Citation: | Zhang Teng, Zhang Long, Hou Yanglong. MXenes: Synthesis strategies and lithium-sulfur battery applications[J]. eScience, 2022, 2(2): 164-182. doi: 10.1016/j.esci.2022.02.010 |
[1] |
A. Manthiram, Y.Z. Fu, S.H. Chung, C.X. Zu, Y.S. SuRechargeable lithium-sulfur batteries. Chem. Rev., 114 (2014) 11751-11787 doi: 10.1021/cr500062v
|
[2] |
T. Li, X. Bai, U. Gulzar, Y.J. Bai, C. Capiglia, W. Deng, X.F. Zhou, Z.P. Liu, Z.F. Feng, R. Proietti ZaccariaAcomprehensive understanding of lithium–sulfur battery technology. Adv. Funct. Mater., 29 (2019) 1901730 doi: 10.1002/adfm.201901730
|
[3] |
Z. Ali, T. Zhang, M. Asif, L.N. Zhao, Y. Yu, Y.L. HouTransition metal chalcogenide anodes for sodium storage. Mater. Today, 35 (2020) 131-167
|
[4] |
L.N. Zhao, T. Zhang, H.L. Zhao, Y.L. HouPolyanion-type electrode materials for advanced sodium-ion batteries. Mater. Today Nano, 10 (2020) 100072
|
[5] |
J.B. Goodenough, K.S. ParkThe Li-ion rechargeable battery: a perspective. J.Am. Chem. Soc., 135 (2013) 1167-1176 doi: 10.1021/ja3091438
|
[6] |
T. Zhang, L. Zhang, L.N. Zhao, X.X. Huang, W. Li, T. Li, T. Shen, S.N. Sun, Y.L. HouFree-standing, foldable V2O3/multichannel carbon nanofibers electrode for flexible Li-ion batteries with ultralong lifespan. Small, 16 (2020) 2005302 doi: 10.1002/smll.202005302
|
[7] |
M.S. WhittinghamLithium batteries and cathode materials. Chem. Rev., 104 (2004) 4271-4301
|
[8] |
C.P. Grey, J.M. TarasconSustainability and in situ monitoring in battery development. Nat. Mater., 16 (2016) 45-56
|
[9] |
H. Li, Z.X. Wang, L.Q. Chen, X.J. HuangResearch on advanced materials for Li-ion batteries. Adv. Mater., 21 (2009) 4593-4607 doi: 10.1002/adma.200901710
|
[10] |
S. Urbonaite, T. Poux, P. NovákProgress towards commercially viable Li-S battery cells. Adv. Energy Mater., 5 (2015) 1500118 doi: 10.1002/aenm.201500118
|
[11] |
M. Hagen, D. Hanselmann, K. Ahlbrecht, R. Maça, D. Gerber, J. TübkeLithium-sulfur cells: the gap between the state-of-the-art and the requirements for high energy battery cells. Adv. Energy Mater., 5 (2015) 1401986 doi: 10.1002/aenm.201401986
|
[12] |
L. Zhang, Z.X. Chen, N.C. Dongfang, M.X. Li, C.Z. Diao, Q.S. Wu, X. Chi, P.L. Jiang, Z.D. Zhao, L. Dong, R.C. Che, K.P. Loh, H.B. LuNickel–cobalt double hydroxide as a multifunctional mediator for ultrahigh-rate and ultralong-life Li–S batteries. Adv. Energy Mater., 8 (2018) 1802431 doi: 10.1002/aenm.201802431
|
[13] |
L. Zhang, Y.C. Liu, Z.D. Zhao, P.L. Jiang, T. Zhang, M.X. Li, S.X. Pan, T.Y. Tang, T.Q. Wu, P.Y. Liu, Y.L. Hou, H.B. LuEnhanced polysulfide regulation via porous catalytic V2O3/V8C7 heterostructures derived from metal-organic frameworks toward high-performance Li-S batteries. ACS Nano, 14 (2020) 8495-8507 doi: 10.1021/acsnano.0c02762
|
[14] |
Y. Yang, G.Y. Zheng, Y. CuiNanostructured sulfur cathodes. Chem. Soc. Rev., 42 (2013) 3018-3032 doi: 10.1039/c2cs35256g
|
[15] |
Z.W. Seh, Y.M. Sun, Q.F. Zhang, Y. CuiDesigning high-energy lithium-sulfur batteries. Chem. Soc. Rev., 45 (2016) 5605-5634
