Volume 2 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
Zhang Huanrui, Huang Lang, Xu Hantao, Zhang Xiaohu, Chen Zhou, Gao Chenhui, Lu Chenglong, Liu Zhi, Jiang Meifang, Cui Guanglei. A polymer electrolyte with a thermally induced interfacial ion-blocking function enables safety-enhanced lithium metal batteries[J]. eScience, 2022, 2(2): 201-208. doi: 10.1016/j.esci.2022.03.001
Citation: Zhang Huanrui, Huang Lang, Xu Hantao, Zhang Xiaohu, Chen Zhou, Gao Chenhui, Lu Chenglong, Liu Zhi, Jiang Meifang, Cui Guanglei. A polymer electrolyte with a thermally induced interfacial ion-blocking function enables safety-enhanced lithium metal batteries[J]. eScience, 2022, 2(2): 201-208. doi: 10.1016/j.esci.2022.03.001

A polymer electrolyte with a thermally induced interfacial ion-blocking function enables safety-enhanced lithium metal batteries

doi: 10.1016/j.esci.2022.03.001
More Information
  • Corresponding author: Guanglei Cui cuigl@qibebt.ac.cn
  • Received Date: 2021-11-03
  • Revised Date: 2021-12-26
  • Accepted Date: 2022-03-08
  • Available Online: 2022-03-16
  • Lithium metal batteries (LMBs) have recently been revitalized as one of the most promising electrochemical energy storage systems, owing to the ultrahigh specific capacity (3860 mAh g−1) and ultralow potential (−3.04 ​V vs. standard hydrogen electrode) of lithium metal anodes. However, safety hazards originating from lithium dendrite growth and pulverization during cycling and thermal stimulation present significant challenges to the practical application of LMBs. To address this issue, we have developed an in situ polymer electrolyte with thermally induced interfacial ion-blocking ability. We demonstrate that the repolymerization and deposition of residual vinylene carbonate in the as-prepared electrolyte under thermal abuse predominantly results in thermally induced ion blocking at the solid electrolyte interface, thus achieving superior LMB safety. The developed polymer electrolyte also yields superior cyclability in LMBs. This design philosophy provides a good paradigm for improving the safety of LMBs.
  • ● Superior cyclability of lithium metal batteries can be achieved.
    ● The as-developed electrolyte can realize battery shutdown below a battery temperature of thermal runaway.
    ● A polymer electrolyte with a thermally induced interfacial ion-blocking function is first designed.
    1 These authors contribute equally to this work.
  • loading
  • eScience-2-2-201.docx
  • [1]
    D. Lin, Y. Liu, A. Pei, Y. CuiNanoscale perspective: materials designs and understandings in lithium metal anodes. Nano Res., 10 (2017) 4003-4026 doi: 10.1007/s12274-017-1596-1
    [2]
    W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. ZhangLithium metal anodes for rechargeable batteries. Energy Environ. Sci., 7 (2014) 513-537
    [3]
    K.J. Harry, D.T. Hallinan, D.Y. Parkinson, A.A. Macdowell, N.P. BalsaraDetection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater., 13 (2014) 69-73 doi: 10.1038/nmat3793
    [4]
    W.-K. Shin, A.G. Kannan, D.-W. KimEffective suppression of dendritic lithium growth using an ultrathin coating of nitrogen and sulfur codoped graphene nanosheets on polymer separator for lithium metal batteries. ACS Appl. Mater. Interfaces, 7 (2015) 23700-23707 doi: 10.1021/acsami.5b07730
    [5]
    K. AmineBatteries: polymers switch for safety. Nat. Energy, 1 (2016) 1-2
    [6]
    Z. An, L. Jia, Y. Ding, C. Dang, X. LiAreview on lithium-ion power battery thermal management technologies and thermal safety. J.Therm. Sci., 26 (2017) 391-412 doi: 10.1007/s11630-017-0955-2
    [7]
    L. Dong, L. Nie, W. LiuWater-stable lithium metal anodes with ultrahigh-rate capability enabled by a hydrophobic graphene architecture. Adv. Mater., 32 (2020) e1908494
    [8]
    Z.A. Ghazi, Z. Sun, C. Sun, F. Qi, B. An, F. Li, H.-M. ChengKey aspects of lithium metal anodes for lithium metal batteries. Small, 15 (2019) 1900687 doi: 10.1002/smll.201900687
    [9]
