Volume 2 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
Zhang Teng, Zhang Long, Hou Yanglong. MXenes: Synthesis strategies and lithium-sulfur battery applications[J]. eScience, 2022, 2(2): 164-182. doi: 10.1016/j.esci.2022.02.010
Citation: Zhang Teng, Zhang Long, Hou Yanglong. MXenes: Synthesis strategies and lithium-sulfur battery applications[J]. eScience, 2022, 2(2): 164-182. doi: 10.1016/j.esci.2022.02.010

MXenes: Synthesis strategies and lithium-sulfur battery applications

doi: 10.1016/j.esci.2022.02.010
More Information
  • Corresponding author: Long Zhang zhanglong@ustb.edu.cn; Yanglong Hou hou@pku.edu.cn
  • Received Date: 2021-11-13
  • Revised Date: 2022-01-12
  • Accepted Date: 2022-02-28
  • Available Online: 2022-03-04
  • Since their discovery in 2011, the two-dimensional transition-metal carbides, nitrides, and carbonitrides known as MXenes have attracted considerable attention due to their metallic conductivity, mechanical properties, and hydrophilicity, which are closely related to their rich surface terminations. As a result, numerous novel synthesis strategies have been explored and new MXenes have been developed. Some have been applied in the field of energy storage, typically lithium–sulfur batteries (LSBs). This review summarizes recent advances in MXenes for LSBs. We first introduce the structural characterization of these materials, then provide detailed summaries of synthetic methods. Next, we give a comprehensive overview of research progress on MXenes for the cathodes, separators, and anodes in LSBs. Finally, we address challenges and offer perspectives on future directions for research. We hope this review will help researchers gain insight into multifunctional MXenes and their comprehensive applications in LSBs.
  • ● Structures and synthetic strategies of MXenes are illustrated in detail.
    ● Challenges and perspectives of the application of MXenes in lithium-sulfur batteries are presented.
    ● This review discusses the properties and applications of MXenes for lithium-sulfur batteries.
    ● Comprehensive applications of MXenes for cathodes, separators and anodes in lithium-sulfur batteries are discussed.
  • loading
  • [1]
    A. Manthiram, Y.Z. Fu, S.H. Chung, C.X. Zu, Y.S. SuRechargeable lithium-sulfur batteries. Chem. Rev., 114 (2014) 11751-11787 doi: 10.1021/cr500062v
    [2]
    T. Li, X. Bai, U. Gulzar, Y.J. Bai, C. Capiglia, W. Deng, X.F. Zhou, Z.P. Liu, Z.F. Feng, R. Proietti ZaccariaAcomprehensive understanding of lithium–sulfur battery technology. Adv. Funct. Mater., 29 (2019) 1901730 doi: 10.1002/adfm.201901730
    [3]
    Z. Ali, T. Zhang, M. Asif, L.N. Zhao, Y. Yu, Y.L. HouTransition metal chalcogenide anodes for sodium storage. Mater. Today, 35 (2020) 131-167
    [4]
    L.N. Zhao, T. Zhang, H.L. Zhao, Y.L. HouPolyanion-type electrode materials for advanced sodium-ion batteries. Mater. Today Nano, 10 (2020) 100072
    [5]
    J.B. Goodenough, K.S. ParkThe Li-ion rechargeable battery: a perspective. J.Am. Chem. Soc., 135 (2013) 1167-1176 doi: 10.1021/ja3091438
    [6]
    T. Zhang, L. Zhang, L.N. Zhao, X.X. Huang, W. Li, T. Li, T. Shen, S.N. Sun, Y.L. HouFree-standing, foldable V2O3/multichannel carbon nanofibers electrode for flexible Li-ion batteries with ultralong lifespan. Small, 16 (2020) 2005302 doi: 10.1002/smll.202005302