|
[16] |
R.P. Fang, S.Y. Zhao, Z.H. Sun, D.W. Wang, H.M. Cheng, F. LiMore reliable lithium-sulfur batteries: status, solutions and prospects. Adv. Mater., 29 (2017) 1606823 doi: 10.1002/adma.201606823
|
[17] |
A. Manthiram, S.H. Chung, C.X. ZuLithium-sulfur batteries: progress and prospects. Adv. Mater., 27 (2015) 1980-2006 doi: 10.1002/adma.201405115
|
[18] |
T.Y. Tang, T. Zhang, W. Li, X.X. Huang, X.B. Wang, H.L. Qiu, Y.L. HouMesoporous N-doped graphene prepared by a soft-template method with high performance in Li-S batteries. Nanoscale, 11 (2019) 7440-7446 doi: 10.1039/c8nr09495k
|
[19] |
C.F. Zhang, L.F. Cui, S. Abdolhosseinzadeh, J. HeierTwo-dimensional MXenes for lithium-sulfur batteries. InfoMat, 2 (2020) 613-638 doi: 10.1002/inf2.12080
|
[20] |
T.Y. Wang, K. Kretschmer, S. Choi, H. Pang, H.G. Xue, G.X. WangFabrication methods of porous carbon materials and separator membranes for lithium-sulfur batteries: development and future perspectives. Small Methods, 1 (2017) 1700089 doi: 10.1002/smtd.201700089
|
[21] |
R.G. Cao, W. Xu, D.P. Lv, J. Xiao, J.-G. ZhangAnodes for rechargeable lithium-sulfur batteries. Adv. Energy Mater., 5 (2015) 1402273 doi: 10.1002/aenm.201402273
|
[22] |
T.Y. Tang, T. Zhang, L.N. Zhao, B. Zhang, W. Li, J.J. Xu, T. Li, L. Zhang, H.L. Qiu, Y.L. HouMultifunctional V3S4-nanowire/graphene composites for high performance Li-S batteries. Sci. China Mater., 63 (2020) 1910-1919 doi: 10.1007/s40843-020-1313-6
|
[23] |
Y. Son, J.-S. Lee, Y. Son, J.-H. Jang, J. ChoRecent advances in lithium sulfide cathode materials and their use in lithium sulfur batteries. Adv. Energy Mater., 5 (2015) 1500110 doi: 10.1002/aenm.201500110
|
[24] |
T. Zhang, L. Zhang, L.N. Zhao, X.X. Huang, Y.L. HouCatalytic effects in the cathode of Li-S batteries: accelerating polysulfides redox conversion. Energy Chem., 2 (2020) 100036
|
[25] |
L. Borchardt, M. Oschatz, S. KaskelCarbon Materials for lithium sulfur batteries-ten critical questions. Chem. Eur. J., 22 (2016) 7324-7351 doi: 10.1002/chem.201600040
|
[26] |
M. Liu, N.P. Deng, J.G. Ju, L.L. Fan, L.Y. Wang, Z.J. Li, H.J. Zhao, G. Yang, W.M. Kang, J. Yan, B.W. ChengAreview: electrospun nanofiber materials for lithium-sulfur batteries. Adv. Funct. Mater., 29 (2019) 1905467 doi: 10.1002/adfm.201905467
|
[27] |
Z. Wei Seh, W.Y. Li, J.J. Cha, G.Y. Zheng, Y. Yang, M.T. McDowell, P.C. Hsu, Y. CuiSulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun., 4 (2013), p. 1331
|
[28] |
J.J. Park, B.-C. Yu, J.S. Park, J.W. Choi, C. Kim, Y.-E. Sung, J.B. GoodenoughTungsten disulfide catalysts supported on a carbon cloth interlayer for high performance Li-S battery. Adv. Energy Mater., 7 (2017) 1602567 doi: 10.1002/aenm.201602567
|
[29] |
H.J. Peng, G. Zhang, X. Chen, Z.W. Zhang, W.T. Xu, J.Q. Huang, Q. ZhangEnhanced electrochemical kinetics on conductive polar mediators for lithium-sulfur batteries. Angew. Chem. Int. Ed., 55 (2016) 12990-12995 doi: 10.1002/anie.201605676
