Volume 2 Issue 3
May  2022
Turn off MathJax
Article Contents
Yue Xin-Yang, Zhang Jing, Bao Jian, Bai Yi-Fan, Li Xun-Lu, Yang Si-Yu, Fu Zheng-Wen, Wang Zhen-Hua, Zhou Yong-Ning. Sputtered MoN nanolayer as a multifunctional polysulfide catalyst for high-performance lithium–sulfur batteries[J]. eScience, 2022, 2(3): 329-338. doi: 10.1016/j.esci.2022.03.003
Citation: Yue Xin-Yang, Zhang Jing, Bao Jian, Bai Yi-Fan, Li Xun-Lu, Yang Si-Yu, Fu Zheng-Wen, Wang Zhen-Hua, Zhou Yong-Ning. Sputtered MoN nanolayer as a multifunctional polysulfide catalyst for high-performance lithium–sulfur batteries[J]. eScience, 2022, 2(3): 329-338. doi: 10.1016/j.esci.2022.03.003

Sputtered MoN nanolayer as a multifunctional polysulfide catalyst for high-performance lithium–sulfur batteries

doi: 10.1016/j.esci.2022.03.003
More Information
  • Corresponding author: E-mail address: ynzhou@fudan.edu.cn (Y.-N. Zhou)
  • Received Date: 2021-11-16
  • Revised Date: 2021-12-28
  • Accepted Date: 2022-03-10
  • Available Online: 2022-03-16
  • Two major obstacles for the practical application of lithium–sulfur batteries are sluggish redox kinetics and the shuttle effect of lithium polysulfides (LiPSs). Herein, MoN nanolayer-decorated multilayer graphene is fabricated via magnetron sputtering then serves as a multifunctional interlayer in Li–S batteries to suppress the shuttle effect and enhance redox kinetics. It is revealed that after the initial discharge process, the MoN layers break up into independent microreaction units consisting of MoN bodies and MoS2 edges, forming a heterogeneous composite catalyst in situ. The MoN bodies not only have high sulfur affinity to trap LiPSs but also enhance their redox kinetics. At the same time, the MoS2 edge weakens the mobility of LiPSs via the anchoring effect. As a result, Li–S cells using the interlayer present superior cycling stability under a high sulfur loading of 4.8 ​mg ​cm−2. This work may open a new avenue for developing high-performance Li–S batteries.
  • ● S-MN@GNs interlayers present superior capability in trapping and transforming LiPSs in Li–S batteries.
    ● MoN nanolayer decorated graphene nanosheets are prepared successfully by magnetron sputtering method.
    ● Functional MoN bodies and MoS2 ​edges are derived from the intercation between MoN nanolayers and LiPSs.
    ● MoN can trap LiPSs via its strong adsorption feature, while the anchoring effect of MoS2 can weaken the mobility of LiPSs.
    1 Contributed equally to this work.
  • loading
  • eScience-2-3-329.docx
  • [1]
    J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414 (2001) 359–367. doi: 10.1038/35104644
    [2]
    A. Manthiram, Y.Z. Fu, S.H. Chung, C.X. Zu, Y.S. Su, Rechargeable lithium-sulfur batteries, Chem. Rev. 114 (2014) 11751–11787. doi: 10.1021/cr500062v
    [3]
    Y.X. Yin, S. Xin, Y.G. Guo, L.J. Wan, Lithium-sulfur batteries: electrochemistry, materials, and prospects, Angew. Chem. Int. Ed. 52 (2013) 13186–13200. doi: 10.1002/anie.201304762
    [4]
    P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Li-O2 and Li-S batteries with high energy storage, Nat. Mater. 11 (2012) 19–29. doi: 10.1038/nmat3191
    [5]
    A. Manthiram, Y.Z. Fu, Y.S. Su, Challenges and prospects of lithium-sulfur batteries, Acc. Chem. Res. 46 (2013) 1125–1134. doi: 10.1021/ar300179v
    [6]
    Y.V. Mikhaylik, J.R. Akridge, Polysulfide shuttle study in the Li/S battery system, J. Electrochem. Soc. 151 (2004) A1969–A1976. doi: 10.1149/1.1806394
    [7]
    L. Hencz, H. Chen, H.Y. Ling, Y.Z. Wang, C. Lai, H.J. Zhao, S.Q. Zhang, Housing sulfur in polymer composite frameworks for Li-S batteries, Nanomicro Lett. 11 (2019) 278–321.
