Volume 2 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
Wang Ziqing, Zhou Miao, Qin Liping, Chen Minghui, Chen Zixian, Guo Shan, Wang Liangbing, Fang Guozhao, Liang Shuquan. Simultaneous regulation of cations and anions in an electrolyte for high-capacity, high-stability aqueous zinc–vanadium batteries[J]. eScience, 2022, 2(2): 209-218. doi: 10.1016/j.esci.2022.03.002
Citation: Wang Ziqing, Zhou Miao, Qin Liping, Chen Minghui, Chen Zixian, Guo Shan, Wang Liangbing, Fang Guozhao, Liang Shuquan. Simultaneous regulation of cations and anions in an electrolyte for high-capacity, high-stability aqueous zinc–vanadium batteries[J]. eScience, 2022, 2(2): 209-218. doi: 10.1016/j.esci.2022.03.002

Simultaneous regulation of cations and anions in an electrolyte for high-capacity, high-stability aqueous zinc–vanadium batteries

doi: 10.1016/j.esci.2022.03.002
More Information
  • Corresponding author: Guozhao Fang fg_zhao@csu.edu.cn; Shuquan Liang lsq@csu.edu.cn
  • Received Date: 2021-10-29
  • Revised Date: 2022-01-15
  • Accepted Date: 2022-03-08
  • Available Online: 2022-03-12
  • Safe, inexpensive aqueous zinc-ion batteries (AZIBs) are regarded as promising energy storage devices. However, they still face issues, including dissolution and collapse of the cathode as well as H2 evolution and the growth of Zn dendrites on the Zn anode. Herein, we simultaneously regulate the cations and anions in the electrolyte for high-capacity, high-stability aqueous zinc–vanadium (Zn–V) batteries based on a bimetallic cation-doped Na0.33K0.1V2O5nH2O cathode. We demonstrate that Na+ ​cations suppress cathode dissolution and restrain Zn dendrite growth on the anode via an electrostatic shield effect. We also illustrate that ClO4 anions participate in energy storage at the cathode and are reduced to Cl, generating a protective layer on the Zn anode surface and providing a stable interface to decrease Zn dendrites and H2 evolution during long-term cycling. When Na+ and ClO4 are introduced into an aqueous ZnSO4 electrolyte, a Zn/Zn symmetric cell shows durable and reversible Zn stripping/plating for 1500 ​h at a current density of 1 ​mA ​cm−2 and with an area capacity of 1 mAh cm−2. Zn/Na0.33K0.1V2O5nH2O full batteries exhibit a high capacity of 600 mAh g−1 at 0.1 ​A ​g−1 and long-term cycling performance for 5000 cycles, with a capacity of 200 mAh g−1 at 20 ​A ​g−1.
  • ● Anion ClO4 participates in the energy storage at the cathode and is reduced to Cl forming a protective layer on the anode.
    ● Cation Na+ suppresses the dissolution of the cathode and restrains the Zn dendrite on the anode.
    ● Simultaneously regulating the cation and anion in the electrolyte toward high-performance aqueous zinc-vanadium batteries.