|
[30] |
Y.F. Luo, N.N. Luo, W.B. Kong, H.C. Wu, K. Wang, S.S. Fan, W.H. Duan, J.P. WangMultifunctional interlayer based on molybdenum diphosphide catalyst and carbon nanotube film for lithium-sulfur batteries. Small, 14 (2018) 1702853 doi: 10.1002/smll.201702853
|
[31] |
H. Lin, X.G. Wang, L.D. Yu, Y. Chen, J.L. ShiTwo-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett., 17 (2017) 384-391 doi: 10.1021/acs.nanolett.6b04339
|
[32] |
J.R. Ran, G.P. Gao, F.T. Li, T.Y. Ma, A.J. Du, S.Z. QiaoTi3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun., 8 (2017) 13907
|
[33] |
S.S. Zhao, X. Meng, K. Zhu, F. Du, G. Chen, Y.J. Wei, Y. Gogotsi, Y. GaoLi-ion uptake and increase in interlayer spacing of Nb4C3 MXene. Energy Stor. Mater., 8 (2017) 42-48
|
[34] |
Q.Z. Tao, M. Dahlqvist, J. Lu, S. Kota, R. Meshkian, J. Halim, J. Palisaitis, L. Hultman, M.W. Barsoum, P.O.A. Persson, J. RosenTwo-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nat. Commun., 8 (2017) 14949
|
[35] |
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. BarsoumTwo-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater., 23 (2011) 4248-4253 doi: 10.1002/adma.201102306
|
[36] |
M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall'Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, Y. GogotsiCation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 341 (2013) 1502-1505 doi: 10.1126/science.1241488
|
[37] |
D. Er, J. Li, M. Naguib, Y. Gogotsi, V.B. ShenoyTi3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl. Mater. Interfaces, 6 (2014) 11173-11179 doi: 10.1021/am501144q
|
[38] |
H.-W. Wang, M. Naguib, K. Page, D.J. Wesolowski, Y. GogotsiResolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function. Chem. Mater., 28 (2015) 349-359
|
[39] |
M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater., 26 (2014) 992-1005 doi: 10.1002/adma.201304138
|
[40] |
B. Anasori, M.R. Lukatskaya, Y. Gogotsi2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater., 2 (2017) 16098
|
[41] |
J.B. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta, T. Gemming, H. Liu, Z.F. Liu, M.H. RummeliApplications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev., 48 (2019) 72-133 doi: 10.1039/c8cs00324f
|
[42] |
N.J. Chen, W.Q. Yang, C.F. ZhangPerspectives on preparation of two-dimensional MXenes. Sci. Technol. Adv. Mater., 22 (2021) 917-930 doi: 10.1080/14686996.2021.1972755
|
[43] |
S. Abdolhosseinzadeh, X.T. Jiang, H. Zhang, J.S. Qiu, C.F. ZhangPerspectives on solution processing of two-dimensional MXenes. Mater. Today, 48 (2021) 214-240
|
[44] |
D.B. Xiong, X.F. Li, Z.M. Bai, S.G. LuRecent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small, 14 (2018) 1703419 doi: 10.1002/smll.201703419
|
[45] |
V.M. Hong Ng, H. Huang, K. Zhou, P.S. Lee, W.X. Que, J.Z. Xu, L.B. KongRecent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. J.Mater. Chem., 5 (2017) 3039-3068
|
[46] |