    [8]
    Y.H. Liu, C.Y. Wang, S.L. Yang, F.F. Cao, H. Ye, 3D MXene architectures as sulfur hosts for high-performance lithium-sulfur batteries, J. Energy Chem. 66 (2022) 429–439. doi: 10.1016/j.jechem.2021.08.040
    [9]
    E.D. Jing, L. Chen, S.D. Xu, W.Z. Tian, D. Zhang, N.N. Wang, Z.C. Bai, X.X. Zhou, S.B. Liu, D.H. Duan, X.Y. Qiu, Dual redox catalysis of VN/nitrogen-doped graphene nanocomposites for high-performance lithium-sulfur batteries, J. Energy Chem. 64 (2022) 574–582. doi: 10.1016/j.jechem.2021.05.015
    [10]
    W. Chen, T.Y. Lei, C.Y. Wu, M. Deng, C.H. Gong, K. Hu, Y.C. Ma, L.P. Dai, W.Q. Lv, W.D. He, X.J. Liu, J. Xiong, C.L. Yan, Designing safe electrolyte systems for a highstability lithium-sulfur battery, Adv. Energy Mater. 8 (2018) 1702348. doi: 10.1002/aenm.201702348
    [11]
    P. Bonnick, K. Niitani, M. Nose, K. Suto, T.S. Arthur, J. Muldoon, A high performance all solid state lithium sulfur battery with lithium thiophosphate solid electrolyte, J. Mater. Chem. 7 (2019) 24173–24179. doi: 10.1039/C9TA06971B
    [12]
    E.P. Kamphaus, P.B. Balbuena, Localized high concentration electrolyte and its effects on polysulfide structure in solution, J. Phys. Chem. C 125 (2021) 20157–20170. doi: 10.1021/acs.jpcc.1c04559
    [13]
    K. Xu, X. Liang, L.L. Wang, Y. Wang, J.F. Yun, Y. Sun, H.F. Xiang, Tri-functionalized polypropylene separator by rGO/MoO2 composite for high-performance lithiumsulfur batteries, Rare Metals 40 (2021) 2810–2818. doi: 10.1007/s12598-020-01686-w
    [14]
    Y.M. Kwon, J. Kim, K.Y. Cho, S. Yoon, Ion shielding functional separator using halloysite containing a negative functional moiety for stability improvement of Li-S batteries, J. Energy Chem. 60 (2021) 334–340. doi: 10.1016/j.jechem.2021.01.029
    [15]
    Z.H. Wang, J. Zhang, Y.X. Yang, X.Y. Yue, X.M. Hao, W. Sun, D. Rooney, K.N. Sun, Flexible carbon nanofiber/polyvinylidene fluoride composite membranes as interlayers in high-performance lithium-sulfur batteries, J. Power Sources 329 (2016) 305–313. doi: 10.1016/j.jpowsour.2016.08.087
    [16]
    C.X. Wang, X.W. Fu, S.N. Lin, J. Liu, W.H. Zhong, A protein-enabled protective film with functions of self-adapting and anion-anchoring for stabilizing lithium-metal batteries, J. Energy Chem. 64 (2022) 485–495. doi: 10.1016/j.jechem.2021.05.014
    [17]
    X. Yue, J. Bao, S.Y. Yang, R.J. Luo, Q.C. Wang, X.J. Wu, Z. Shadike, X.Q. Yang, Y.N. Zhou, Petaloid-shaped ZnO coated carbon felt as a controllable host to construct hierarchical Li composite anode, Nano Energy 71 (2020) 104614. doi: 10.1016/j.nanoen.2020.104614
    [18]
    X. Yue, Q. Zhou, J. Bao, C. Ma, S. Yang, X. Li, D. Sun, F. Fang, X. Wu, Y. Zhou, In situ construction of lithium silicide host with unhindered lithium spread for dendritefree lithium metal anode, Adv. Funct. Mater. 31 (2021) 2008786. doi: 10.1002/adfm.202008786