    1 These authors contributed equally to this work.
  • loading
  • eScience-2-2-209.docx
  • [1]
    M. Song, H. Tan, D. Chao, H.J. FanRecent advances in Zn-ion batteries. Adv. Funct. Mater., 41 (2018), p. 1802564 doi: 10.1002/adfm.201802564
    [2]
    D. Chao, S.Z. QiaoToward high-voltage aqueous batteries: super- or low-concentrated electrolyte. Joule, 4 (2020) 1846-1851
    [3]
    C. Wu, S. Gu, Q. Zhang, Y. Bai, M. Li, Y. Yuan, H. Wang, X. Liu, Y. Yuan, N. Zhu, F. Wu, H. Li, L. Gu, J. LuElectrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery. Nat. Commun., 10 (2019), p. 73
    [4]
    F. Wang, X. Fan, T. Gao, W. Sun, Z. Ma, C. Yang, F. Han, K. Xu, C. WangHigh-voltage aqueous magnesium ion batteries. ACS Cent. Sci., 10 (2017) 1121-1128 doi: 10.1021/acscentsci.7b00361
    [5]
    F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu, J. ChenAqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun., 9 (2018), p. 1656
    [6]
    T. Zhang, Y. Tang, S. Guo, X. Cao, A. Pan, G. Fang, J. Zhou, S. LiangFundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy Environ. Sci., 12 (2020) 4625-4665 doi: 10.1039/d0ee02620d
    [7]
    D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. NazarAhigh-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy, 1 (2016), p. 16119
    [8]
    J. Ding, Z. Du, L. Gu, B. Li, Li. Wang, S. Wang, Y. Gong, S. YangUltrafast Zn2+ intercalation and deintercalation in vanadium dioxide. Adv. Mater., 26 (2018), p. 1800762 doi: 10.1002/adma.201800762
    [9]
    Q. Wei, R.H. Deblock, D.M. Butts, C. Choi, B. DunnPseudocapacitive vanadium-based materials toward high-rate sodium-ion storage. Energy Environ. Mater., 3 (2020) 221-234 doi: 10.1002/eem2.12131
    [10]
    H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han, Z. Nie, C. Wang, J. Yang, X. Li, P. Bhattacharya, K. Mueller T., J. LiuReversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy, 5 (2016), p. 16039
    [11]
    N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long, X. Liu, F. Li, J. ChenRechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun., 1 (2017), p. 405 doi: 10.1007/978-3-319-70090-8_42
    [12]
    M. Mao, X. Wu, Y. Hu, Q. Yuan, Y.-B. He, K. KangCharge storage mechanism of MOF-derived Mn2O3 as high performance cathode of aqueous zinc-ion batteries. J.Energy Chem., 52 (2021) 277-283
    [13]
    Z. Liu, L. Qin, X. Chen, X. Xie, B. Zhu, Y. Gao, M. Zhou, G. Fang, S. LiangImproving stability and reversibility via fluorine doping in aqueous zinc–manganese batteries. Mater. Today Energy, 22 (2021), p. 100851
    [14]
    S. Ni, J. Zhang, J. Ma, X. Yang, L. ZhangSuperior electrochemical performance of Li3VO4/N-doped C as an anode for Li-ion batteries. J.Mater. Chem. A, 35 (2015) 17951-17955 doi: 10.1039/C5TA04402B
    [15]
    W. Deng, Z. Li, Y. Ye, Z. Zhou, Y. Li, M. Zhang, X. Yuan, J. Hu, W. Zhao, Z. Huang, C. Li, H. Chen, J. Zheng, R. LiZn2+ induced phase transformation of K2MnFe(CN)6 boosts highly stable zinc-ion storage. Adv. Energy Mater., 31 (2021), p. 2003639 doi: 10.1002/aenm.202003639
    [16]
    J. Ding, Z. Du, B. Li, Li. Wang, S. Wang, Y. Gong, S. YangUnlocking the potential of disordered rocksalts for aqueous zinc-ion batteries. Adv. Mater., 44 (2019), p. 1904369 doi: 10.1002/adma.201904369
