. Felten, R. Garcia-Mendez, J. Wolfenstine, J. SakamotoElastic, plastic, and creep mechanical properties of lithium metal. J.Mater. Sci., 54 (2019) 2585-2600 doi: 10.1007/s10853-018-2971-3
|
[123] |
J. Meng, Y. Zhang, X. Zhou, M. Lei, C. LiLi2CO3-affiliative mechanism for air-accessible interface engineering of garnet electrolyte via facile liquid metal painting. Nat. Commun., 11 (2020), p. 3716
|
[124] |
H. Huo, J. Gao, N. Zhao, D. Zhang, N.G. Holmes, X. Li, Y. Sun, J. Fu, R. Li, X. Guo, X. SunAflexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries. Nat. Commun., 12 (2021), p. 176
|
[125] |
Q. Wang, L. Jiang, Y. Yu, J. SunProgress of enhancing the safety of lithium ion battery from the electrolyte aspect. Nano Energy, 55 (2019) 93-114
|
[126] |
M. Kotobuki, H. Munakata, K. Kanamura, Y. Sato, T. YoshidaCompatibility of Li7La3Zr2O12 solid electrolyte to all-solid-state battery using Li metal anode. J.Electrochem. Soc., 157 (2010) A1076-A1079 doi: 10.1149/1.3474232
|
[127] |
M. Kotobuki, K. Kanamura, Y. Sato, T. YoshidaFabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte. J.Power Sources, 196 (2011) 7750-7754
|
[128] |
S. Ohta, T. Kobayashi, J. Seki, T. AsaokaElectrochemical performance of an all-solid-state lithium ion battery with garnet-type oxide electrolyte. J.Power Sources, 202 (2012) 332-335
|
[129] |
C. Ma, Y. Cheng, K. Yin, J. Luo, A. Sharafi, J. Sakamoto, J. Li, K.L. More, N.J. Dudney, M. ChiInterfacial stability of Li metal-solid electrolyte elucidated via in situ electron microscopy. Nano Lett., 16 (2016) 7030-7036 doi: 10.1021/acs.nanolett.6b03223
|
[130] |
F. Han, Y. Zhu, X. He, Y. Mo, C. WangElectrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Adv. Energy Mater., 6 (2016), p. 1501590 doi: 10.1002/aenm.201501590
|
[131] |
K.H. Kim, Y. Iriyama, K. Yamamoto, S. Kumazaki, T. Asaka, K. Tanabe, C.A.J. Fisher, T. Hirayama, R. Murugan, Z. OgumiCharacterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery. J.Power Sources, 196 (2011) 764-767
|
[132] |
T. Kato, T. Hamanaka, K. Yamamoto, T. Hirayama, F. Sagane, M. Motoyama, Y. IriyamaIn-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery. J.Power Sources, 260 (2014) 292-298
|
[133] |
L. Truong, V. ThangaduraiSoft-Chemistry of garnet-type Li5+xBaxLa3–xNb2O12 (x = 0, 0.5, 1): reversible H+ ↔ Li+ ion-exchange reaction and their X-ray, 7Li MAS NMR, IR, and AC impedance spectroscopy characterization. Chem. Mater., 23 (2011) 3970-3977 doi: 10.1021/cm2015127
|
[134] |
M. Nyman, T.M. Alam, S.K. McIntyre, G.C. Bleier, D. IngersollAlternative approach to increasing Li mobility in Li-La-Nb/Ta garnet electrolytes. Chem. Mater., 22 (2010) 5401-5410 doi: 10.1021/cm101438x
|
[135] |
Y. Shimonishi, A. Toda, T. Zhang, A. Hirano, N. Imanishi, O. Yamamoto, Y. TakedaSynthesis of garnet-type Li7-xLa3Zr2O12-1/2x and its stability in aqueous solutions. Solid State Ion., 183 (2011) 48-53
|
[136] |
R.H. Brugge, A.K.O. Hekselman, A. Cavallaro, F.M. Pesci, R.J. Chater, J.A. Kilner, A. AguaderoGarnet electrolytes for solid state batteries: visualization of moisture-induced chemical degradation and revealing its impact on the Li-ion dynamics. Chem. Mater., 30 (2018) 3704-3713 doi: 10.1021/acs.chemmater.8b00486
|
[137] |