Z.B. Xiao, Z.L. Li, X.P. Meng, R.H. WangMXene-engineered lithium–sulfur batteries. J.Mater. Chem., 7 (2019) 22730-22743 doi: 10.1039/c9ta08600e
|
[47] |
B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R.C. Kent, Y. Gogotsi, M.W. BarsoumTwo-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano, 9 (2015) 9507-9516 doi: 10.1021/acsnano.5b03591
|
[48] |
M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. BarsoumTwo-dimensional transition metal carbides. ACS Nano, 6 (2012) 1322-1331 doi: 10.1021/nn204153h
|
[49] |
G. Deysher, C.E. Shuck, K. Hantanasirisakul, N.C. Frey, A.C. Foucher, K. Maleski, A. Sarycheva, V.B. Shenoy, E.A. Stach, B. Anasori, Y. GogotsiSynthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals. ACS Nano, 14 (2020) 204-217 doi: 10.1021/acsnano.9b07708
|
[50] |
N. Li, J.H. Peng, W.-J. Ong, T.T. Ma, Arramel, P. Zhang, J.Z. Jiang, X.F. Yuan, C.F. ZhangMXenes: an emerging platform for wearable electronics and looking beyond. Matter, 4 (2021) 377-407
|
[51] |
J. Zhou, X.H. Zha, F.Y. Chen, Q. Ye, P. Eklund, S. Du, Q. HuangAtwo-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angew. Chem. Int. Ed., 55 (2016) 5008-5013 doi: 10.1002/anie.201510432
|
[52] |
M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman, Y. Gogotsi, M.W. BarsoumNew two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J.Am. Chem. Soc., 135 (2013) 15966-15969 doi: 10.1021/ja405735d
|
[53] |
M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. BarsoumConductive two-dimensional titanium carbide 'clay' with high volumetric capacitance. Nature, 516 (2014) 78-81 doi: 10.1038/nature13970
|
[54] |
J. Halim, S. Kota, M.R. Lukatskaya, M. Naguib, M.-Q. Zhao, E.J. Moon, J. Pitock, J. Nanda, S.J. May, Y. Gogotsi, M.W. BarsoumSynthesis and characterization of 2D molybdenum carbide (MXene). Adv. Funct. Mater., 26 (2016) 3118-3127 doi: 10.1002/adfm.201505328
|
[55] |
J. Halim, M.R. Lukatskaya, K.M. Cook, J. Lu, C.R. Smith, L.A. Naslund, S.J. May, L. Hultman, Y. Gogotsi, P. Eklund, M.W. BarsoumTransparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater., 26 (2014) 2374-2381 doi: 10.1021/cm500641a
|
[56] |
L.B. Wang, H. Zhang, B. Wang, C.J. Shen, C.X. Zhang, Q.K. Hu, A.G. Zhou, B.Z. LiuSynthesis and electrochemical performance of Ti3C2Tx with hydrothermal process. Electron. Mater. Lett., 12 (2016) 702-710
|
[57] |
P. Urbankowski, B. Anasori, T. Makaryan, D. Er, S. Kota, P.L. Walsh, M. Zhao, V.B. Shenoy, M.W. Barsoum, Y. GogotsiSynthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale, 8 (2016) 11385-11391
|
[58] |
M. Ghidiu, M. Naguib, C. Shi, O. Mashtalir, L.M. Pan, B. Zhang, J. Yang, Y. Gogotsi, S.J. Billinge, M.W. BarsoumSynthesis and characterization of two-dimensional Nb4C3 (MXene). Chem. Commun., 50 (2014) 9517-9520 doi: 10.1039/C4CC03366C
|
[59] |
F.Y. Chang, C.S. Li, J. Yang, H. Tang, M.Q. XueSynthesis of a new graphene-like transition metal carbide by de-intercalating Ti3AlC2. Mater. Lett., 109 (2013) 295-298
|
[60] |
