Citation: | Zheng Caiyan, Zhang Xu, Zhou Zhen, Hu Zhenpeng. A first-principles study on the electrochemical reaction activity of 3d transition metal single-atom catalysts in nitrogen-doped graphene: Trends and hints[J]. eScience, 2022, 2(2): 219-226. doi: 10.1016/j.esci.2022.02.009 |
![]() |
![]() |
[1] |
H. Zhang, A.W. Maijenburg, X. Li, S.L. Schweizer, R.B. WehrspohnBifunctional heterostructured transition metal phosphides for efficient electrochemical water splitting. Adv. Funct. Mater., 30 (2020) 2003261 doi: 10.1002/adfm.202003261
|
[2] |
J. Yu, H. Song, X. Li, L. Tang, Z. Tang, B. Yang, S. LuComputational studies on carbon dots electrocatalysis: a review. Adv. Funct. Mater., 31 (2021) 2107196 doi: 10.1002/adfm.202107196
|
[3] |
M.K. DebeElectrocatalyst approaches and challenges for automotive fuel cells. Nature, 486 (2012) 43-51 doi: 10.1038/nature11115
|
[4] |
C. Zhu, Q. Shi, S. Feng, D. Du, Y. LinSingle-atom catalysts for electrochemical water splitting. ACS Energy Lett., 3 (2018) 1713-1721 doi: 10.1021/acsenergylett.8b00640
|
[5] |
L. Peng, L. Shang, T. Zhang, G.I.N. WaterhouseRecent advances in the development of single-atom catalysts for oxygen electrocatalysis and zinc–air batteries. Adv. Energy Mater., 10 (2020) 2003018 doi: 10.1002/aenm.202003018
|
[6] |
S. Li, X. Hao, A. Abudula, G. GuanNanostructured Co-based bifunctional electrocatalysts for energy conversion and storage: current status and perspectives. J.Mater. Chem., 7 (2019) 18674-18707 doi: 10.1039/c9ta04949e
|
[7] |
J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard, H. JónssonOrigin of the overpotential for oxygen reduction at a fuel-cell cathode. J.Phys. Chem. B, 108 (2004) 17886-17892 doi: 10.1021/jp047349j
|
[8] |
L. Zhang, K. Doyle-Davis, X. SunPt-based electrocatalysts with high atom utilization efficiency: from nanostructures to single atoms. Energy Environ. Sci., 12 (2019) 492-517 doi: 10.1039/c8ee02939c
|
[9] |
J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen, S. Pandelov, U. StimmingTrends in the exchange current for hydrogen evolution. J.Electrochem. Soc., 152 (2005) J23-J26 doi: 10.1149/1.1856988
|
[10] |
Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov, T.F. JaramilloCombining theory and experiment in electrocatalysis: insights into materials design. Science, 355 (2017) eaad4998
|
[11] |
I.C. Man, H.-Y. Su, F. Calle-Vallejo, H.A. Hansen, J.I. Martínez, N.G. Inoglu, J. Kitchin, T.F. Jaramillo, J.K. Nørskov, J. RossmeislUniversality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem, 3 (2011) 1159-1165 doi: 10.1002/cctc.201000397
|
[12] |
Y. Lee, J. Suntivich, K.J. May, E.E. Perry, Y. Shao-HornSynthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J.Phys. Chem. Lett., 3 (2012) 399-404 doi: 10.1021/jz2016507
|
[13] |
B. Qiao, A. Wang, X. Yang, L.F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. ZhangSingle-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem., 3 (2011) 634-641 doi: 10.1038/nchem.1095
|
[14] |
X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. ZhangSingle-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res., 46 (2013) 1740-1748 doi: 10.1021/ar300361m
|
[15] |
X. Li, C.-S. Cao, S.-F. Hung, Y.-R. Lu, W. Cai, A.I. Rykov, S. Miao, S. Xi, H. Yang, Z. Hu, J. Wang, J. Zhao, E.E. Alp, W. Xu, T.-S. Chan, H. Chen, Q. Xiong, H. Xiao, Y. Huang, J. Li, T. Zhang, B. LiuIdentification of the electronic and structural dynamics of catalytic centers in single-Fe-atom material. Inside Chem., 6 (2020) 3440-3454 doi: 10.3390/cancers12113440
|
[16] |