Y. Jin, P.J. McGinnLi7La3Zr2O12 electrolyte stability in air and fabrication of a Li/Li7La3Zr2O12/Cu0.1V2O5 solid-state battery. J.Power Sources, 239 (2013) 326-331
|
[138] |
A. Sharafi, S. Yu, M. Naguib, M. Lee, C. Ma, H.M. Meyer, J. Nanda, M. Chi, D.J. Siegel, J. SakamotoImpact of air exposure and surface chemistry on Li-Li7La3Zr2O12 interfacial resistance. J.Mater. Chem., 5 (2017) 13475-13487 doi: 10.1039/C7TA03162A
|
[139] |
A. Orera, G. Larraz, J.A. Rodríguez-Velamazán, J. Campo, M.L. SanjuánInfluence of Li+ and H+ distribution on the crystal structure of Li7–xHxLa3Zr2O12 (0 ≤ x ≤ 5) garnets. Inorg. Chem., 55 (2016) 1324-1332 doi: 10.1021/acs.inorgchem.5b02708
|
[140] |
L. Cheng, C.H. Wu, A. Jarry, W. Chen, Y. Ye, J. Zhu, R. Kostecki, K. Persson, J. Guo, M. Salmeron, G. Chen, M. DoeffInterrelationships among grain size, surface composition, air stability, and interfacial resistance of Al-substituted Li7La3Zr2O12 solid electrolytes. ACS Appl. Mater. Interfaces, 7 (2015) 17649-17655 doi: 10.1021/acsami.5b02528
|
[141] |
W. Xia, B. Xu, H. Duan, Y. Guo, H. Kang, H. Li, H. LiuIonic conductivity and air stability of Al-doped Li7La3Zr2O12 sintered in alumina and Pt crucibles. ACS Appl. Mater. Interfaces, 8 (2016) 5335-5342 doi: 10.1021/acsami.5b12186
|
[142] |
Z. Liu, W. Fu, E.A. Payzant, X. Yu, Z. Wu, N.J. Dudney, J. Kiggans, K. Hong, A.J. Rondinone, C. LiangAnomalous high ionic conductivity of nanoporous β-Li3PS4. J.Am. Chem. Soc., 135 (2013) 975-978 doi: 10.1021/ja3110895
|
[143] |
R.C. Xu, X.H. Xia, Z.J. Yao, X.L. Wang, C.D. Gu, J.P. TuPreparation of Li7P3S11 glass-ceramic electrolyte by dissolution-evaporation method for all-solid-state lithium ion batteries. Electrochim. Acta, 219 (2016) 235-240
|
[144] |
E. Rangasamy, Z. Liu, M. Gobet, K. Pilar, G. Sahu, W. Zhou, H. Wu, S. Greenbaum, C. LiangAn iodide-based Li7P2S8I superionic conductor. J.Am. Chem. Soc., 137 (2015) 1384-1387 doi: 10.1021/ja508723m
|
[145] |
T. Kobayashi, A. Yamada, R. KannoInterfacial reactions at electrode/electrolyte boundary in all solid-state lithium battery using inorganic solid electrolyte, thio-LISICON. Electrochim. Acta, 53 (2008) 5045-5050
|
[146] |
T. Cheng, B.V. Merinov, S. Morozov, W.A. GoddardQuantum mechanics reactive dynamics study of solid Li-electrode/Li6PS5Cl-electrolyte interface. ACS Energy Lett., 2 (2017) 1454-1459 doi: 10.1021/acsenergylett.7b00319
|
[147] |
S. Wenzel, S.J. Sedlmaier, C. Dietrich, W.G. Zeier, J. JanekInterfacial reactivity and interphase growth of argyrodite solid electrolytes at lithium metal electrodes. Solid State Ion., 318 (2018) 102-112
|
[148] |
K.N. Wood, K.X. Steirer, S.E. Hafner, C. Ban, S. Santhanagopalan, S.-H. Lee, G. TeeterOperando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytes. Nat. Commun., 9 (2018), p. 2490
|
[149] |
S. Wenzel, D.A. Weber, T. Leichtweiss, M.R. Busche, J. Sann, J. JanekInterphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte. Solid State Ion., 286 (2016) 24-33
|
[150] |
F. Han, T. Gao, Y. Zhu, K.J. Gaskell, C. WangAbattery made from a single material. Adv. Mater., 27 (2015) 3473-3483 doi: 10.1002/adma.201500180
|
[151] |
T. Swamy, X. Chen, Y.-M. ChiangElectrochemical redox behavior of Li-ion conducting sulfide solid electrolytes. Chem. Mater., 31 (2019) 707-713 doi: 10.1021/acs.chemmater.8b03420
|
[152] |
