Citation: | Zhang Huanrui, Huang Lang, Xu Hantao, Zhang Xiaohu, Chen Zhou, Gao Chenhui, Lu Chenglong, Liu Zhi, Jiang Meifang, Cui Guanglei. A polymer electrolyte with a thermally induced interfacial ion-blocking function enables safety-enhanced lithium metal batteries[J]. eScience, 2022, 2(2): 201-208. doi: 10.1016/j.esci.2022.03.001 |
![]() |
![]() |
[1] |
D. Lin, Y. Liu, A. Pei, Y. CuiNanoscale perspective: materials designs and understandings in lithium metal anodes. Nano Res., 10 (2017) 4003-4026 doi: 10.1007/s12274-017-1596-1
|
[2] |
W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. ZhangLithium metal anodes for rechargeable batteries. Energy Environ. Sci., 7 (2014) 513-537
|
[3] |
K.J. Harry, D.T. Hallinan, D.Y. Parkinson, A.A. Macdowell, N.P. BalsaraDetection of subsurface structures underneath dendrites formed on cycled lithium metal electrodes. Nat. Mater., 13 (2014) 69-73 doi: 10.1038/nmat3793
|
[4] |
W.-K. Shin, A.G. Kannan, D.-W. KimEffective suppression of dendritic lithium growth using an ultrathin coating of nitrogen and sulfur codoped graphene nanosheets on polymer separator for lithium metal batteries. ACS Appl. Mater. Interfaces, 7 (2015) 23700-23707 doi: 10.1021/acsami.5b07730
|
[5] |
K. AmineBatteries: polymers switch for safety. Nat. Energy, 1 (2016) 1-2
|
[6] |
Z. An, L. Jia, Y. Ding, C. Dang, X. LiAreview on lithium-ion power battery thermal management technologies and thermal safety. J.Therm. Sci., 26 (2017) 391-412 doi: 10.1007/s11630-017-0955-2
|
[7] |
L. Dong, L. Nie, W. LiuWater-stable lithium metal anodes with ultrahigh-rate capability enabled by a hydrophobic graphene architecture. Adv. Mater., 32 (2020) e1908494
|
[8] |
Z.A. Ghazi, Z. Sun, C. Sun, F. Qi, B. An, F. Li, H.-M. ChengKey aspects of lithium metal anodes for lithium metal batteries. Small, 15 (2019) 1900687 doi: 10.1002/smll.201900687
|
[9] |
E. Cha, H. Lee, W. ChoiImproving lithium-metal battery performance under the conditions of lean electrolyte through MoS2 coating. ChemElectroChem, 7 (2020) 890-892 doi: 10.1002/celc.201901735
|
[10] |
X. Li, K. Qian, Y.-B. He, C. Liu, D. An, Y. Li, D. Zhou, Z. Lin, B. Li, Q.-H. Yang, F. KangAdual-functional gel-polymer electrolyte for lithium ion batteries with superior rate and safety performances. J.Mater. Chem. A, 5 (2017) 18888-18895 doi: 10.1039/C7TA04415A
|
[11] |
K.W. Leitner, H. Wolf, A. Garsuch, F. Chesneau, M. Schulz-DobrickElectroactive separator for high voltage graphite/LiNi0.5Mn1.5O4 lithium ion batteries. J.Power Sources, 244 (2013) 548-551
|
[12] |
A. Tsurumaki, M. Agostini, R. Poiana, L. Lombardo, E. Lufrano, C. Simari, A. Matic, I. Nicotera, S. Panero, M.A. NavarraEnhanced safety and galvanostatic performance of high voltage lithium batteries by using ionic liquids. Electrochim. Acta, 316 (2019) 1-7
|
[13] |