M. Alhabeb, K. Maleski, T.S. Mathis, A. Sarycheva, C.B. Hatter, S. Uzun, A. Levitt, Y. GogotsiSelective etching of silicon from Ti3SiC2 (MAX) to obtain 2D titanium carbide (MXene). Angew. Chem. Int. Ed., 57 (2018) 5444-5448 doi: 10.1002/anie.201802232
|
[61] |
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, Y. GogotsiElectromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 353 (2016) 1137-1140 doi: 10.1126/science.aag2421
|
[62] |
R. Meshkian, M. Dahlqvist, J. Lu, B. Wickman, J. Halim, J. Thörnberg, Q. Tao, S. Li, S. Intikhab, J. Snyder, M.W. Barsoum, M. Yildizhan, J. Palisaitis, L. Hultman, P.O.Å. Persson, J. RosenW-based atomic laminates and their 2D derivative W1.33C MXene with vacancy ordering. Adv. Mater., 30 (2018) 1706409 doi: 10.1002/adma.201706409
|
[63] |
A.H. Feng, Y. Yu, Y. Wang, F. Jiang, Y. Yu, L. Mi, L.X. SongTwo-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Mater. Des., 114 (2017) 161-166
|
[64] |
L.H. Karlsson, J. Birch, J. Halim, M.W. Barsoum, P.O. PerssonAtomically resolved structural and chemical investigation of single MXene sheets. Nano Lett., 15 (2015) 4955-4960 doi: 10.1021/acs.nanolett.5b00737
|
[65] |
C. Xu, L.B. Wang, Z.B. Liu, L. Chen, J.K. Guo, N. Kang, X.L. Ma, H.M. Cheng, W.C. RenLarge-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater., 14 (2015) 1135-1141 doi: 10.1038/nmat4374
|
[66] |
D.C. Geng, X.X. Zhao, Z.X. Chen, W.W. Sun, W. Fu, J.Y. Chen, W. Liu, W. Zhou, K.P. LohDirect synthesis of large-area 2D Mo2C on in situ grown graphene. Adv. Mater., 29 (2017) 1700072 doi: 10.1002/adma.201700072
|
[67] |
X. Liang, A. Garsuch, L.F. NazarSulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. Int. Ed., 54 (2015) 3907-3911 doi: 10.1002/anie.201410174
|
[68] |
Y.F. Dong, S.H. Zheng, J.Q. Qin, X.J. Zhao, H.D. Shi, X.H. Wang, J. Chen, Z.S. WuAll-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li-S batteries. ACS Nano, 12 (2018) 2381-2388 doi: 10.1021/acsnano.7b07672
|
[69] |
H. Tang, W.L. Li, L.M. Pan, C.P. Cullen, Y. Liu, A. Pakdel, D.H. Long, J. Yang, N. McEvoy, G.S. Duesberg, V. Nicolosi, C.F. ZhangIn situ formed protective barrier enabled by sulfur@titanium carbide (MXene) ink for achieving high-capacity, long lifetime Li-S batteries. Adv. Sci., 5 (2018) 1800502 doi: 10.1002/advs.201800502
|
[70] |
H. Tang, W.L. Li, L.M. Pan, K.J. Tu, F. Du, T. Qiu, J. Yang, C.P. Cullen, N. McEvoy, C.F. ZhangArobust, freestanding MXene-sulfur conductive paper for long-lifetime Li-S batteries. Adv. Funct. Mater., 29 (2019) 1901907 doi: 10.1002/adfm.201901907
|
[71] |
T.K. Zhao, P.F. Zhai, Z.H. Yang, J.X. Wang, L.B. Qu, F.G. Du, J.T. WangSelf-supporting Ti3C2Tx foam/S cathodes with high sulfur loading for high-energy-density lithium-sulfur batteries. Nanoscale, 10 (2018) 22954-22962 doi: 10.1039/c8nr08642g
|
[72] |
Z.B. Xiao, Z. Yang, Z.L. Li, P.Y. Li, R.H. WangSynchronous gains of areal and volumetric capacities in lithium-sulfur batteries promised by flower-like porous Ti3C2Tx matrix. ACS Nano, 13 (2019) 3404-3412 doi: 10.1021/acsnano.8b09296
|
[73] |