    [7]
    M.S. WhittinghamLithium batteries and cathode materials. Chem. Rev., 104 (2004) 4271-4301
    [8]
    C.P. Grey, J.M. TarasconSustainability and in situ monitoring in battery development. Nat. Mater., 16 (2016) 45-56
    [9]
    H. Li, Z.X. Wang, L.Q. Chen, X.J. HuangResearch on advanced materials for Li-ion batteries. Adv. Mater., 21 (2009) 4593-4607 doi: 10.1002/adma.200901710
    [10]
    S. Urbonaite, T. Poux, P. NovákProgress towards commercially viable Li-S battery cells. Adv. Energy Mater., 5 (2015) 1500118 doi: 10.1002/aenm.201500118
    [11]
    M. Hagen, D. Hanselmann, K. Ahlbrecht, R. Maça, D. Gerber, J. TübkeLithium-sulfur cells: the gap between the state-of-the-art and the requirements for high energy battery cells. Adv. Energy Mater., 5 (2015) 1401986 doi: 10.1002/aenm.201401986
    [12]
    L. Zhang, Z.X. Chen, N.C. Dongfang, M.X. Li, C.Z. Diao, Q.S. Wu, X. Chi, P.L. Jiang, Z.D. Zhao, L. Dong, R.C. Che, K.P. Loh, H.B. LuNickel–cobalt double hydroxide as a multifunctional mediator for ultrahigh-rate and ultralong-life Li–S batteries. Adv. Energy Mater., 8 (2018) 1802431 doi: 10.1002/aenm.201802431
    [13]
    L. Zhang, Y.C. Liu, Z.D. Zhao, P.L. Jiang, T. Zhang, M.X. Li, S.X. Pan, T.Y. Tang, T.Q. Wu, P.Y. Liu, Y.L. Hou, H.B. LuEnhanced polysulfide regulation via porous catalytic V2O3/V8C7 heterostructures derived from metal-organic frameworks toward high-performance Li-S batteries. ACS Nano, 14 (2020) 8495-8507 doi: 10.1021/acsnano.0c02762
    [14]
    Y. Yang, G.Y. Zheng, Y. CuiNanostructured sulfur cathodes. Chem. Soc. Rev., 42 (2013) 3018-3032 doi: 10.1039/c2cs35256g
    [15]
    Z.W. Seh, Y.M. Sun, Q.F. Zhang, Y. CuiDesigning high-energy lithium-sulfur batteries. Chem. Soc. Rev., 45 (2016) 5605-5634
    [16]
    R.P. Fang, S.Y. Zhao, Z.H. Sun, D.W. Wang, H.M. Cheng, F. LiMore reliable lithium-sulfur batteries: status, solutions and prospects. Adv. Mater., 29 (2017) 1606823 doi: 10.1002/adma.201606823
    [17]
    A. Manthiram, S.H. Chung, C.X. ZuLithium-sulfur batteries: progress and prospects. Adv. Mater., 27 (2015) 1980-2006 doi: 10.1002/adma.201405115
    [18]
    T.Y. Tang, T. Zhang, W. Li, X.X. Huang, X.B. Wang, H.L. Qiu, Y.L. HouMesoporous N-doped graphene prepared by a soft-template method with high performance in Li-S batteries. Nanoscale, 11 (2019) 7440-7446 doi: 10.1039/c8nr09495k
    [19]
    C.F. Zhang, L.F. Cui, S. Abdolhosseinzadeh, J. HeierTwo-dimensional MXenes for lithium-sulfur batteries. InfoMat, 2 (2020) 613-638 doi: 10.1002/inf2.12080
    [20]
    T.Y. Wang, K. Kretschmer, S. Choi, H. Pang, H.G. Xue, G.X. WangFabrication methods of porous carbon materials and separator membranes for lithium-sulfur batteries: development and future perspectives. Small Methods, 1 (2017) 1700089 doi: 10.1002/smtd.201700089
    [21]
    R.G. Cao, W. Xu, D.P. Lv, J. Xiao, J.-G. ZhangAnodes for rechargeable lithium-sulfur batteries. Adv. Energy Mater., 5 (2015) 1402273 doi: 10.1002/aenm.201402273
    [22]
    T.Y. Tang, T. Zhang, L.N. Zhao, B. Zhang, W. Li, J.J. Xu, T. Li, L. Zhang, H.L. Qiu, Y.L. HouMultifunctional V3S4-nanowire/graphene composites for high performance Li-S batteries. Sci. China Mater., 63 (2020) 1910-1919 doi: 10.1007/s40843-020-1313-6
    [23]