    [19]
    X. Yue, X. Li, J. Bao, Q. Qiu, T. Liu, D. Chen, S. Yuan, X. Wu, J. Lu, Y. Zhou, Topdown" Li deposition pathway enabled by an asymmetric design for Li composite electrode, Adv. Energy Mater. 9 (2019) 1901491. doi: 10.1002/aenm.201901491
    [20]
    Y.S. Su, A. Manthiram, Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer, Nat. Commun. 3 (2012) 1166. doi: 10.1038/ncomms2163
    [21]
    Q. Pang, J.T. Tang, H. Huang, X. Liang, C. Hart, K.C. Tam, L.F. Nazar, A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium-sulfur batteries, Adv. Mater. 27 (2015) 6021–6028. doi: 10.1002/adma.201502467
    [22]
    X. Liang, C.Y. Kwok, F. Lodi-Marzano, Q. Pang, M. Cuisinier, H. Huang, C.J. Hart, D. Houtarde, K. Kaup, H. Sommer, T. Brezesinski, J. Janek, L.F. Nazar, Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: the "goldilocks" principle, Adv. Energy Mater. 6 (2016) 1501636. doi: 10.1002/aenm.201501636
    [23]
    Q. Pang, C.Y. Kwok, D. Kundu, X. Liang, L.F. Nazar, Lightweight metallic MgB2 mediates polysulfide redox and promises high-energy-density lithium-sulfur batteries, Joule 3 (2019) 136–148. doi: 10.1016/j.joule.2018.09.024
    [24]
    Y.Q. Mao, W. Sun, X.Y. Yue, W.S. Hou, T.T. Deng, L.L. He, L. Fang, R. Sun, Z.H. Wang, K.N. Sun, Flexible free-standing cathode enabled via multifunctional Mo2C for high sulfur loading lithium-sulfur batteries, J. Power Sources 506 (2021) 230254. doi: 10.1016/j.jpowsour.2021.230254
    [25]
    S. Wang, H. Chen, J. Liao, Q. Sun, F. Zhao, J. Luo, X. Lin, X. Niu, M. Wu, R. Li, X. Sun, Efficient trapping and catalytic conversion of polysulfides by VS4 nanosites for Li–S batteries, ACS Energy Lett. 4 (2019) 755–762. doi: 10.1021/acsenergylett.9b00076
    [26]
    X.F. Yang, X.J. Gao, Q. Sun, S.P. Jand, Y. Yu, Y. Zhao, X. Li, K. Adair, L.Y. Kuo, J. Rohrer, J.N. Liang, X.T. Lin, M.N. Banis, Y.F. Hu, H.Z. Zhang, X.F. Li, R.Y. Li, H.M. Zhang, P. Kaghazchi, T.K. Sham, X.L. Sun, Promoting the transformation of Li2S2 to Li2S: significantly increasing utilization of active materials for high-sulfurloading Li-S batteries, Adv. Mater. 31 (2019) 1901220. doi: 10.1002/adma.201901220
    [27]
    F.Y. Fan, M.S. Pan, K.C. Lau, R.S. Assary, W.H. Woodford, L.A. Curtiss, W.C. Carter, Y.M. Chiang, Solvent effects on polysulfide redox kinetics and ionic conductivity in lithium-sulfur batteries, J. Electrochem. Soc. 163 (2016) A3111–A3116. doi: 10.1149/2.1181614jes
    [28]
    S.Z. Wang, S.P. Feng, J.W. Liang, Q.M. Su, F.P. Zhao, H.J. Song, M.H. Zheng, Q. Sun, Z.X. Song, X.H. Jia, J. Yang, Y. Li, J.X. Liao, R.Y. Li, X.L. Sun, Insight into MoS2-MoN heterostructure to accelerate polysulfide conversion toward high-energy-density lithium-sulfur batteries, Adv. Energy Mater. 11 (2021) 2003314. doi: 10.1002/aenm.202003314