    [17]
    Z. Liu, X. Luo, L. Qin, G. Fang, S. LiangProgress and prospect of low-temperature zinc metal batteries. Adv. Powder Mater., 1 (2021) 100011
    [18]
    P. Hu, M. Yan, T. Zhu, X. Wang, X. Wei, J. Li, L. Zhou, Z. Li, L. Chen, L. MaiZn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life. ACS Appl. Mater. Interfaces, 49 (2017) 42717-42722 doi: 10.1021/acsami.7b13110
    [19]
    H. Qin, L. Chen, L. Wang, X. Chen, Z. YangV2O5 hollow spheres as high rate and long life cathode for aqueous rechargeable zinc ion batteries. Electrochim. Acta, 306 (2019) 307-316
    [20]
    Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo, W. Zhang, C. Wang, L. Wang, J. Zhou, S. LiangLi+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci., 11 (2018) 3157-3162 doi: 10.1039/c8ee01651h
    [21]
    M. Tian, C.F. Liu, J.Q. Zheng, X. Jia, E.P. Jahrman, G.T. Seidler, D. Long, M. Atif, M. Alsalhi, G. CaoStructural engineering of hydrated vanadium oxide cathode by K+ incorporation for high-capacity and long-cycling aqueous zinc ion batteries. Energy Stor. Mater., 29 (2020) 9-16
    [22]
    B. Lan, Z. Peng, L. Chen, C. Tang, S. Dong, C. Chen, M. Zhou, C. Chen, Q. An, P. LuoMetallic silver doped vanadium pentoxide cathode for aqueous rechargeable zinc ion batteries. J.Alloys Compd., 787 (2019) 9-16
    [23]
    T. Kang, S. Ni, Q. Chen, T. Li, D. Chao, X. Yang, J. ZhaoAg embedded Li3VO4 as superior anode for Li-ion batteries. J.Electrochem. Soc., 3 (2019) A5295-A5300 doi: 10.1149/2.0381903jes
    [24]
    F. Ming, H. Liang, Y. Lei, S. Kandambeth, M. Eddaoudi, H.N. AlshareefLayered MgxV2O5·nH2O as cathode material for high-performance aqueous zinc ion batteries. ACS Energy Lett., 10 (2018) 2602-2609 doi: 10.1021/acsenergylett.8b01423
    [25]
    Y. Zhao, C. Han, J. Yang, J. Su, X. Xu, S. Li, L. Xu, R. Fang, H. Jiang, X. Zou, B. Song, L. Mai, Q. ZhangStable Alkali metal ion intercalation compounds as optimized metal oxide nanowire cathodes for lithium batteries. Nano Lett., 3 (2015) 2180-2185 doi: 10.1021/acs.nanolett.5b00284
    [26]
    Y. Xu, X. Han, L. Zheng, W. Yan, Y. XiePillar effect on cyclability enhancement for aqueous lithium ion batteries: a new material of β-vanadium bronze M0.33V2O5 (M = Ag, Na) nanowires. J.Mater. Chem., 38 (2011) 14466-14472 doi: 10.1039/c1jm11910a
    [27]
    C. Wang, Y. Cao, Z. Luo, G. Li, W. Xu, C. Xiong, G. He, Y. Wang, S. Li, H. Liu, D. FangFlexible potassium vanadate nanowires on Ti fabric as a binder-free cathode for high-performance advanced lithium-ion battery. Chem. Eng. J., 307 (2017) 382-388
    [28]
    N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu, J. ChenCation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J.Am. Chem. Soc., 39 (2016) 12894-12901 doi: 10.1021/jacs.6b05958
    [29]
    D. Chao, W. Zhou, F. Xie, Y. Chao, L. Huan, M. Jaroniec, S.-Z QiaoRoadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv., 6 (2020), p. eaba4098
    [30]
    W. Yang, X. Du, J. Zhao, Z. Chen, J. Li, J. Xie, Y. Zhang, Z. Cui, Q. Kong, Z. Zhao, C. Wang, Q. Zhang, G. CuiHydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule, 7 (2020) 1557-1574