    Y. Son, J.-S. Lee, Y. Son, J.-H. Jang, J. ChoRecent advances in lithium sulfide cathode materials and their use in lithium sulfur batteries. Adv. Energy Mater., 5 (2015) 1500110 doi: 10.1002/aenm.201500110
    [24]
    T. Zhang, L. Zhang, L.N. Zhao, X.X. Huang, Y.L. HouCatalytic effects in the cathode of Li-S batteries: accelerating polysulfides redox conversion. Energy Chem., 2 (2020) 100036
    [25]
    L. Borchardt, M. Oschatz, S. KaskelCarbon Materials for lithium sulfur batteries-ten critical questions. Chem. Eur. J., 22 (2016) 7324-7351 doi: 10.1002/chem.201600040
    [26]
    M. Liu, N.P. Deng, J.G. Ju, L.L. Fan, L.Y. Wang, Z.J. Li, H.J. Zhao, G. Yang, W.M. Kang, J. Yan, B.W. ChengAreview: electrospun nanofiber materials for lithium-sulfur batteries. Adv. Funct. Mater., 29 (2019) 1905467 doi: 10.1002/adfm.201905467
    [27]
    Z. Wei Seh, W.Y. Li, J.J. Cha, G.Y. Zheng, Y. Yang, M.T. McDowell, P.C. Hsu, Y. CuiSulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun., 4 (2013), p. 1331
    [28]
    J.J. Park, B.-C. Yu, J.S. Park, J.W. Choi, C. Kim, Y.-E. Sung, J.B. GoodenoughTungsten disulfide catalysts supported on a carbon cloth interlayer for high performance Li-S battery. Adv. Energy Mater., 7 (2017) 1602567 doi: 10.1002/aenm.201602567
    [29]
    H.J. Peng, G. Zhang, X. Chen, Z.W. Zhang, W.T. Xu, J.Q. Huang, Q. ZhangEnhanced electrochemical kinetics on conductive polar mediators for lithium-sulfur batteries. Angew. Chem. Int. Ed., 55 (2016) 12990-12995 doi: 10.1002/anie.201605676
    [30]
    Y.F. Luo, N.N. Luo, W.B. Kong, H.C. Wu, K. Wang, S.S. Fan, W.H. Duan, J.P. WangMultifunctional interlayer based on molybdenum diphosphide catalyst and carbon nanotube film for lithium-sulfur batteries. Small, 14 (2018) 1702853 doi: 10.1002/smll.201702853
    [31]
    H. Lin, X.G. Wang, L.D. Yu, Y. Chen, J.L. ShiTwo-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Lett., 17 (2017) 384-391 doi: 10.1021/acs.nanolett.6b04339
    [32]
    J.R. Ran, G.P. Gao, F.T. Li, T.Y. Ma, A.J. Du, S.Z. QiaoTi3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun., 8 (2017) 13907
    [33]
    S.S. Zhao, X. Meng, K. Zhu, F. Du, G. Chen, Y.J. Wei, Y. Gogotsi, Y. GaoLi-ion uptake and increase in interlayer spacing of Nb4C3 MXene. Energy Stor. Mater., 8 (2017) 42-48
    [34]
    Q.Z. Tao, M. Dahlqvist, J. Lu, S. Kota, R. Meshkian, J. Halim, J. Palisaitis, L. Hultman, M.W. Barsoum, P.O.A. Persson, J. RosenTwo-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nat. Commun., 8 (2017) 14949
    [35]
    M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, M.W. BarsoumTwo-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater., 23 (2011) 4248-4253 doi: 10.1002/adma.201102306
    [36]
    M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall'Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, Y. GogotsiCation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 341 (2013) 1502-1505 doi: 10.1126/science.1241488
    [37]
    D. Er, J. Li, M. Naguib, Y. Gogotsi, V.B. ShenoyTi3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl. Mater. Interfaces, 6 (2014) 11173-11179 doi: 10.1021/am501144q
    [38]
    H.-W. Wang, M. Naguib, K. Page, D.J. Wesolowski, Y. GogotsiResolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function. Chem. Mater., 28 (2015) 349-359
    [39]
    M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater., 26 (2014) 992-1005 doi: 10.1002/adma.201304138