L. Wu, X. Cao, W. Hu, Y. Ji, Z.-Z. Zhu, X.-F. LiImproving the oxygen reduction reaction activity of FeN4-graphene via tuning electronic characteristics. ACS Appl. Energy Mater., 2 (2019) 6634-6641 doi: 10.1021/acsaem.9b01164
|
[17] |
S. Kattel, G. WangReaction pathway for oxygen reduction on FeN4 embedded graphene. J.Phys. Chem. Lett., 5 (2014) 452-456 doi: 10.1021/jz402717r
|
[18] |
Y. Zhou, G. Gao, Y. Li, W. Chu, L.-W. WangTransition-metal single atoms in nitrogen-doped graphenes as efficient active centers for water splitting: a theoretical study. Phys. Chem. Chem. Phys., 21 (2019) 3024-3032 doi: 10.1039/c8cp06755d
|
[19] |
M. Lefèvre, J.P. Dodelet, P. BertrandMolecular oxygen reduction in PEM fuel cells: evidence for the simultaneous presence of two active sites in Fe-based catalysts. J.Phys. Chem. B, 106 (2002) 8705-8713
|
[20] |
P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin, W. Liu, H. Ju, J. Zhu, X. Hong, Z. Deng, G. Zhou, S. Wei, Y. LiSingle cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed., 55 (2016) 10800-10805 doi: 10.1002/anie.201604802
|
[21] |
Y. Pan, Y. Chen, K. Wu, Z. Chen, S. Liu, X. Cao, W.-C. Cheong, T. Meng, J. Luo, L. Zheng, C. Liu, D. Wang, Q. Peng, J. Li, C. ChenRegulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nat. Commun., 10 (2019), p. 4290
|
[22] |
Y. Li, X. Liu, L. Zheng, J. Shang, X. Wan, R. Hu, X. Guo, S. Hong, J. ShuiPreparation of Fe-N-C catalysts with FeNx (x = 1, 3, 4) active sites and comparison of their activities for the oxygen reduction reaction and performances in proton exchange membrane fuel cells. J.Mater. Chem., 7 (2019) 26147-26153 doi: 10.1039/c9ta08532g
|
[23] |
P. Song, Y. Wang, J. Pan, W. Xu, L. ZhuangStructure-activity relationship in high-performance iron-based electrocatalysts for oxygen reduction reaction. J.Power Sources, 300 (2015) 279-284
|
[24] |
H. Shen, E. Gracia-Espino, J. Ma, H. Tang, X. Mamat, T. Wagberg, G. Hu, S. GuoAtomically FeN2 moieties dispersed on mesoporous carbon: a new atomic catalyst for efficient oxygen reduction catalysis. Nano Energy, 35 (2017) 9-16
|
[25] |
X. Chen, F. Li, N. Zhang, L. An, D. XiaMechanism of oxygen reduction reaction catalyzed by Fe(Co)-Nx/C. Phys. Chem. Chem. Phys., 15 (2013) 19330-19336 doi: 10.1039/c3cp52802b
|
[26] |
S. Kattel, P. Atanassov, B. KieferAdensity functional theory study of oxygen reduction reaction on non-PGM Fe-Nx-C electrocatalysts. Phys. Chem. Chem. Phys., 16 (2014) 13800-13806 doi: 10.1039/c4cp01634c
|
[27] |
J. Zhang, Y. Wang, Y. Wang, M. ZhangCatalytic activity for oxygen reduction reaction on CoN2 embedded graphene: a density functional theory study. J.Electrochem. Soc., 164 (2017) F1122-F1129 doi: 10.1149/2.1031712jes
|
[28] |
X. Zhang, Z. Yang, Z. Lu, W. WangBifunctional CoNx embedded graphene electrocatalysts for OER and ORR: a theoretical evaluation. Carbon, 130 (2018) 112-119 doi: 10.1159/000489924
|
[29] |
H. Xu, D. Cheng, D. Cao, X.C. ZengAuniversal principle for a rational design of single-atom electrocatalysts. Nat. Catal., 1 (2018) 339-348 doi: 10.1038/s41929-018-0063-z
|
[30] |
S. Lin, H. Xu, Y. Wang, X.C. Zeng, Z. ChenDirectly predicting limiting potentials from easily obtainable physical properties of graphene-supported single-atom electrocatalysts by machine learning. J.Mater. Chem., 8 (2020) 5663-5670 doi: 10.1039/c9ta13404b
|
[31] |
J. Li, S. Chen, N. Yang, M. Deng, S. Ibraheem, J. Deng, J. Li, L. Li, Z. WeiUltrahigh-loading zinc single-atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media. Angew. Chem. Int. Ed., 58 (2019) 7035-7039 doi: 10.1002/anie.201902109