    [31]
    S.B. Wang, Q. Ran, R.-Q. Yao, H. Shi, Z. Wen, M. Zhao, X.-Y Lang, Q. JiangLamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun., 1 (2020), p. 1634
    [32]
    A. Konarov, N. Voronina, J.H. Jo, Z. Bakenov, Y.-K. Sun, S.-T. MyungPresent and future perspective on electrode materials for rechargeable zinc-ion batteries. ACS Energy Lett., 10 (2018) 2620-2640 doi: 10.1021/acsenergylett.8b01552
    [33]
    Z. Cao, P. Zhuang, X. Zhang, M. Ye, J. Shen, P.M. AjayanStrategies for dendrite-free anode in aqueous rechargeable zinc ion batteries. Adv. Energy Mater., 30 (2020), p. 2001599 doi: 10.1002/aenm.202001599
    [34]
    J. Hao, L. Yuan, C. Ye, D. Chao, K. Davey, Z. Guo, S.-Z. QiaoBoosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem. Int. Ed., 60 (2021) 7442-7451 doi: 10.1002/ange.202016531
    [35]
    J. Cao, D. Zhang, R. Chanajaree, Y. Yue, Z. Zeng, X. Zhang, J. QinStabilizing zinc anode via a chelation and desolvation electrolyte additive. Adv. Powder Mater., 1 (2021) 100007
    [36]
    W. Xu, K. Zhao, W. Huo, Y. Wang, G. Yao, X. Gu, H. Cheng, L. Mai, C. Hu, X. WangDiethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano Energy, 62 (2019) 275-281
    [37]
    C. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu, C. Chen, D.P. Leonard, I.A. Rodríguez-Pérez, J.-X. Jiang, C. Fang, X. JiAZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem. Commun., 100 (2018) 14097-14099 doi: 10.1039/c8cc07730d
    [38]
    S. Dong, L. Shen, H. Li, P. Nie, Y. Zhu, Q. Sheng, X. ZhangPseudocapacitive behaviours of Na2Ti3O7@CNT coaxial nanocables for high-performance sodium-ion capacitors. J.Mater. Chem. A, 42 (2015) 21277-21283
    [39]
    F. Ding, W. Xu, G.L. Graff, J. Zhang, M.L. Sushko, X. Chen, Y. Shao, M.H. Engelhard, Z. Nie, J. Xiao, X. Liu, P.V. Sushko, J. Liu, J.-G. ZhangDendrite-Free lithium deposition via self-healing electrostatic shield mechanism. J.Am. Chem. Soc., 11 (2013) 4450-4456 doi: 10.1021/ja312241y
    [40]
    L. Wang, Y. Zhang, H. Hu, H.-Y. Shi, Y. Song, D. Guo, X.-X. Liu, X. SunAZn(ClO4)2 electrolyte enabling long-life zinc metal electrodes for rechargeable aqueous zinc batteries. ACS Appl. Mater. Interfaces, 45 (2019) 42000-42005 doi: 10.1021/acsami.9b10905
    [41]
    Y. Zhu, J. Yin, X. Zheng, A.-H. Emwas, Y. Lei, O.F. Mohanmmed, Y. Cui, H.N. AlshareefConcentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries. Energy Environ. Sci., 8 (2021) 4463-4473 doi: 10.1039/d1ee01472b
    [42]
    C. Liu, M. Tian, M. Wang, J. Zheng, S. Wang, M. Yan, Z. Wang, Z. Yin, J. Yang, G. CaoCatalyzing zinc-ion intercalation in hydrated vanadates for aqueous zinc-ion batteries. J.Mater. Chem. A, 16 (2020) 7713-7723 doi: 10.1039/d0ta01468k
    [43]
    Z. Feng, Y. Zhang, J. Sun, Y. Liu, H. Jiang, M. Cui, T. Hu, C. MengDual ions enable vanadium oxide hydration with superior Zn2+ storage for aqueous zinc-ion batteries. Chem. Eng. J., 433 (2021), p. 133795
    [44]
