Citation: | Wang Ziqing, Zhou Miao, Qin Liping, Chen Minghui, Chen Zixian, Guo Shan, Wang Liangbing, Fang Guozhao, Liang Shuquan. Simultaneous regulation of cations and anions in an electrolyte for high-capacity, high-stability aqueous zinc–vanadium batteries[J]. eScience, 2022, 2(2): 209-218. doi: 10.1016/j.esci.2022.03.002 |
![]() |
![]() |
[1] |
M. Song, H. Tan, D. Chao, H.J. FanRecent advances in Zn-ion batteries. Adv. Funct. Mater., 41 (2018), p. 1802564 doi: 10.1002/adfm.201802564
|
[2] |
D. Chao, S.Z. QiaoToward high-voltage aqueous batteries: super- or low-concentrated electrolyte. Joule, 4 (2020) 1846-1851
|
[3] |
C. Wu, S. Gu, Q. Zhang, Y. Bai, M. Li, Y. Yuan, H. Wang, X. Liu, Y. Yuan, N. Zhu, F. Wu, H. Li, L. Gu, J. LuElectrochemically activated spinel manganese oxide for rechargeable aqueous aluminum battery. Nat. Commun., 10 (2019), p. 73
|
[4] |
F. Wang, X. Fan, T. Gao, W. Sun, Z. Ma, C. Yang, F. Han, K. Xu, C. WangHigh-voltage aqueous magnesium ion batteries. ACS Cent. Sci., 10 (2017) 1121-1128 doi: 10.1021/acscentsci.7b00361
|
[5] |
F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu, J. ChenAqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun., 9 (2018), p. 1656
|
[6] |
T. Zhang, Y. Tang, S. Guo, X. Cao, A. Pan, G. Fang, J. Zhou, S. LiangFundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy Environ. Sci., 12 (2020) 4625-4665 doi: 10.1039/d0ee02620d
|
[7] |
D. Kundu, B.D. Adams, V. Duffort, S.H. Vajargah, L.F. NazarAhigh-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy, 1 (2016), p. 16119
|
[8] |
J. Ding, Z. Du, L. Gu, B. Li, Li. Wang, S. Wang, Y. Gong, S. YangUltrafast Zn2+ intercalation and deintercalation in vanadium dioxide. Adv. Mater., 26 (2018), p. 1800762 doi: 10.1002/adma.201800762
|
[9] |
Q. Wei, R.H. Deblock, D.M. Butts, C. Choi, B. DunnPseudocapacitive vanadium-based materials toward high-rate sodium-ion storage. Energy Environ. Mater., 3 (2020) 221-234 doi: 10.1002/eem2.12131
|
[10] |
H. Pan, Y. Shao, P. Yan, Y. Cheng, K.S. Han, Z. Nie, C. Wang, J. Yang, X. Li, P. Bhattacharya, K. Mueller T., J. LiuReversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy, 5 (2016), p. 16039
|
[11] |
N. Zhang, F. Cheng, J. Liu, L. Wang, X. Long, X. Liu, F. Li, J. ChenRechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun., 1 (2017), p. 405 doi: 10.1007/978-3-319-70090-8_42
|
[12] |
M. Mao, X. Wu, Y. Hu, Q. Yuan, Y.-B. He, K. KangCharge storage mechanism of MOF-derived Mn2O3 as high performance cathode of aqueous zinc-ion batteries. J.Energy Chem., 52 (2021) 277-283
|
[13] |
Z. Liu, L. Qin, X. Chen, X. Xie, B. Zhu, Y. Gao, M. Zhou, G. Fang, S. LiangImproving stability and reversibility via fluorine doping in aqueous zinc–manganese batteries. Mater. Today Energy, 22 (2021), p. 100851
|
[14] |
S. Ni, J. Zhang, J. Ma, X. Yang, L. ZhangSuperior electrochemical performance of Li3VO4/N-doped C as an anode for Li-ion batteries. J.Mater. Chem. A, 35 (2015) 17951-17955 doi: 10.1039/C5TA04402B
|
[15] |
W. Deng, Z. Li, Y. Ye, Z. Zhou, Y. Li, M. Zhang, X. Yuan, J. Hu, W. Zhao, Z. Huang, C. Li, H. Chen, J. Zheng, R. LiZn2+ induced phase transformation of K2MnFe(CN)6 boosts highly stable zinc-ion storage. Adv. Energy Mater., 31 (2021), p. 2003639 doi: 10.1002/aenm.202003639