Y. Dong, N. Zhang, C. Li, Y. Zhang, M. Jia, Y. Wang, Y. Zhao, L. Jiao, F. Cheng, J. XuFire-retardant phosphate-based electrolytes for high-performance lithium metal batteries. ACS Appl. Energy Mater., 2 (2019) 2708-2716 doi: 10.1021/acsaem.9b00027
|
[14] |
H. Jia, L. Zou, P. Gao, X. Cao, W. Zhao, Y. He, M.H. Engelhard, S.D. Burton, H. Wang, X. Ren, Q. Li, R. Yi, X. Zhang, C. Wang, Z. Xu, X. Li, J.-G. Zhang, W. XuHigh-performance silicon anodes enabled by nonflammable localized high-concentration electrolytes. Adv. Energy Mater., 9 (2019) 1900784 doi: 10.1002/aenm.201900784
|
[15] |
Z. Chen, P.-C. Hsu, J. Lopez, Y. Li, J.W.F. To, N. Liu, C. Wang, Sean c. Andrews, J. Liu, Y. Cui, Z. BaoFast and reversible thermoresponsive polymer switching materials for safer batteries. Nat. Energy, 1 (2016) 15009
|
[16] |
S.M. Kang, M.-H. Ryou, J.W. Choi, H. LeeMussel- and diatom-inspired silica coating on separators yields improved power and safety in Li-ion batteries. Chem. Mater., 24 (2012) 3481-3485 doi: 10.1021/cm301967f
|
[17] |
M. Baginska, B.J. Blaiszik, R.J. Merriman, N.R. Sottos, J.S. Moore, S.R. WhiteAutonomic shutdown of lithium-ion batteries using thermoresponsive microspheres. Adv. Energy Mater., 2 (2012) 583-590 doi: 10.1002/aenm.201100683
|
[18] |
Q. Zhou, S. Dong, Z. Lv, G. Xu, L. Huang, Q. Wang, Z. Cui, G. CuiAtemperature-responsive electrolyte endowing superior safety characteristic of lithium metal batteries. Adv. Energy Mater., 10 (2020) 1903441 doi: 10.1002/aenm.201903441
|
[19] |
P. Wang, J. Chai, Z. Zhang, H. Zhang, Y. Ma, G. Xu, H. Du, T. Liu, G. Li, G. CuiAn intricately designed poly(vinylene carbonate-acrylonitrile) copolymer electrolyte enables 5 V lithium batteries. J.Mater. Chem. A, 7 (2019) 5295-5304 doi: 10.1039/c9ta00204a
|
[20] |
Z. Zou, H. Xu, H. Zhang, Y. Tang, G. CuiElectrolyte therapy for improving the performance of LiNi0.5Mn1.5O4 cathodes assembled lithium–ion batteries. ACS Appl. Mater. Interfaces, 12 (2020) 21368-21385 doi: 10.1021/acsami.0c02516
|
[21] |
S. Park, S.Y. Jeong, T.K. Lee, M.W. Park, H.Y. Lim, J. Sung, J. Cho, S.K. Kwak, S.Y. Hong, N.S. ChoiReplacing conventional battery electrolyte additives with dioxolone derivatives for high-energy-density lithium-ion batteries. Nat. Commun., 12 (2021), p. 838
|
[22] |
H. Xu, H. Zhang, J. Ma, G. Xu, T. Dong, J. Chen, G. CuiOvercoming the challenges of 5 V spinel LiNi0.5Mn1.5O4 cathodes with solid polymer electrolytes. ACS Energy Lett., 4 (2019) 2871-2886 doi: 10.1021/acsenergylett.9b01871
|
[23] |
H. Zhang, J. Zhang, J. Ma, G. Xu, T. Dong, G. CuiPolymer electrolytes for high energy density ternary cathode material-based lithium batteries. Electrochem. Energy Rev., 2 (2019) 128-148 doi: 10.1007/s41918-018-00027-x
|
[24] |
Z. Chen, D. Steinle, H.-D. Nguyen, J.-K. Kim, A. Mayer, J. Shi, E. Paillard, C. Iojoiu, S. Passerini, D. BresserHigh-energy lithium batteries based on single-ion conducting polymer electrolytes and Li[Ni0.8Co0.1Mn0.1]O2 cathodes. Nano Energy, 77 (2020) 105129
|