    [40]
    B. Anasori, M.R. Lukatskaya, Y. Gogotsi2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater., 2 (2017) 16098
    [41]
    J.B. Pang, R.G. Mendes, A. Bachmatiuk, L. Zhao, H.Q. Ta, T. Gemming, H. Liu, Z.F. Liu, M.H. RummeliApplications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev., 48 (2019) 72-133 doi: 10.1039/c8cs00324f
    [42]
    N.J. Chen, W.Q. Yang, C.F. ZhangPerspectives on preparation of two-dimensional MXenes. Sci. Technol. Adv. Mater., 22 (2021) 917-930 doi: 10.1080/14686996.2021.1972755
    [43]
    S. Abdolhosseinzadeh, X.T. Jiang, H. Zhang, J.S. Qiu, C.F. ZhangPerspectives on solution processing of two-dimensional MXenes. Mater. Today, 48 (2021) 214-240
    [44]
    D.B. Xiong, X.F. Li, Z.M. Bai, S.G. LuRecent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small, 14 (2018) 1703419 doi: 10.1002/smll.201703419
    [45]
    V.M. Hong Ng, H. Huang, K. Zhou, P.S. Lee, W.X. Que, J.Z. Xu, L.B. KongRecent progress in layered transition metal carbides and/or nitrides (MXenes) and their composites: synthesis and applications. J.Mater. Chem., 5 (2017) 3039-3068
    [46]
    Z.B. Xiao, Z.L. Li, X.P. Meng, R.H. WangMXene-engineered lithium–sulfur batteries. J.Mater. Chem., 7 (2019) 22730-22743 doi: 10.1039/c9ta08600e
    [47]
    B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R.C. Kent, Y. Gogotsi, M.W. BarsoumTwo-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano, 9 (2015) 9507-9516 doi: 10.1021/acsnano.5b03591
    [48]
    M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, M.W. BarsoumTwo-dimensional transition metal carbides. ACS Nano, 6 (2012) 1322-1331 doi: 10.1021/nn204153h
    [49]
    G. Deysher, C.E. Shuck, K. Hantanasirisakul, N.C. Frey, A.C. Foucher, K. Maleski, A. Sarycheva, V.B. Shenoy, E.A. Stach, B. Anasori, Y. GogotsiSynthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals. ACS Nano, 14 (2020) 204-217 doi: 10.1021/acsnano.9b07708
    [50]
    N. Li, J.H. Peng, W.-J. Ong, T.T. Ma, Arramel, P. Zhang, J.Z. Jiang, X.F. Yuan, C.F. ZhangMXenes: an emerging platform for wearable electronics and looking beyond. Matter, 4 (2021) 377-407
    [51]
    J. Zhou, X.H. Zha, F.Y. Chen, Q. Ye, P. Eklund, S. Du, Q. HuangAtwo-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angew. Chem. Int. Ed., 55 (2016) 5008-5013 doi: 10.1002/anie.201510432
    [52]
    M. Naguib, J. Halim, J. Lu, K.M. Cook, L. Hultman, Y. Gogotsi, M.W. BarsoumNew two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries. J.Am. Chem. Soc., 135 (2013) 15966-15969 doi: 10.1021/ja405735d
    [53]
    M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. BarsoumConductive two-dimensional titanium carbide 'clay' with high volumetric capacitance. Nature, 516 (2014) 78-81 doi: 10.1038/nature13970
    [54]
    J. Halim, S. Kota, M.R. Lukatskaya, M. Naguib, M.-Q. Zhao, E.J. Moon, J. Pitock, J. Nanda, S.J. May, Y. Gogotsi, M.W. BarsoumSynthesis and characterization of 2D molybdenum carbide (MXene). Adv. Funct. Mater., 26 (2016) 3118-3127 doi: 10.1002/adfm.201505328
    [55]
    J. Halim, M.R. Lukatskaya, K.M. Cook, J. Lu, C.R. Smith, L.A. Naslund, S.J. May, L. Hultman, Y. Gogotsi, P. Eklund, M.W. BarsoumTransparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater., 26 (2014) 2374-2381 doi: 10.1021/cm500641a