    D. Zhang, J. Cao, Y. Yue, T. Pakornchote, T. Bovornratanaraks, J. Han, X. Zhang, J. Qin, Y. HuangTwo birds with one stone: boosting zinc-ion insertion/extraction kinetics and suppressing vanadium dissolution of V2O5 via La3+ incorporation enable advanced zinc-ion batteries. ACS Appl. Mater. Interfaces, 32 (2021) 38416-38424 doi: 10.1021/acsami.1c11531
    [45]
    M. Tian, C. Liu, J. Zheng, X. Jia, E.P. Jahrman, G.T. Seidler, D. Long, M. Atif, M. Alsalhi, G. CaoStructural engineering of hydrated vanadium oxide cathode by K+ incorporation for high-capacity and long-cycling aqueous zinc ion batteries. Energy Stor. Mater., 29 (2020) 9-16
    [46]
    J. Sun, Y. Zhang, Y. Liu, H. Jiang, X. Dong, T. Hu, C. MengHydrated vanadium pentoxide/reduced graphene oxide-polyvinyl alcohol (V2O5⋅nH2O/rGO-PVA) film as a binder-free electrode for solid-state Zn-ion batteries. J.Colloid Interface Sci., 587 (2021) 845-854 doi: 10.3390/jmse9080845
    [47]
    S. Li, M. Chen, G. Fang, L. Shan, X. Cao, J. Huang, S. Liang, J. ZhouSynthesis of polycrystalline K0.25V2O5 nanoparticles as cathode for aqueous zinc-ion battery. J.Alloys Compd., 801 (2019) 82-89 doi: 10.15302/j-laf-20190107
    [48]
    B. Sambandam, V. Soundharrajan, S. Kim, M.H. Alfruqi, J. Jo, S. Kim, V. Mathew, Y.-K. Sun, J. KimK2V6O16·2.7H2O nanorod cathode: an advanced intercalation system for high energy aqueous rechargeable Zn-ion batteries. J.Mater. Chem. A, 32 (2018) 15530-15539
    [49]
    B. Tang, G. Fang, J. Zhou, L. Wang, Y. Lei, C. Wang, T. Lin, Y. Tang, S. LiangPotassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy, 51 (2018) 579-587
    [50]
    C. Xia, J. Guo, Y. Lei, H. Liang, C. Zhao, H.N. AlshareefRechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv. Mater., 5 (2018), p. 1705580 doi: 10.1002/adma.201705580
    [51]
    J. Cao, D. Zhang, Y. Yue, X. Wang, T. Pakornchote, T. Bovornratanaraks, X. Zhang, Z.-S. Wu, J. QinOxygen defect enriched (NH4)2V10O25·8H2O nanosheets for superior aqueous zinc-ion batteries. Nano Energy, 84 (2021), p. 105876
    [52]
    X. Wang, B. Xi, Z. Feng, W. Chen, H. Li, Y. Jia, J. Feng, Y. Qian, S. XiongLayered (NH4)2V6O16·1.5H2O nanobelts as a high-performance cathode for aqueous zinc-ion batteries. J.Mater. Chem. A, 32 (2019) 19130-19139 doi: 10.1039/c9ta05922a
    [53]
    Y. Lu, T. Zhu, W. Van Den Bergh, M. Stefik, K. HuangAhigh performing Zn-ion battery cathode enabled by in situ transformation of V2O5 atomic layers. Angew. Chem. Int. Ed., 39 (2020) 17004-17011 doi: 10.1002/anie.202006171
    [54]
    W. Wang, V.S. Kale, Z. Cao, Y. Lei, S. Kandambeth, G. Zou, Y. Zhu, E. Abouhamad, O. Shekhah, L. Cavallo, M. Eddaoudi, H.N. AlshareefMolecular engineering of covalent organic framework cathodes for enhanced zinc-ion batteries. Adv. Mater., 39 (2021), p. 2103617 doi: 10.1002/adma.202103617
    [55]
    P. Gu, R. Pascual, M. Shirkhanzadeh, S. Saimoto, J.D. ScottThe influence of intermetallic precipitates on the adhesion of electrodeposited zinc to aluminum cathodes. Hydrometallurgy, 3 (1995) 283-300
    [56]
    R.D. Seals, R. Alexander, L.T. Taylor, J.G. DillardCore electron binding energy study of group IIb-VIIa compounds. Inorg. Chem., 10 (1973) 2485-2487 doi: 10.1021/ic50128a059
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (167) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return