Y.Z. Song, Z.T. Sun, Z.D. Fan, W.L. Cai, Y.L. Shao, G. Sheng, M.L. Wang, L.X. Song, Z.F. Liu, Q. Zhang, J.Y. SunRational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li-S chemistry. Nano Energy, 70 (2020) 104555
|
[74] |
W.Z. Bao, L. Liu, C.Y. Wang, S. Choi, D. Wang, G.X. WangFacile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries. Adv. Energy Mater., 8 (2018) 1702485 doi: 10.1002/aenm.201702485
|
[75] |
Z. Pourali, M.R. Yaftian, M.R. SoviziLi2S/transition metal carbide composite as cathode material for high performance lithium-sulfur batteries. Mater. Chem. Phys., 217 (2018) 117-124
|
[76] |
W.Z. Bao, D.W. Su, W.X. Zhang, X. Guo, G.X. Wang3D metal carbide@mesoporous carbon hybrid architecture as a new polysulfide reservoir for lithium-sulfur batteries. Adv. Funct. Mater., 26 (2016) 8746-8756 doi: 10.1002/adfm.201603704
|
[77] |
W.Z. Bao, X.Q. Xie, J. Xu, X. Guo, J.J. Song, W. Wu, D.W. Su, G.X. WangConfined sulfur in 3D MXene/reduced graphene oxide hybrid nanosheets for lithium-sulfur battery. Chem. Eur. J., 23 (2017) 12613-12619 doi: 10.1002/chem.201702387
|
[78] |
H.Y. Zhou, Z.Y. Sui, K. Amin, L.W. Lin, H.Y. Wang, B.H. HanInvestigating the electrocatalysis of a Ti3C2/carbon hybrid in polysulfide conversion of lithium-sulfur batteries. ACS Appl. Mater. Interfaces, 12 (2020) 13904-13913 doi: 10.1021/acsami.9b23006
|
[79] |
R.Y. Gan, N. Yang, Q. Dong, N. Fu, R. Wu, C.P. Li, Q. Liao, J. Li, Z.D. WeiEnveloping ultrathin Ti3C2 nanosheets on carbon fibers: a high-density sulfur loaded lithium-sulfur battery cathode with remarkable cycling stability. J.Mater. Chem., 8 (2020) 7253-7260 doi: 10.1039/d0ta02374d
|
[80] |
X. Liang, Y. Rangom, C.Y. Kwok, Q. Pang, L.F. NazarInterwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Adv. Mater., 29 (2017) 1603040 doi: 10.1002/adma.201603040
|
[81] |
L.P. Lv, C.F. Guo, W. Sun, Y. WangStrong surface-bound sulfur in carbon nanotube bridged hierarchical Mo2C-based MXene nanosheets for lithium-sulfur batteries. Small, 15 (2019) 1804338
|
[82] |
Q. Qi, H. Zhang, P.G. Zhang, Z.H. Bao, W. Zheng, W.B. Tian, W. Zhang, M. Zhou, Z.M. SunSelf-assembled sandwich hollow porous carbon sphere @ MXene composites as superior LiS battery cathode hosts. 2D Mater., 7 (2020) 025049 doi: 10.1088/2053-1583/ab79c1
|
[83] |
J.J. Song, X. Guo, J.Q. Zhang, Y. Chen, C.Y. Zhang, L.Q. Luo, F.Y. Wang, G.X. WangRational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium-sulfur batteries. J.Mater. Chem., 7 (2019) 6507-6513 doi: 10.1039/c9ta00212j
|
[84] |
J.L. Wang, Z. Zhang, X.F. Yan, S.L. Zhang, Z.H. Wu, Z.H. Zhuang, W.-Q. HanRational design of porous N-Ti3C2 MXene@CNT microspheres for high cycling stability in Li-S battery. Nano-Micro Lett., 12 (2019) 1-14
|
[85] |
J.T. Wang, T.K. Zhao, Z.H. Yang, Y. Chen, Y. Liu, J.X. Wang, P.F. Zhai, W.J. WuMXene-based Co, N-codoped porous carbon nanosheets regulating polysulfides for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces, 11 (2019) 38654-38662 doi: 10.1021/acsami.9b11988