    [56]
    L.B. Wang, H. Zhang, B. Wang, C.J. Shen, C.X. Zhang, Q.K. Hu, A.G. Zhou, B.Z. LiuSynthesis and electrochemical performance of Ti3C2Tx with hydrothermal process. Electron. Mater. Lett., 12 (2016) 702-710
    [57]
    P. Urbankowski, B. Anasori, T. Makaryan, D. Er, S. Kota, P.L. Walsh, M. Zhao, V.B. Shenoy, M.W. Barsoum, Y. GogotsiSynthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale, 8 (2016) 11385-11391
    [58]
    M. Ghidiu, M. Naguib, C. Shi, O. Mashtalir, L.M. Pan, B. Zhang, J. Yang, Y. Gogotsi, S.J. Billinge, M.W. BarsoumSynthesis and characterization of two-dimensional Nb4C3 (MXene). Chem. Commun., 50 (2014) 9517-9520 doi: 10.1039/C4CC03366C
    [59]
    F.Y. Chang, C.S. Li, J. Yang, H. Tang, M.Q. XueSynthesis of a new graphene-like transition metal carbide by de-intercalating Ti3AlC2. Mater. Lett., 109 (2013) 295-298
    [60]
    M. Alhabeb, K. Maleski, T.S. Mathis, A. Sarycheva, C.B. Hatter, S. Uzun, A. Levitt, Y. GogotsiSelective etching of silicon from Ti3SiC2 (MAX) to obtain 2D titanium carbide (MXene). Angew. Chem. Int. Ed., 57 (2018) 5444-5448 doi: 10.1002/anie.201802232
    [61]
    F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, Y. GogotsiElectromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 353 (2016) 1137-1140 doi: 10.1126/science.aag2421
    [62]
    R. Meshkian, M. Dahlqvist, J. Lu, B. Wickman, J. Halim, J. Thörnberg, Q. Tao, S. Li, S. Intikhab, J. Snyder, M.W. Barsoum, M. Yildizhan, J. Palisaitis, L. Hultman, P.O.Å. Persson, J. RosenW-based atomic laminates and their 2D derivative W1.33C MXene with vacancy ordering. Adv. Mater., 30 (2018) 1706409 doi: 10.1002/adma.201706409
    [63]
    A.H. Feng, Y. Yu, Y. Wang, F. Jiang, Y. Yu, L. Mi, L.X. SongTwo-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Mater. Des., 114 (2017) 161-166
    [64]
    L.H. Karlsson, J. Birch, J. Halim, M.W. Barsoum, P.O. PerssonAtomically resolved structural and chemical investigation of single MXene sheets. Nano Lett., 15 (2015) 4955-4960 doi: 10.1021/acs.nanolett.5b00737
    [65]
    C. Xu, L.B. Wang, Z.B. Liu, L. Chen, J.K. Guo, N. Kang, X.L. Ma, H.M. Cheng, W.C. RenLarge-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater., 14 (2015) 1135-1141 doi: 10.1038/nmat4374
    [66]
    D.C. Geng, X.X. Zhao, Z.X. Chen, W.W. Sun, W. Fu, J.Y. Chen, W. Liu, W. Zhou, K.P. LohDirect synthesis of large-area 2D Mo2C on in situ grown graphene. Adv. Mater., 29 (2017) 1700072 doi: 10.1002/adma.201700072
    [67]
    X. Liang, A. Garsuch, L.F. NazarSulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. Int. Ed., 54 (2015) 3907-3911 doi: 10.1002/anie.201410174
    [68]
    Y.F. Dong, S.H. Zheng, J.Q. Qin, X.J. Zhao, H.D. Shi, X.H. Wang, J. Chen, Z.S. WuAll-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li-S batteries. ACS Nano, 12 (2018) 2381-2388 doi: 10.1021/acsnano.7b07672
    [69]
    H. Tang, W.L. Li, L.M. Pan, C.P. Cullen, Y. Liu, A. Pakdel, D.H. Long, J. Yang, N. McEvoy, G.S. Duesberg, V. Nicolosi, C.F. ZhangIn situ formed protective barrier enabled by sulfur@titanium carbide (MXene) ink for achieving high-capacity, long lifetime Li-S batteries. Adv. Sci., 5 (2018) 1800502 doi: 10.1002/advs.201800502
    [70]