D.H.S. Tan, E.A. Wu, H. Nguyen, Z. Chen, M.A.T. Marple, J.-M. Doux, X. Wang, H. Yang, A. Banerjee, Y.S. MengElucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte. ACS Energy Lett., 4 (2019) 2418-2427 doi: 10.1021/acsenergylett.9b01693
|
[153] |
T.K. Schwietert, V.A. Arszelewska, C. Wang, C. Yu, A. Vasileiadis, N.J.J. de Klerk, J. Hageman, T. Hupfer, I. Kerkamm, Y. Xu, E. van der Maas, E.M. Kelder, S. Ganapathy, M. WagemakerClarifying the relationship between redox activity and electrochemical stability in solid electrolytes. Nat. Mater., 19 (2020) 428-435 doi: 10.1038/s41563-019-0576-0
|
[154] |
Z. Deng, Z. Zhu, I.-H. Chu, S.P. OngData-driven first-principles methods for the study and design of alkali superionic conductors. Chem. Mater., 29 (2017) 281-288 doi: 10.1021/acs.chemmater.6b02648
|
[155] |
A. Sakuda, A. Hayashi, M. TatsumisagoIntefacial observation between LiCoO2 electrode and Li2S-P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy. Chem. Mater., 22 (2010) 949-956 doi: 10.1021/cm901819c
|
[156] |
W.D. Richards, L.J. Miara, Y. Wang, J.C. Kim, G. CederInterface stability in solid-state batteries. Chem. Mater., 28 (2016) 266-273 doi: 10.1021/acs.chemmater.5b04082
|
[157] |
W. Zhang, T. Leichtweiss, S.P. Culver, R. Koerver, D. Das, D.A. Weber, W.G. Zeier, J. JanekThe detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries. ACS Appl. Mater. Interfaces, 9 (2017) 35888-35896 doi: 10.1021/acsami.7b11530
|
[158] |
G. Oh, M. Hirayama, O. Kwon, K. Suzuki, R. KannoBulk-type All solid-state batteries with 5 V class LiNi0.5Mn1.5O4 cathode and Li10GeP2S12 solid electrolyte. Chem. Mater., 28 (2016) 2634-2640 doi: 10.1021/acs.chemmater.5b04940
|
[159] |
Y. Zhu, X. He, Y. MoOrigin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces, 7 (2015) 23685-23693 doi: 10.1021/acsami.5b07517
|
[160] |
A. Banerjee, X. Wang, C. Fang, E.A. Wu, Y.S. MengInterfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem. Rev., 120 (2020) 6878-6933 doi: 10.1021/acs.chemrev.0c00101
|
[161] |
J. Haruyama, K. Sodeyama, L. Han, K. Takada, Y. TateyamaSpace-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery. Chem. Mater., 26 (2014) 4248-4255 doi: 10.1021/cm5016959
|
[162] |
N. Ohta, K. Takada, L. Zhang, R. Ma, M. Osada, T. SasakiEnhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification. Adv. Mater., 18 (2006) 2226-2229 doi: 10.1002/adma.200502604
|
[163] |
K. Takada, N. Ohta, L. Zhang, K. Fukuda, I. Sakaguchi, R. Ma, M. Osada, T. SasakiInterfacial modification for high-power solid-state lithium batteries. Solid State Ion., 179 (2008) 1333-1337
|
[164] |
K. Takada, N. Ohta, L. Zhang, X. Xu, B.T. Hang, T. Ohnishi, M. Osada, T. SasakiInterfacial phenomena in solid-state lithium battery with sulfide solid electrolyte. Solid State Ion., 225 (2012) 594-597
|
[165] |
H.M. Chen, C. Maohua, S. AdamsStability and ionic mobility in argyrodite-related lithium-ion solid electrolytes. Phys. Chem. Chem. Phys., 17 (2015) 16494-16506
|
[166] |
H. Muramatsu, A. Hayashi, T. Ohtomo, S. Hama, M. TatsumisagoStructural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ion., 182 (2011) 116-119
|
[167] |
T. Ohtomo, A. Hayashi, M. Tatsumisago, K. KawamotoCharacteristics of the Li2O–Li2S–P2S5 glasses synthesized by the two-step mechanical milling. J.Non-Cryst. Solids, 364 (2013) 57-61
|
[168] |