|
[86] |
C. Du, J. Wu, P. Yang, S.Y. Li, J.M. Xu, K.X. SongEmbedding S@TiO2 nanospheres into MXene layers as high rate cyclability cathodes for lithium-sulfur batteries. Electrochim. Acta, 295 (2019) 1067-1074
|
[87] |
H. Zhang, Q. Qi, P.G. Zhang, W. Zheng, J. Chen, A.G. Zhou, W.B. Tian, W. Zhang, Z.M. SunSelf-assembled 3D MnO2 nanosheets@delaminated-Ti3C2 aerogel as sulfur host for lithium-sulfur battery cathodes. ACS Appl. Energy Mater., 2 (2018) 705-714
|
[88] |
X.-T. Gao, Y. Xie, X.-D. Zhu, K.-N. Sun, X.-M. Xie, Y.-T. Liu, J.-Y. Yu, B. DingUltrathin MXene nanosheets decorated with TiO2 quantum dots as an efficient sulfur host toward fast and stable Li-S batteries. Small, 14 (2018) 1802443 doi: 10.1002/smll.201802443
|
[89] |
H. Pan, X.X. Huang, R. Zhang, D. Wang, Y.T. Chen, X.M. Duan, G.W. WenTitanium oxide-Ti3C2 hybrids as sulfur hosts in lithium-sulfur battery: fast oxidation treatment and enhanced polysulfide adsorption ability. Chem. Eng. J., 358 (2019) 1253-1261
|
[90] |
Z.G. Wang, K. Yu, Y. Feng, R.J. Qi, J. Ren, Z.Q. ZhuVO2(p)-V2C(MXene) grid structure as a lithium polysulfide catalytic host for high-performance Li-S battery. ACS Appl. Mater. Interfaces, 11 (2019) 44282-44292 doi: 10.1021/acsami.9b15586
|
[91] |
Y. Yao, W.L. Feng, M.L. Chen, X.W. Zhong, X.J. Wu, H.B. Zhang, Y. YuBoosting the electrochemical performance of Li-S batteries with a dual polysulfides confinement strategy. Small, 14 (2018) 1802516 doi: 10.1002/smll.201802516
|
[92] |
X.W. Wang, C.H. Yang, X.H. Xiong, G.L. Chen, M.Z. Huang, J.-H. Wang, Y. Liu, M.L. Liu, K. HuangArobust sulfur host with dual lithium polysulfide immobilization mechanism for long cycle life and high capacity Li-S batteries. Energy Stor. Mater., 16 (2019) 344-353
|
[93] |
Z.B. Xiao, Z.L. Li, P.Y. Li, X.P. Meng, R.H. WangUltrafine Ti3C2 MXene nanodots-interspersed nanosheet for high-energy-density lithium-sulfur batteries. ACS Nano, 13 (2019) 3608-3617 doi: 10.1021/acsnano.9b00177
|
[94] |
Y.L. Zhang, Z.J. Mu, C. Yang, Z.K. Xu, S. Zhang, X.Y. Zhang, Y.J. Li, J.P. Lai, Z.H. Sun, Y. Yang, Y.G. Chao, C.J. Li, X.X. Ge, W.X. Yang, S.J. GuoRational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium-sulfur batteries. Adv. Funct. Mater., 28 (2018)
|
[95] |
Z. Chen, X.B. Yang, X. Qiao, N. Zhang, C.F. Zhang, Z.L. Ma, H.Q. WangLithium-ion-engineered interlayers of V2C MXene as advanced host for flexible sulfur cathode with enhanced rate performance. J.Phys. Chem. Lett., 11 (2020) 885-890 doi: 10.1021/acs.jpclett.9b03827
|
[96] |
D. Guo, F.W. Ming, H. Su, Y.Q. Wu, W. Wahyudi, M.L. Li, M.N. Hedhili, G. Sheng, L.-J. Li, H.N. Alshareef, Y.X. Li, Z.P. LaiMXene based self-assembled cathode and antifouling separator for high-rate and dendrite-inhibited Li-S battery. Nano Energy, 61 (2019) 478-485
|
[97] |
G.Y. Jiang, N. Zheng, X. Chen, G.Y. Ding, Y.H. Li, F.G. Sun, Y.S. LiIn-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries. Chem. Eng. J., 373 (2019) 1309-1318
|
[98] |