|
[16] |
J. Ding, Z. Du, B. Li, Li. Wang, S. Wang, Y. Gong, S. YangUnlocking the potential of disordered rocksalts for aqueous zinc-ion batteries. Adv. Mater., 44 (2019), p. 1904369 doi: 10.1002/adma.201904369
|
[17] |
Z. Liu, X. Luo, L. Qin, G. Fang, S. LiangProgress and prospect of low-temperature zinc metal batteries. Adv. Powder Mater., 1 (2021) 100011
|
[18] |
P. Hu, M. Yan, T. Zhu, X. Wang, X. Wei, J. Li, L. Zhou, Z. Li, L. Chen, L. MaiZn/V2O5 aqueous hybrid-ion battery with high voltage platform and long cycle life. ACS Appl. Mater. Interfaces, 49 (2017) 42717-42722 doi: 10.1021/acsami.7b13110
|
[19] |
H. Qin, L. Chen, L. Wang, X. Chen, Z. YangV2O5 hollow spheres as high rate and long life cathode for aqueous rechargeable zinc ion batteries. Electrochim. Acta, 306 (2019) 307-316
|
[20] |
Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo, W. Zhang, C. Wang, L. Wang, J. Zhou, S. LiangLi+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energy Environ. Sci., 11 (2018) 3157-3162 doi: 10.1039/c8ee01651h
|
[21] |
M. Tian, C.F. Liu, J.Q. Zheng, X. Jia, E.P. Jahrman, G.T. Seidler, D. Long, M. Atif, M. Alsalhi, G. CaoStructural engineering of hydrated vanadium oxide cathode by K+ incorporation for high-capacity and long-cycling aqueous zinc ion batteries. Energy Stor. Mater., 29 (2020) 9-16
|
[22] |
B. Lan, Z. Peng, L. Chen, C. Tang, S. Dong, C. Chen, M. Zhou, C. Chen, Q. An, P. LuoMetallic silver doped vanadium pentoxide cathode for aqueous rechargeable zinc ion batteries. J.Alloys Compd., 787 (2019) 9-16
|
[23] |
T. Kang, S. Ni, Q. Chen, T. Li, D. Chao, X. Yang, J. ZhaoAg embedded Li3VO4 as superior anode for Li-ion batteries. J.Electrochem. Soc., 3 (2019) A5295-A5300 doi: 10.1149/2.0381903jes
|
[24] |
F. Ming, H. Liang, Y. Lei, S. Kandambeth, M. Eddaoudi, H.N. AlshareefLayered MgxV2O5·nH2O as cathode material for high-performance aqueous zinc ion batteries. ACS Energy Lett., 10 (2018) 2602-2609 doi: 10.1021/acsenergylett.8b01423
|
[25] |
Y. Zhao, C. Han, J. Yang, J. Su, X. Xu, S. Li, L. Xu, R. Fang, H. Jiang, X. Zou, B. Song, L. Mai, Q. ZhangStable Alkali metal ion intercalation compounds as optimized metal oxide nanowire cathodes for lithium batteries. Nano Lett., 3 (2015) 2180-2185 doi: 10.1021/acs.nanolett.5b00284
|
[26] |
Y. Xu, X. Han, L. Zheng, W. Yan, Y. XiePillar effect on cyclability enhancement for aqueous lithium ion batteries: a new material of β-vanadium bronze M0.33V2O5 (M = Ag, Na) nanowires. J.Mater. Chem., 38 (2011) 14466-14472 doi: 10.1039/c1jm11910a
|
[27] |
C. Wang, Y. Cao, Z. Luo, G. Li, W. Xu, C. Xiong, G. He, Y. Wang, S. Li, H. Liu, D. FangFlexible potassium vanadate nanowires on Ti fabric as a binder-free cathode for high-performance advanced lithium-ion battery. Chem. Eng. J., 307 (2017) 382-388
|
[28] |
N. Zhang, F. Cheng, Y. Liu, Q. Zhao, K. Lei, C. Chen, X. Liu, J. ChenCation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J.Am. Chem. Soc., 39 (2016) 12894-12901 doi: 10.1021/jacs.6b05958
|
[29] |
D. Chao, W. Zhou, F. Xie, Y. Chao, L. Huan, M. Jaroniec, S.-Z QiaoRoadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv., 6 (2020), p. eaba4098
|
[30] |