A. Hayashi, H. Muramatsu, T. Ohtomo, S. Hama, M. TatsumisagoImprovement of chemical stability of Li3PS4 glass electrolytes by adding MxOy (M = Fe, Zn, and Bi) nanoparticles. J.Mater. Chem., 1 (2013) 6320-6326 doi: 10.1039/c3ta10247e
|
[169] |
T. Ohtomo, A. Hayashi, M. Tatsumisago, K. KawamotoSuppression of H2S gas generation from the 75Li2S·25P2S5 glass electrolyte by additives. J.Mater. Sci., 48 (2013) 4137-4142 doi: 10.1007/s10853-013-7226-8
|
[170] |
R.G. PearsonHard and soft acids and bases. J.Am. Chem. Soc., 85 (1963) 3533-3539 doi: 10.1021/ja00905a001
|
[171] |
Y.E. Choi, K.H. Park, D.H. Kim, D.Y. Oh, H.R. Kwak, Y.-G. Lee, Y.S. JungCoatable Li4SnS4 solid electrolytes prepared from aqueous solutions for all-solid-state lithium-ion batteries. ChemSusChem, 10 (2017) 2605-2611 doi: 10.1002/cssc.201700409
|
[172] |
F. Han, J. Yue, X. Zhu, C. WangSuppressing Li dendrite formation in Li2S-P2S5 solid electrolyte by LiI incorporation. Adv. Energy Mater., 8 (2018), p. 1703644 doi: 10.1002/aenm.201703644
|
[173] |
P. Lu, L. Liu, S. Wang, J. Xu, J. Peng, W. Yan, Q. Wang, H. Li, L. Chen, F. WuSuperior all-solid-state batteries enabled by a gas-phase-synthesized sulfide electrolyte with ultrahigh moisture stability and ionic conductivity. Adv. Mater., 33 (2021), p. 2100921 doi: 10.1002/adma.202100921
|
[174] |
S.S. Shishvan, N.A. Fleck, R.M. McMeeking, V.S. DeshpandeDendrites as climbing dislocations in ceramic electrolytes: initiation of growth. J.Power Sources, 456 (2020), p. 227989
|
[175] |
S.S. Shishvan, N.A. Fleck, R.M. McMeeking, V.S. DeshpandeGrowth rate of lithium filaments in ceramic electrolytes. Acta Mater., 196 (2020) 444-455
|
[176] |
C. Yuan, W. Lu, J. XuUnlocking the electrochemical–mechanical coupling behaviors of dendrite growth and crack propagation in all-solid-state batteries. Adv. Energy Mater., 11 (2021), p. 2101807 doi: 10.1002/aenm.202101807
|
[177] |
Z. Deng, Z. Wang, I.-H. Chu, J. Luo, S.P. OngElastic properties of alkali superionic conductor electrolytes from first principles calculations. J.Electrochem. Soc., 163 (2016) A67-A74 doi: 10.1149/2.0061602jes
|
[178] |
J.E. Ni, E.D. Case, J.S. Sakamoto, E. Rangasamy, J.B. WolfenstineRoom temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet. J.Mater. Sci., 47 (2012) 7978-7985 doi: 10.1007/s10853-012-6687-5
|
[179] |
J. Wolfenstine, H. Jo, Y.-H. Cho, I.N. David, P. Askeland, E.D. Case, H. Kim, H. Choe, J. SakamotoApreliminary investigation of fracture toughness of Li7La3Zr2O12 and its comparison to other solid Li-ion conductors. Mater. Lett., 96 (2013) 117-120
|
[180] |
S. Yu, R.D. Schmidt, R. Garcia-Mendez, E. Herbert, N.J. Dudney, J.B. Wolfenstine, J. Sakamoto, D.J. SiegelElastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chem. Mater., 28 (2016) 197-206 doi: 10.1021/acs.chemmater.5b03854
|
[181] |
A. Sakuda, A. Hayashi, Y. Takigawa, K. Higashi, M. TatsumisagoEvaluation of elastic modulus of Li2S–P2S5 glassy solid electrolyte by ultrasonic sound velocity measurement and compression test. J.Ceram. Soc. Jpn., 121 (2013) 946-949 doi: 10.2109/jcersj2.121.946
|
[182] |
A. Sakuda, A. Hayashi, M. TatsumisagoSulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery. Sci. Rep., 3 (2013), p. 2261
|
[183] |