    E. Cha, H. Lee, W. ChoiImproving lithium-metal battery performance under the conditions of lean electrolyte through MoS2 coating. ChemElectroChem, 7 (2020) 890-892 doi: 10.1002/celc.201901735
    [10]
    X. Li, K. Qian, Y.-B. He, C. Liu, D. An, Y. Li, D. Zhou, Z. Lin, B. Li, Q.-H. Yang, F. KangAdual-functional gel-polymer electrolyte for lithium ion batteries with superior rate and safety performances. J.Mater. Chem. A, 5 (2017) 18888-18895 doi: 10.1039/C7TA04415A
    [11]
    K.W. Leitner, H. Wolf, A. Garsuch, F. Chesneau, M. Schulz-DobrickElectroactive separator for high voltage graphite/LiNi0.5Mn1.5O4 lithium ion batteries. J.Power Sources, 244 (2013) 548-551
    [12]
    A. Tsurumaki, M. Agostini, R. Poiana, L. Lombardo, E. Lufrano, C. Simari, A. Matic, I. Nicotera, S. Panero, M.A. NavarraEnhanced safety and galvanostatic performance of high voltage lithium batteries by using ionic liquids. Electrochim. Acta, 316 (2019) 1-7
    [13]
    Y. Dong, N. Zhang, C. Li, Y. Zhang, M. Jia, Y. Wang, Y. Zhao, L. Jiao, F. Cheng, J. XuFire-retardant phosphate-based electrolytes for high-performance lithium metal batteries. ACS Appl. Energy Mater., 2 (2019) 2708-2716 doi: 10.1021/acsaem.9b00027
    [14]
    H. Jia, L. Zou, P. Gao, X. Cao, W. Zhao, Y. He, M.H. Engelhard, S.D. Burton, H. Wang, X. Ren, Q. Li, R. Yi, X. Zhang, C. Wang, Z. Xu, X. Li, J.-G. Zhang, W. XuHigh-performance silicon anodes enabled by nonflammable localized high-concentration electrolytes. Adv. Energy Mater., 9 (2019) 1900784 doi: 10.1002/aenm.201900784
    [15]
    Z. Chen, P.-C. Hsu, J. Lopez, Y. Li, J.W.F. To, N. Liu, C. Wang, Sean c. Andrews, J. Liu, Y. Cui, Z. BaoFast and reversible thermoresponsive polymer switching materials for safer batteries. Nat. Energy, 1 (2016) 15009
    [16]
    S.M. Kang, M.-H. Ryou, J.W. Choi, H. LeeMussel- and diatom-inspired silica coating on separators yields improved power and safety in Li-ion batteries. Chem. Mater., 24 (2012) 3481-3485 doi: 10.1021/cm301967f
    [17]
    M. Baginska, B.J. Blaiszik, R.J. Merriman, N.R. Sottos, J.S. Moore, S.R. WhiteAutonomic shutdown of lithium-ion batteries using thermoresponsive microspheres. Adv. Energy Mater., 2 (2012) 583-590 doi: 10.1002/aenm.201100683
    [18]
    Q. Zhou, S. Dong, Z. Lv, G. Xu, L. Huang, Q. Wang, Z. Cui, G. CuiAtemperature-responsive electrolyte endowing superior safety characteristic of lithium metal batteries. Adv. Energy Mater., 10 (2020) 1903441 doi: 10.1002/aenm.201903441
    [19]
    P. Wang, J. Chai, Z. Zhang, H. Zhang, Y. Ma, G. Xu, H. Du, T. Liu, G. Li, G. CuiAn intricately designed poly(vinylene carbonate-acrylonitrile) copolymer electrolyte enables 5 V lithium batteries. J.Mater. Chem. A, 7 (2019) 5295-5304 doi: 10.1039/c9ta00204a
    [20]
    Z. Zou, H. Xu, H. Zhang, Y. Tang, G. CuiElectrolyte therapy for improving the performance of LiNi0.5Mn1.5O4 cathodes assembled lithium–ion batteries. ACS Appl. Mater. Interfaces, 12 (2020) 21368-21385 doi: 10.1021/acsami.0c02516
    [21]
    S. Park, S.Y. Jeong, T.K. Lee, M.W. Park, H.Y. Lim, J. Sung, J. Cho, S.K. Kwak, S.Y. Hong, N.S. ChoiReplacing conventional battery electrolyte additives with dioxolone derivatives for high-energy-density lithium-ion batteries. Nat. Commun., 12 (2021), p. 838
    [22]
    H. Xu, H. Zhang, J. Ma, G. Xu, T. Dong, J. Chen, G. CuiOvercoming the challenges of 5 V spinel LiNi0.5Mn1.5O4 cathodes with solid polymer electrolytes. ACS Energy Lett., 4 (2019) 2871-2886 doi: 10.1021/acsenergylett.9b01871
    [23]
    H. Zhang, J. Zhang, J. Ma, G. Xu, T. Dong, G. CuiPolymer electrolytes for high energy density ternary cathode material-based lithium batteries. Electrochem. Energy Rev., 2 (2019) 128-148 doi: 10.1007/s41918-018-00027-x
    [24]
    Z. Chen, D. Steinle, H.-D. Nguyen, J.-K. Kim, A. Mayer, J. Shi, E. Paillard, C. Iojoiu, S. Passerini, D. BresserHigh-energy lithium batteries based on single-ion conducting polymer electrolytes and Li[Ni0.8Co0.1Mn0.1]O2 cathodes. Nano Energy, 77 (2020) 105129
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (147) PDF downloads(16) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return