    H. Tang, W.L. Li, L.M. Pan, K.J. Tu, F. Du, T. Qiu, J. Yang, C.P. Cullen, N. McEvoy, C.F. ZhangArobust, freestanding MXene-sulfur conductive paper for long-lifetime Li-S batteries. Adv. Funct. Mater., 29 (2019) 1901907 doi: 10.1002/adfm.201901907
    [71]
    T.K. Zhao, P.F. Zhai, Z.H. Yang, J.X. Wang, L.B. Qu, F.G. Du, J.T. WangSelf-supporting Ti3C2Tx foam/S cathodes with high sulfur loading for high-energy-density lithium-sulfur batteries. Nanoscale, 10 (2018) 22954-22962 doi: 10.1039/c8nr08642g
    [72]
    Z.B. Xiao, Z. Yang, Z.L. Li, P.Y. Li, R.H. WangSynchronous gains of areal and volumetric capacities in lithium-sulfur batteries promised by flower-like porous Ti3C2Tx matrix. ACS Nano, 13 (2019) 3404-3412 doi: 10.1021/acsnano.8b09296
    [73]
    Y.Z. Song, Z.T. Sun, Z.D. Fan, W.L. Cai, Y.L. Shao, G. Sheng, M.L. Wang, L.X. Song, Z.F. Liu, Q. Zhang, J.Y. SunRational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li-S chemistry. Nano Energy, 70 (2020) 104555
    [74]
    W.Z. Bao, L. Liu, C.Y. Wang, S. Choi, D. Wang, G.X. WangFacile synthesis of crumpled nitrogen-doped MXene nanosheets as a new sulfur host for lithium-sulfur batteries. Adv. Energy Mater., 8 (2018) 1702485 doi: 10.1002/aenm.201702485
    [75]
    Z. Pourali, M.R. Yaftian, M.R. SoviziLi2S/transition metal carbide composite as cathode material for high performance lithium-sulfur batteries. Mater. Chem. Phys., 217 (2018) 117-124
    [76]
    W.Z. Bao, D.W. Su, W.X. Zhang, X. Guo, G.X. Wang3D metal carbide@mesoporous carbon hybrid architecture as a new polysulfide reservoir for lithium-sulfur batteries. Adv. Funct. Mater., 26 (2016) 8746-8756 doi: 10.1002/adfm.201603704
    [77]
    W.Z. Bao, X.Q. Xie, J. Xu, X. Guo, J.J. Song, W. Wu, D.W. Su, G.X. WangConfined sulfur in 3D MXene/reduced graphene oxide hybrid nanosheets for lithium-sulfur battery. Chem. Eur. J., 23 (2017) 12613-12619 doi: 10.1002/chem.201702387
    [78]
    H.Y. Zhou, Z.Y. Sui, K. Amin, L.W. Lin, H.Y. Wang, B.H. HanInvestigating the electrocatalysis of a Ti3C2/carbon hybrid in polysulfide conversion of lithium-sulfur batteries. ACS Appl. Mater. Interfaces, 12 (2020) 13904-13913 doi: 10.1021/acsami.9b23006
    [79]
    R.Y. Gan, N. Yang, Q. Dong, N. Fu, R. Wu, C.P. Li, Q. Liao, J. Li, Z.D. WeiEnveloping ultrathin Ti3C2 nanosheets on carbon fibers: a high-density sulfur loaded lithium-sulfur battery cathode with remarkable cycling stability. J.Mater. Chem., 8 (2020) 7253-7260 doi: 10.1039/d0ta02374d
    [80]
    X. Liang, Y. Rangom, C.Y. Kwok, Q. Pang, L.F. NazarInterwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Adv. Mater., 29 (2017) 1603040 doi: 10.1002/adma.201603040
    [81]
    L.P. Lv, C.F. Guo, W. Sun, Y. WangStrong surface-bound sulfur in carbon nanotube bridged hierarchical Mo2C-based MXene nanosheets for lithium-sulfur batteries. Small, 15 (2019) 1804338
    [82]
    Q. Qi, H. Zhang, P.G. Zhang, Z.H. Bao, W. Zheng, W.B. Tian, W. Zhang, M. Zhou, Z.M. SunSelf-assembled sandwich hollow porous carbon sphere @ MXene composites as superior LiS battery cathode hosts. 2D Mater., 7 (2020) 025049 doi: 10.1088/2053-1583/ab79c1
    [83]
    J.J. Song, X. Guo, J.Q. Zhang, Y. Chen, C.Y. Zhang, L.Q. Luo, F.Y. Wang, G.X. WangRational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium-sulfur batteries. J.Mater. Chem., 7 (2019) 6507-6513 doi: 10.1039/c9ta00212j
    [84]