W. Yang, X. Du, J. Zhao, Z. Chen, J. Li, J. Xie, Y. Zhang, Z. Cui, Q. Kong, Z. Zhao, C. Wang, Q. Zhang, G. CuiHydrated eutectic electrolytes with ligand-oriented solvation shells for long-cycling zinc-organic batteries. Joule, 7 (2020) 1557-1574
|
[31] |
S.B. Wang, Q. Ran, R.-Q. Yao, H. Shi, Z. Wen, M. Zhao, X.-Y Lang, Q. JiangLamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun., 1 (2020), p. 1634
|
[32] |
A. Konarov, N. Voronina, J.H. Jo, Z. Bakenov, Y.-K. Sun, S.-T. MyungPresent and future perspective on electrode materials for rechargeable zinc-ion batteries. ACS Energy Lett., 10 (2018) 2620-2640 doi: 10.1021/acsenergylett.8b01552
|
[33] |
Z. Cao, P. Zhuang, X. Zhang, M. Ye, J. Shen, P.M. AjayanStrategies for dendrite-free anode in aqueous rechargeable zinc ion batteries. Adv. Energy Mater., 30 (2020), p. 2001599 doi: 10.1002/aenm.202001599
|
[34] |
J. Hao, L. Yuan, C. Ye, D. Chao, K. Davey, Z. Guo, S.-Z. QiaoBoosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem. Int. Ed., 60 (2021) 7442-7451 doi: 10.1002/ange.202016531
|
[35] |
J. Cao, D. Zhang, R. Chanajaree, Y. Yue, Z. Zeng, X. Zhang, J. QinStabilizing zinc anode via a chelation and desolvation electrolyte additive. Adv. Powder Mater., 1 (2021) 100007
|
[36] |
W. Xu, K. Zhao, W. Huo, Y. Wang, G. Yao, X. Gu, H. Cheng, L. Mai, C. Hu, X. WangDiethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries. Nano Energy, 62 (2019) 275-281
|
[37] |
C. Zhang, J. Holoubek, X. Wu, A. Daniyar, L. Zhu, C. Chen, D.P. Leonard, I.A. Rodríguez-Pérez, J.-X. Jiang, C. Fang, X. JiAZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem. Commun., 100 (2018) 14097-14099 doi: 10.1039/c8cc07730d
|
[38] |
S. Dong, L. Shen, H. Li, P. Nie, Y. Zhu, Q. Sheng, X. ZhangPseudocapacitive behaviours of Na2Ti3O7@CNT coaxial nanocables for high-performance sodium-ion capacitors. J.Mater. Chem. A, 42 (2015) 21277-21283
|
[39] |
F. Ding, W. Xu, G.L. Graff, J. Zhang, M.L. Sushko, X. Chen, Y. Shao, M.H. Engelhard, Z. Nie, J. Xiao, X. Liu, P.V. Sushko, J. Liu, J.-G. ZhangDendrite-Free lithium deposition via self-healing electrostatic shield mechanism. J.Am. Chem. Soc., 11 (2013) 4450-4456 doi: 10.1021/ja312241y
|
[40] |
L. Wang, Y. Zhang, H. Hu, H.-Y. Shi, Y. Song, D. Guo, X.-X. Liu, X. SunAZn(ClO4)2 electrolyte enabling long-life zinc metal electrodes for rechargeable aqueous zinc batteries. ACS Appl. Mater. Interfaces, 45 (2019) 42000-42005 doi: 10.1021/acsami.9b10905
|
[41] |
Y. Zhu, J. Yin, X. Zheng, A.-H. Emwas, Y. Lei, O.F. Mohanmmed, Y. Cui, H.N. AlshareefConcentrated dual-cation electrolyte strategy for aqueous zinc-ion batteries. Energy Environ. Sci., 8 (2021) 4463-4473 doi: 10.1039/d1ee01472b
|
[42] |
C. Liu, M. Tian, M. Wang, J. Zheng, S. Wang, M. Yan, Z. Wang, Z. Yin, J. Yang, G. CaoCatalyzing zinc-ion intercalation in hydrated vanadates for aqueous zinc-ion batteries. J.Mater. Chem. A, 16 (2020) 7713-7723 doi: 10.1039/d0ta01468k
|
[43] |
Z. Feng, Y. Zhang, J. Sun, Y. Liu, H. Jiang, M. Cui, T. Hu, C. MengDual ions enable vanadium oxide hydration with superior Zn2+ storage for aqueous zinc-ion batteries. Chem. Eng. J., 433 (2021), p. 133795
|
[44] |