F.P. McGrogan, T. Swamy, S.R. Bishop, E. Eggleton, L. Porz, X. Chen, Y.-M. Chiang, K.J. Van VlietCompliant yet brittle mechanical behavior of Li2S-P2S5 lithium-ion-conducting solid electrolyte. Adv. Energy Mater., 7 (2017), p. 1602011 doi: 10.1002/aenm.201602011
|
[184] |
A. Kato, M. Yamamoto, A. Sakuda, A. Hayashi, M. TatsumisagoMechanical properties of Li2S–P2S5 glasses with lithium halides and application in all-solid-state batteries. ACS Appl. Energy Mater., 1 (2018) 1002-1007 doi: 10.1021/acsaem.7b00140
|
[185] |
L.L. Baranowski, C.M. Heveran, V.L. Ferguson, C.R. StoldtMulti-scale mechanical behavior of the Li3PS4 solid-phase electrolyte. ACS Appl. Mater. Interfaces, 8 (2016) 29573-29579 doi: 10.1021/acsami.6b06612
|
[186] |
J.G. Swallow, W.H. Woodford, F.P. McGrogan, N. Ferralis, Y.-M. Chiang, K.J.V. VlietEffect of electrochemical charging on elastoplastic properties and fracture toughness of LiXCoO2. J.Electrochem. Soc., 161 (2014) F3084-F3090 doi: 10.1149/2.0141411jes
|
[187] |
10.1007/978-1-4684-6066-7_7 |
[188] |
M. Matsui, K. Takahashi, K. Sakamoto, A. Hirano, Y. Takeda, O. Yamamoto, N. ImanishiPhase stability of a garnet-type lithium ion conductor Li7La3Zr2O12. Dalton Trans., 43 (2013) 1019-1024
|
[189] |
K. Park, B.-C. Yu, J.-W. Jung, Y. Li, W. Zhou, H. Gao, S. Son, J.B. GoodenoughElectrochemical nature of the cathode interface for a solid-state lithium-ion battery: interface between LiCoO2 and garnet-Li7La3Zr2O12. Chem. Mater., 28 (2016) 8051-8059 doi: 10.1021/acs.chemmater.6b03870
|
[190] |
N. Zhang, X. Long, Z. Wang, P. Yu, F. Han, J. Fu, G. Ren, Y. Wu, S. Zheng, W. Huang, C. Wang, H. Li, X. LiuMechanism study on the interfacial stability of a lithium garnet-type oxide electrolyte against cathode materials. ACS Appl. Energy Mater., 1 (2018) 5968-5976 doi: 10.1021/acsaem.8b01035
|
[191] |
L. Miara, A. Windmüller, C.-L. Tsai, W.D. Richards, Q. Ma, S. Uhlenbruck, O. Guillon, G. CederAbout the compatibility between high voltage spinel cathode materials and solid oxide electrolytes as a function of temperature. ACS Appl. Mater. Interfaces, 8 (2016) 26842-26850 doi: 10.1021/acsami.6b09059
|
[192] |
Y. Chen, L. Cai, Z. Liu, C.R. dela Cruz, C. Liang, K. AnCorrelation of anisotropy and directional conduction in β-Li3PS4 fast Li+ conductor. Appl. Phys. Lett., 107 (2015) 013904 doi: 10.1063/1.4926725
|
[193] |
H. Tsukasaki, M. Otoyama, Y. Mori, S. Mori, H. Morimoto, A. Hayashi, M. TatsumisagoAnalysis of structural and thermal stability in the positive electrode for sulfide-based all-solid-state lithium batteries. J.Power Sources, 367 (2017) 42-48
|
[194] |
X. Fan, X. Ji, L. Chen, J. Chen, T. Deng, F. Han, J. Yue, N. Piao, R. Wang, X. Zhou, X. Xiao, L. Chen, C. WangAll-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy, 4 (2019) 882-890 doi: 10.1038/s41560-019-0474-3
|
[195] |
T. Uyama, T. Inoue, K. MukaiRealizing the ultimate thermal stability of a lithium-ion battery using two zero-strain insertion materials. ACS Appl. Energy Mater., 1 (2018) 5712-5717
|
[196] |
F. Strauss, J.H. Teo, A. Schiele, T. Bartsch, T. Hatsukade, P. Hartmann, J. Janek, T. BrezesinskiGas evolution in lithium-ion batteries: solid versus liquid electrolyte. ACS Appl. Mater. Interfaces, 12 (2020) 20462-20468 doi: 10.1021/acsami.0c02872
|
[197] |
T. Yamada, Y. Aihara, S. Fujiki, S. Ito, K. Hoshiba, T. young Kim, S.-W. Baek, J.M. Lee, Y. ParkSafety of high capacity all solid state Li-ion secondary battery. Meet. Abstr., MA2013–01 (2013)