    J.L. Wang, Z. Zhang, X.F. Yan, S.L. Zhang, Z.H. Wu, Z.H. Zhuang, W.-Q. HanRational design of porous N-Ti3C2 MXene@CNT microspheres for high cycling stability in Li-S battery. Nano-Micro Lett., 12 (2019) 1-14
    [85]
    J.T. Wang, T.K. Zhao, Z.H. Yang, Y. Chen, Y. Liu, J.X. Wang, P.F. Zhai, W.J. WuMXene-based Co, N-codoped porous carbon nanosheets regulating polysulfides for high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces, 11 (2019) 38654-38662 doi: 10.1021/acsami.9b11988
    [86]
    C. Du, J. Wu, P. Yang, S.Y. Li, J.M. Xu, K.X. SongEmbedding S@TiO2 nanospheres into MXene layers as high rate cyclability cathodes for lithium-sulfur batteries. Electrochim. Acta, 295 (2019) 1067-1074
    [87]
    H. Zhang, Q. Qi, P.G. Zhang, W. Zheng, J. Chen, A.G. Zhou, W.B. Tian, W. Zhang, Z.M. SunSelf-assembled 3D MnO2 nanosheets@delaminated-Ti3C2 aerogel as sulfur host for lithium-sulfur battery cathodes. ACS Appl. Energy Mater., 2 (2018) 705-714
    [88]
    X.-T. Gao, Y. Xie, X.-D. Zhu, K.-N. Sun, X.-M. Xie, Y.-T. Liu, J.-Y. Yu, B. DingUltrathin MXene nanosheets decorated with TiO2 quantum dots as an efficient sulfur host toward fast and stable Li-S batteries. Small, 14 (2018) 1802443 doi: 10.1002/smll.201802443
    [89]
    H. Pan, X.X. Huang, R. Zhang, D. Wang, Y.T. Chen, X.M. Duan, G.W. WenTitanium oxide-Ti3C2 hybrids as sulfur hosts in lithium-sulfur battery: fast oxidation treatment and enhanced polysulfide adsorption ability. Chem. Eng. J., 358 (2019) 1253-1261
    [90]
    Z.G. Wang, K. Yu, Y. Feng, R.J. Qi, J. Ren, Z.Q. ZhuVO2(p)-V2C(MXene) grid structure as a lithium polysulfide catalytic host for high-performance Li-S battery. ACS Appl. Mater. Interfaces, 11 (2019) 44282-44292 doi: 10.1021/acsami.9b15586
    [91]
    Y. Yao, W.L. Feng, M.L. Chen, X.W. Zhong, X.J. Wu, H.B. Zhang, Y. YuBoosting the electrochemical performance of Li-S batteries with a dual polysulfides confinement strategy. Small, 14 (2018) 1802516 doi: 10.1002/smll.201802516
    [92]
    X.W. Wang, C.H. Yang, X.H. Xiong, G.L. Chen, M.Z. Huang, J.-H. Wang, Y. Liu, M.L. Liu, K. HuangArobust sulfur host with dual lithium polysulfide immobilization mechanism for long cycle life and high capacity Li-S batteries. Energy Stor. Mater., 16 (2019) 344-353
    [93]
    Z.B. Xiao, Z.L. Li, P.Y. Li, X.P. Meng, R.H. WangUltrafine Ti3C2 MXene nanodots-interspersed nanosheet for high-energy-density lithium-sulfur batteries. ACS Nano, 13 (2019) 3608-3617 doi: 10.1021/acsnano.9b00177
    [94]
    Y.L. Zhang, Z.J. Mu, C. Yang, Z.K. Xu, S. Zhang, X.Y. Zhang, Y.J. Li, J.P. Lai, Z.H. Sun, Y. Yang, Y.G. Chao, C.J. Li, X.X. Ge, W.X. Yang, S.J. GuoRational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium-sulfur batteries. Adv. Funct. Mater., 28 (2018)
    [95]
    Z. Chen, X.B. Yang, X. Qiao, N. Zhang, C.F. Zhang, Z.L. Ma, H.Q. WangLithium-ion-engineered interlayers of V2C MXene as advanced host for flexible sulfur cathode with enhanced rate performance. J.Phys. Chem. Lett., 11 (2020) 885-890 doi: 10.1021/acs.jpclett.9b03827
    [96]
    D. Guo, F.W. Ming, H. Su, Y.Q. Wu, W. Wahyudi, M.L. Li, M.N. Hedhili, G. Sheng, L.-J. Li, H.N. Alshareef, Y.X. Li, Z.P. LaiMXene based self-assembled cathode and antifouling separator for high-rate and dendrite-inhibited Li-S battery. Nano Energy, 61 (2019) 478-485
    [97]