D. Zhang, J. Cao, Y. Yue, T. Pakornchote, T. Bovornratanaraks, J. Han, X. Zhang, J. Qin, Y. HuangTwo birds with one stone: boosting zinc-ion insertion/extraction kinetics and suppressing vanadium dissolution of V2O5 via La3+ incorporation enable advanced zinc-ion batteries. ACS Appl. Mater. Interfaces, 32 (2021) 38416-38424 doi: 10.1021/acsami.1c11531
|
[45] |
M. Tian, C. Liu, J. Zheng, X. Jia, E.P. Jahrman, G.T. Seidler, D. Long, M. Atif, M. Alsalhi, G. CaoStructural engineering of hydrated vanadium oxide cathode by K+ incorporation for high-capacity and long-cycling aqueous zinc ion batteries. Energy Stor. Mater., 29 (2020) 9-16
|
[46] |
J. Sun, Y. Zhang, Y. Liu, H. Jiang, X. Dong, T. Hu, C. MengHydrated vanadium pentoxide/reduced graphene oxide-polyvinyl alcohol (V2O5⋅nH2O/rGO-PVA) film as a binder-free electrode for solid-state Zn-ion batteries. J.Colloid Interface Sci., 587 (2021) 845-854 doi: 10.3390/jmse9080845
|
[47] |
S. Li, M. Chen, G. Fang, L. Shan, X. Cao, J. Huang, S. Liang, J. ZhouSynthesis of polycrystalline K0.25V2O5 nanoparticles as cathode for aqueous zinc-ion battery. J.Alloys Compd., 801 (2019) 82-89 doi: 10.15302/j-laf-20190107
|
[48] |
B. Sambandam, V. Soundharrajan, S. Kim, M.H. Alfruqi, J. Jo, S. Kim, V. Mathew, Y.-K. Sun, J. KimK2V6O16·2.7H2O nanorod cathode: an advanced intercalation system for high energy aqueous rechargeable Zn-ion batteries. J.Mater. Chem. A, 32 (2018) 15530-15539
|
[49] |
B. Tang, G. Fang, J. Zhou, L. Wang, Y. Lei, C. Wang, T. Lin, Y. Tang, S. LiangPotassium vanadates with stable structure and fast ion diffusion channel as cathode for rechargeable aqueous zinc-ion batteries. Nano Energy, 51 (2018) 579-587
|
[50] |
C. Xia, J. Guo, Y. Lei, H. Liang, C. Zhao, H.N. AlshareefRechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv. Mater., 5 (2018), p. 1705580 doi: 10.1002/adma.201705580
|
[51] |
J. Cao, D. Zhang, Y. Yue, X. Wang, T. Pakornchote, T. Bovornratanaraks, X. Zhang, Z.-S. Wu, J. QinOxygen defect enriched (NH4)2V10O25·8H2O nanosheets for superior aqueous zinc-ion batteries. Nano Energy, 84 (2021), p. 105876
|
[52] |
X. Wang, B. Xi, Z. Feng, W. Chen, H. Li, Y. Jia, J. Feng, Y. Qian, S. XiongLayered (NH4)2V6O16·1.5H2O nanobelts as a high-performance cathode for aqueous zinc-ion batteries. J.Mater. Chem. A, 32 (2019) 19130-19139 doi: 10.1039/c9ta05922a
|
[53] |
Y. Lu, T. Zhu, W. Van Den Bergh, M. Stefik, K. HuangAhigh performing Zn-ion battery cathode enabled by in situ transformation of V2O5 atomic layers. Angew. Chem. Int. Ed., 39 (2020) 17004-17011 doi: 10.1002/anie.202006171
|
[54] |
W. Wang, V.S. Kale, Z. Cao, Y. Lei, S. Kandambeth, G. Zou, Y. Zhu, E. Abouhamad, O. Shekhah, L. Cavallo, M. Eddaoudi, H.N. AlshareefMolecular engineering of covalent organic framework cathodes for enhanced zinc-ion batteries. Adv. Mater., 39 (2021), p. 2103617 doi: 10.1002/adma.202103617
|
[55] |
P. Gu, R. Pascual, M. Shirkhanzadeh, S. Saimoto, J.D. ScottThe influence of intermetallic precipitates on the adhesion of electrodeposited zinc to aluminum cathodes. Hydrometallurgy, 3 (1995) 283-300
|
[56] |
R.D. Seals, R. Alexander, L.T. Taylor, J.G. DillardCore electron binding energy study of group IIb-VIIa compounds. Inorg. Chem., 10 (1973) 2485-2487 doi: 10.1021/ic50128a059
|