|
[32] |
L. Hu, F. Yu, F. Wang, S. Yang, B. Peng, L. Chen, G. Wang, J. Hou, B. Dai, Z.-Q. TianOverwhelming electrochemical oxygen reduction reaction of zinc-nitrogen-carbon from biomass resource chitosan via a facile carbon bath method. Chin. Chem. Lett., 31 (2020) 1207-1212
|
[33] |
M.D. Hossain, Z. Liu, M. Zhuang, X. Yan, G.-L. Xu, C.A. Gadre, A. Tyagi, I.H. Abidi, C.-J. Sun, H. Wong, A. Guda, Y. Hao, X. Pan, K. Amine, Z. LuoRational design of graphene-supported single atom catalysts for hydrogen evolution reaction. Adv. Energy Mater., 9 (2019) 1803689 doi: 10.1002/aenm.201803689
|
[34] |
W.I. Choi, B.C. Wood, E. Schwegler, T. OgitsuCombinatorial search for high-activity hydrogen catalysts based on transition-metal-embedded graphitic carbons. Adv. Energy Mater., 5 (2015) 1501423 doi: 10.1002/aenm.201501423
|
[35] |
G. Kresse, J. FurthmüllerEfficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B, 54 (1996) 11169-11186
|
[36] |
G. Kresse, J. FurthmüllerEfficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci., 6 (1996) 15-50
|
[37] |
P.E. BlöchlProjector augmented-wave method. Phys. Rev. B, 50 (1994) 17953-17979
|
[38] |
J.P. Perdew, K. Burke, M. ErnzerhofGeneralized gradient approximation made simple. Phys. Rev. Lett., 77 (1996) 3865-3868
|
[39] |
. NIST computational Chemistry comparison and Benchmark database (2020)
|
[40] |
10.1145/2939672.2939785 |
[41] |
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. DubourgScikit-learn: machine learning in python. J.Mach. Learn. Res., 12 (2011) 2825-2830
|
[42] |
L. BreimanRandom forests. Mach. Learn., 45 (2001) 5-32
|
[43] |
J. Zhang, L. Liu, W. Liu, M. ZhangCatalytic activity for oxygen reduction reaction on CoN2-graphene: a density functional theory study. J.Electrochem. Soc., 163 (2016) F160-F165 doi: 10.1149/2.02916503jes
|
[44] |
W. Liang, J. Chen, Y. Liu, S. ChenDensity-functional-theory calculation analysis of active sites for four-electron reduction of O2 on Fe/N-doped graphene. ACS Catal., 4 (2014) 4170-4177 doi: 10.1021/cs501170a
|
[45] |
H.-C. Huang, J. Li, Y. Zhao, J. Chen, Y.-X. Bu, S.-B. ChengAdsorption energy as a promising single-parameter descriptor for single atom catalysis in the oxygen evolution reaction. J.Mater. Chem., 9 (2021) 6442-6450 doi: 10.1039/d0ta12567a
|
[46] |
H. Lv, H. Guo, K. Guo, H. Lei, W. Zhang, H. Zheng, Z. Liang, R. CaoSubstituent position effect of Co porphyrin on oxygen electrocatalysis. Chin. Chem. Lett., 32 (2021) 2841-2845
|
[47] |
Y. Chen, Y. Yao, Y. Xia, K. Mao, G. Tang, Q. Wu, L. Yang, X. Wang, X. Sun, Z. HuAdvanced Ni-Nx-C single-site catalysts for CO2 electroreduction to CO based on hierarchical carbon nanocages and S-doping. Nano Res., 13 (2020) 2777-2783 doi: 10.1007/s12274-020-2928-0
|
[48] |
A.L. Maulana, A.G. Saputro, Y. Prasetyo, M.H. Mahyuddin, M. Iqbal, H.T. Yudistira, I.G. Wenten, H.K. DipojonoTwo-electron electrochemical reduction of CO2 on B-doped Ni–N–C catalysts: a first-principles study. J.Phys. Chem. C, 125 (2021) 19247-19258 doi: 10.1021/acs.jpcc.1c04986
|
[49] |
H. Song, Y. Li, L. Shang, Z. Tang, T. Zhang, S. LuDesigned controllable nitrogen-doped carbon-dots-loaded mop nanoparticles for boosting hydrogen evolution reaction in alkaline medium. Nano Energy, 72 (2020) 104730
|
[50] |
H.-Y. Su, K. Sun, W.-Q. Wang, Z. Zeng, F. Calle-Vallejo, W.-X. LiEstablishing and understanding adsorption-energy scaling relations with negative slopes. J.Phys. Chem. Lett., 7 (2016) 5302-5306 doi: 10.1021/acs.jpclett.6b02430
|