    [29]
    C. Ye, Y. Jiao, H.Y. Jin, A.D. Slattery, K. Davey, H.H. Wang, S.Z. Qiao, 2D MoN-VN heterostructure to regulate polysulfides for highly efficient lithium-sulfur batteries, Angew. Chem. Int. Ed. 57 (2018) 16703–16707. doi: 10.1002/anie.201810579
    [30]
    Y.Z. Song, W. Zhao, L. Kong, L. Zhang, X.Y. Zhu, Y.L. Shao, F. Ding, Q. Zhang, J.Y. Sun, Z.F. Liu, Synchronous immobilization and conversion of polysulfides on a VO2-VN binary host targeting high sulfur load Li-S batteries, Energy Environ. Sci. 11 (2018) 2620–2630. doi: 10.1039/C8EE01402G
    [31]
    T. Yang, J. Xia, Z.H. Piao, L. Yang, S.C. Zhang, Y.L. Xing, G.M. Zhou, Graphenebased materials for flexible lithium-sulfur batteries, ACS Nano 15 (2021) 13901–13923. doi: 10.1021/acsnano.1c03183
    [32]
    P.Q. Guo, D.Q. Liu, Z.J. Liu, X.N. Shang, Q.M. Liu, D.Y. He, Dual functional MoS2/ graphene interlayer as an efficient polysulfide barrier for advanced lithium-sulfur batteries, Electrochim. Acta 256 (2017) 28–36. doi: 10.1016/j.electacta.2017.10.003
    [33]
    L. Chen, H. Yu, W.X. Li, M. Dirican, Y. Liu, X.W. Zhang, Interlayer design based on carbon materials for lithium-sulfur batteries: a review, J. Mater. Chem. 8 (2020) 10709–10735. doi: 10.1039/D0TA03028G
    [34]
    D. Tian, X.Q. Song, M.X. Wang, X. Wu, Y. Qiu, B. Guan, X.Z. Xu, L.S. Fan, N.Q. Zhang, K.N. Sun, MoN supported on graphene as a bifunctional interlayer for advanced Li-S batteries, Adv. Energy Mater. 9 (2019) 1901940. doi: 10.1002/aenm.201901940
    [35]
    G.M. Zhou, H.Z. Tian, Y. Jin, X.Y. Tao, B.F. Liu, R.F. Zhang, Z.W. Seh, D. Zhuo, Y.Y. Liu, J. Sun, J. Zhao, C.X. Zu, D.S. Wu, Q.F. Zhang, Y. Cui, Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries, Proc. Natl. Acad. Sci. U.S.A. 114 (2017) 840–845. doi: 10.1073/pnas.1615837114
    [36]
    Y.Z. Wang, X.Y. Shan, D.W. Wang, Z.H. Sun, H.M. Cheng, F. Li, A rechargeable quasi-symmetrical MoS2 battery, Joule 2 (2018) 1278–1286. doi: 10.1016/j.joule.2018.04.007
    [37]
    S.Z. Wang, J.X. Liao, X.F. Yang, J.N. Liang, Q. Sun, J.W. Liang, F.P. Zhao, A. Koo, F.P. Kong, Y. Yao, X.J. Gao, M.Q. Wu, S.Z. Yang, R.Y. Li, X.L. Sun, Designing a highly efficient polysulfide conversion catalyst with paramontroseite for highperformance and long-life lithium-sulfur batteries, Nano Energy 57 (2019) 230–240. doi: 10.1016/j.nanoen.2018.12.020
    [38]
    H.D. Liu, Z.L. Chen, H. Man, S.P. Yang, Y. Song, F. Fang, R.C. Che, D.L. Sun, Template-guided synthesis of porous MoN microrod as an effective sulfur host for high-performance lithium-sulfur batteries, J. Alloys Compd. 842 (2020) 155764. doi: 10.1016/j.jallcom.2020.155764
    [39]