L. Jiao, C. Zhang, C.N. Geng, S.C. Wu, H. Li, W. Lv, Y. Tao, Z.J. Chen, G.M. Zhou, J. Li, G.W. Ling, Y. Wan, Q.H. YangCapture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium–sulfur batteries. Adv. Energy Mater., 9 (2019) 1900219 doi: 10.1002/aenm.201900219
|
[99] |
N. Li, W.Y. Cao, Y.W. Liu, H.Q. Ye, K. HanImpeding polysulfide shuttling with a three-dimensional conductive carbon nanotubes/MXene framework modified separator for highly efficient lithium-sulfur batteries. Colloids Surf. A Physicochem. Eng. Asp., 573 (2019) 128-136
|
[100] |
N. Li, Y. Xie, S.T. Peng, X. Xiong, K. HanUltra-lightweight Ti3C2Tx MXene modified separator for Li–S batteries: thickness regulation enabled polysulfide inhibition and lithium ion transportation. J.Energy Chem., 42 (2020) 116-125
|
[101] |
J.T. Wang, P.F. Zhai, T.K. Zhao, M.J. Li, Z.H. Yang, H.Q. Zhang, J.J. HuangLaminar MXene-nafion-modified separator with highly inhibited shuttle effect for long-life lithium-sulfur batteries. Electrochim. Acta, 320 (2019) 134558
|
[102] |
L.X. Yin, G.Y. Xu, P. Nie, H. Dou, X.G. ZhangMXene debris modified eggshell membrane as separator for high-performance lithium-sulfur batteries. Chem. Eng. J., 352 (2018) 695-703
|
[103] |
C. Lin, W.K. Zhang, L. Wang, Z.G. Wang, W. Zhao, W.H. Duan, Z.G. Zhao, B. Liu, J. JinAfew-layered Ti3C2 nanosheet/glass fiber composite separator as a lithium polysulphide reservoir for high-performance lithium-sulfur batteries. J.Mater. Chem., 4 (2016) 5993-5998
|
[104] |
P. Liu, L. Qu, X.L. Tian, Y.K. Yi, J.X. Xia, T. Wang, J.Z. Nan, P. Yang, T. Wang, B.R. Fang, M.T. Li, B.L. YangTi3C2Tx/graphene oxide free-standing membranes as modified separators for lithium-sulfur batteries with enhanced rate performance. ACS Appl. Energy Mater., 3 (2020) 2708-2718 doi: 10.1021/acsaem.9b02385
|
[105] |
J.J. Song, D.W. Su, X.Q. Xie, X. Guo, W.Z. Bao, G.J. Shao, G.X. WangImmobilizing polysulfides with MXene-functionalized separators for stable lithium-sulfur batteries. ACS Appl. Mater. Interfaces, 8 (2016) 29427-29433 doi: 10.1021/acsami.6b09027
|
[106] |
B. Li, D. Zhang, Y. Liu, Y.X. Yu, S.M. Li, S.B. YangFlexible Ti3C2 MXene-lithium film with lamellar structure for ultrastable metallic lithium anodes. Nano Energy, 39 (2017) 654-661
|
[107] |
W.T. Li, Y.F. Zhang, H. Li, Z.J. Chen, T.X. Shang, Z.T. Wu, C. Zhang, J. Li, W. Lv, Y. Tao, Q.H. YangLayered MXene protected lithium metal anode as an efficient polysulfide blocker for lithium-sulfur batteries. Batteries Supercaps, 3 (2020) 1-9
|
[108] |
H.D. Shi, C.J. Zhang, P.F. Lu, Y.F. Dong, P.C. Wen, Z.S. WuConducting and lithiophilic MXene/graphene framework for high-capacity, dendrite-free lithium-metal anodes. ACS Nano, 13 (2019) 14308-14318 doi: 10.1021/acsnano.9b07710
|
[109] |
N. Li, Q.Q. Meng, X.H. Zhu, Z. Li, J.L. Ma, C.X. Huang, J. Song, J. FanLattice constant-dependent anchoring effect of MXenes for lithium-sulfur (Li-S) batteries: a DFT study. Nanoscale, 11 (2019) 8485-8493 doi: 10.1039/c9nr01220f
|