    G.Y. Jiang, N. Zheng, X. Chen, G.Y. Ding, Y.H. Li, F.G. Sun, Y.S. LiIn-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries. Chem. Eng. J., 373 (2019) 1309-1318
    [98]
    L. Jiao, C. Zhang, C.N. Geng, S.C. Wu, H. Li, W. Lv, Y. Tao, Z.J. Chen, G.M. Zhou, J. Li, G.W. Ling, Y. Wan, Q.H. YangCapture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium–sulfur batteries. Adv. Energy Mater., 9 (2019) 1900219 doi: 10.1002/aenm.201900219
    [99]
    N. Li, W.Y. Cao, Y.W. Liu, H.Q. Ye, K. HanImpeding polysulfide shuttling with a three-dimensional conductive carbon nanotubes/MXene framework modified separator for highly efficient lithium-sulfur batteries. Colloids Surf. A Physicochem. Eng. Asp., 573 (2019) 128-136
    [100]
    N. Li, Y. Xie, S.T. Peng, X. Xiong, K. HanUltra-lightweight Ti3C2Tx MXene modified separator for Li–S batteries: thickness regulation enabled polysulfide inhibition and lithium ion transportation. J.Energy Chem., 42 (2020) 116-125
    [101]
    J.T. Wang, P.F. Zhai, T.K. Zhao, M.J. Li, Z.H. Yang, H.Q. Zhang, J.J. HuangLaminar MXene-nafion-modified separator with highly inhibited shuttle effect for long-life lithium-sulfur batteries. Electrochim. Acta, 320 (2019) 134558
    [102]
    L.X. Yin, G.Y. Xu, P. Nie, H. Dou, X.G. ZhangMXene debris modified eggshell membrane as separator for high-performance lithium-sulfur batteries. Chem. Eng. J., 352 (2018) 695-703
    [103]
    C. Lin, W.K. Zhang, L. Wang, Z.G. Wang, W. Zhao, W.H. Duan, Z.G. Zhao, B. Liu, J. JinAfew-layered Ti3C2 nanosheet/glass fiber composite separator as a lithium polysulphide reservoir for high-performance lithium-sulfur batteries. J.Mater. Chem., 4 (2016) 5993-5998
    [104]
    P. Liu, L. Qu, X.L. Tian, Y.K. Yi, J.X. Xia, T. Wang, J.Z. Nan, P. Yang, T. Wang, B.R. Fang, M.T. Li, B.L. YangTi3C2Tx/graphene oxide free-standing membranes as modified separators for lithium-sulfur batteries with enhanced rate performance. ACS Appl. Energy Mater., 3 (2020) 2708-2718 doi: 10.1021/acsaem.9b02385
    [105]
    J.J. Song, D.W. Su, X.Q. Xie, X. Guo, W.Z. Bao, G.J. Shao, G.X. WangImmobilizing polysulfides with MXene-functionalized separators for stable lithium-sulfur batteries. ACS Appl. Mater. Interfaces, 8 (2016) 29427-29433 doi: 10.1021/acsami.6b09027
    [106]
    B. Li, D. Zhang, Y. Liu, Y.X. Yu, S.M. Li, S.B. YangFlexible Ti3C2 MXene-lithium film with lamellar structure for ultrastable metallic lithium anodes. Nano Energy, 39 (2017) 654-661
    [107]
    W.T. Li, Y.F. Zhang, H. Li, Z.J. Chen, T.X. Shang, Z.T. Wu, C. Zhang, J. Li, W. Lv, Y. Tao, Q.H. YangLayered MXene protected lithium metal anode as an efficient polysulfide blocker for lithium-sulfur batteries. Batteries Supercaps, 3 (2020) 1-9
    [108]
    H.D. Shi, C.J. Zhang, P.F. Lu, Y.F. Dong, P.C. Wen, Z.S. WuConducting and lithiophilic MXene/graphene framework for high-capacity, dendrite-free lithium-metal anodes. ACS Nano, 13 (2019) 14308-14318 doi: 10.1021/acsnano.9b07710
    [109]
    N. Li, Q.Q. Meng, X.H. Zhu, Z. Li, J.L. Ma, C.X. Huang, J. Song, J. FanLattice constant-dependent anchoring effect of MXenes for lithium-sulfur (Li-S) batteries: a DFT study. Nanoscale, 11 (2019) 8485-8493 doi: 10.1039/c9nr01220f
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(2)

    Article Metrics

    Article views (181) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return