    Z.H. Gu, C. Cheng, T.R. Yan, G.L. Liu, J.S. Jiang, J. Mao, K.H. Dai, J. Li, J.P. Wu, L. Zhang, Synergistic effect of Co3Fe7 alloy and N-doped hollow carbon spheres with high activity and stability for high-performance lithium-sulfur batteries, Nano Energy 86 (2021) 106111. doi: 10.1016/j.nanoen.2021.106111
    [40]
    Z.M. Tong, L. Huang, H.P. Liu, W. Lei, H.J. Zhang, S.W. Zhang, Q.L. Jia, Defective graphitic carbon nitride modified separators with efficient polysulfide traps and catalytic sites for fast and reliable sulfur electrochemistry, Adv. Funct. Mater. 31 (2021) 2010455. doi: 10.1002/adfm.202010455
    [41]
    W.Q. Yao, W.Z. Zheng, J. Xu, C.X. Tian, K. Han, W.Z. Sun, S.X. Xiao, ZnS-SnS@NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium-sulfur batteries, ACS Nano 15 (2021) 7114–7130. doi: 10.1021/acsnano.1c00270
    [42]
    C. Deng, Z.W. Wang, S.P. Wang, J.X. Yu, D.J. Martin, A.K. Nanjundan, Y. Yamauchi, Double-layered modified separators as shuttle suppressing interlayers for lithium-sulfur batteries, ACS Appl. Mater. Interfaces 11 (2019) 541–549. doi: 10.1021/acsami.8b14196
    [43]
    Y.Q. Wang, J.J. He, Z.Q. Zhang, Z.H. Liu, C.S. Huang, Y.C. Jin, Graphdiyne-modified polyimide separator: a polysulfide-immobilizing net hinders the shuttling of polysulfides in lithium-sulfur battery, ACS Appl. Mater. Interfaces 11 (2019) 35738–35745. doi: 10.1021/acsami.9b11989
    [44]
    L. Zhu, L.J. You, P.H. Zhu, X.Q. Shen, L.Z. Yang, K.S. Xiao, High performance lithium-sulfur batteries with a sustainable and environmentally friendly carbon aerogel modified separator, ACS Sustain. Chem. Eng. 6 (2018) 248–257. doi: 10.1021/acssuschemeng.7b02322
    [45]
    H.Y. Pan, Z. Tan, H.H. Zhou, L.L. Jiang, Z.Y. Huang, Q.X. Feng, Q. Zhou, S. Ma, Y.F. Kuang, Fe3C-N-doped carbon modified separator for high performance lithium-sulfur batteries, J. Energy Chem. 39 (2019) 101–108. doi: 10.1016/j.jechem.2019.01.019
    [46]
    D.Q. He, J.T. Meng, X.Y. Chen, Y.Q. Liao, Z.X. Cheng, L.X. Yuan, Z. Li, Y.H. Huang, Ultrathin conductive interlayer with high-density antisite defects for advanced lithium-sulfur batteries, Adv. Funct. Mater. 31 (2021) 2001201. doi: 10.1002/adfm.202001201
    [47]
    L.W. Yang, Y. Li, Y. Wang, Q. Li, Y.X. Chen, B.H. Zhong, X.D. Guo, Z.G. Wu, Y.X. Liu, G.K. Wang, Y. Song, W. Xiang, Y.J. Zhong, Nitrogen-doped sheet VO2 modified separator to enhanced long-cycle performance lithium-sulfur battery, J. Power Sources 501 (2021) 230040. doi: 10.1016/j.jpowsour.2021.230040
    [48]
    C. Chen, Q.B. Jiang, H.F. Xu, Y.P. Zhang, B.K. Zhang, Z.Y. Zhang, Z. Lin, S.Q. Zhang, Ni/SiO2/Graphene-modified separator as a multifunctional polysulfide barrier for advanced lithium-sulfur batteries, Nano Energy 76 (2020) 105033. doi: 10.1016/j.nanoen.2020.105033
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (130) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return