|
[198] |
Z. Yonglong, X. Huiling, L. Jiu, C. Shaojie, X. XiaoxiongBrief analysis the safety of solid-state lithium ion batteries. Energy Stor. Sci. Technol., 7 (2018), p. 994
|
[199] |
Y. Wang, W.D. Richards, S.P. Ong, L.J. Miara, J.C. Kim, Y. Mo, G. CederDesign principles for solid-state lithium superionic conductors. Nat. Mater., 14 (2015) 1026-1031 doi: 10.1038/nmat4369
|
[200] |
J.C. Bachman, S. Muy, A. Grimaud, H.-H. Chang, N. Pour, S.F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano, Y. Shao-HornInorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev., 116 (2016) 140-162 doi: 10.1021/acs.chemrev.5b00563
|
[201] |
Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. KannoHigh-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy, 1 (2016), p. 16030
|
[202] |
D.H.S. Tan, Y.-T. Chen, H. Yang, W. Bao, B. Sreenarayanan, J.-M. Doux, W. Li, B. Lu, S.-Y. Ham, B. Sayahpour, J. Scharf, E.A. Wu, G. Deysher, H.E. Han, H.J. Hah, H. Jeong, J.B. Lee, Z. Chen, Y.S. MengCarbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science, 373 (2021) 1494-1499 doi: 10.1126/science.abg7217
|
[203] |
Y. Zhao, C. Wu, G. Peng, X. Chen, X. Yao, Y. Bai, F. Wu, S. Chen, X. XuAnew solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries. J.Power Sources, 301 (2016) 47-53 doi: 10.1021/acs.energyfuels.5b01775
|
[204] |
P.R. Chinnam, S.L. WunderEngineered interfaces in hybrid ceramic–polymer electrolytes for use in all-solid-state Li batteries. ACS Energy Lett., 2 (2017) 134-138 doi: 10.1021/acsenergylett.6b00609
|
[205] |
X. Zhang, T. Liu, S. Zhang, X. Huang, B. Xu, Y. Lin, B. Xu, L. Li, C.-W. Nan, Y. ShenSynergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J.Am. Chem. Soc., 139 (2017) 13779-13785 doi: 10.1021/jacs.7b06364
|
[206] |
J.K. Feng, L. Lu, M.O. LaiLithium storage capability of lithium ion conductor Li1.5Al0.5Ge1.5(PO4)3. J.Alloys Compd., 501 (2010) 255-258
|
[207] |
M.J. Wang, J.B. Wolfenstine, J. SakamotoMixed electronic and ionic conduction properties of lithium lanthanum titanate. Adv. Funct. Mater., 30 (2020), p. 1909140 doi: 10.1002/adfm.201909140
|
[208] |
M. Kotobuki, Y. Suzuki, H. Munakata, K. Kanamura, Y. Sato, K. Yamamotob, T. YoshidaCompatibility of LiCoO2 and LiMn2O4 cathode materials for Li0.55La0.35TiO3 electrolyte to fabricate all-solid-state lithium battery. J.Power Sources, 195 (2010) 5784-5788
|
[209] |
K. Yamamoto, Y. Iriyama, T. Asaka, T. Hirayama, H. Fujita, C.A.J. Fisher, K. Nonaka, Y. Sugita, Z. OgumiDynamic visualization of the electric potential in an all-solid-state rechargeable lithium battery. Angew. Chem. Int. Ed., 49 (2010) 4414-4417 doi: 10.1002/anie.200907319
|
[210] |
J.A. Lewis, F.J.Q. Cortes, M.G. Boebinger, J. Tippens, T.S. Marchese, N.P. Kondekar, X. Liu, M. Chi, M.T. McDowellInterphase morphology between a solid-state electrolyte and lithium controls cell failure. ACS Energy Lett., 4 (2019) 591-599 doi: 10.1021/acsenergylett.9b00093
|
[211] |
J. Tippens, J.C. Miers, A. Afshar, J.A. Lewis, F.J.Q. Cortes, H. Qiao, T.S. Marchese, C.V. Di Leo, C. Saldana, M.T. McDowellVisualizing chemomechanical degradation of a solid-state battery electrolyte. ACS Energy Lett., 4 (2019) 1475-1483 doi: 10.1021/acsenergylett.9b00816
|