Citation: | Yue Xin-Yang, Zhang Jing, Bao Jian, Bai Yi-Fan, Li Xun-Lu, Yang Si-Yu, Fu Zheng-Wen, Wang Zhen-Hua, Zhou Yong-Ning. Sputtered MoN nanolayer as a multifunctional polysulfide catalyst for high-performance lithium–sulfur batteries[J]. eScience, 2022, 2(3): 329-338. doi: 10.1016/j.esci.2022.03.003 |
![]() |
![]() |
[1] |
J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414 (2001) 359–367. doi: 10.1038/35104644
|
[2] |
A. Manthiram, Y.Z. Fu, S.H. Chung, C.X. Zu, Y.S. Su, Rechargeable lithium-sulfur batteries, Chem. Rev. 114 (2014) 11751–11787. doi: 10.1021/cr500062v
|
[3] |
Y.X. Yin, S. Xin, Y.G. Guo, L.J. Wan, Lithium-sulfur batteries: electrochemistry, materials, and prospects, Angew. Chem. Int. Ed. 52 (2013) 13186–13200. doi: 10.1002/anie.201304762
|
[4] |
P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.M. Tarascon, Li-O2 and Li-S batteries with high energy storage, Nat. Mater. 11 (2012) 19–29. doi: 10.1038/nmat3191
|
[5] |
A. Manthiram, Y.Z. Fu, Y.S. Su, Challenges and prospects of lithium-sulfur batteries, Acc. Chem. Res. 46 (2013) 1125–1134. doi: 10.1021/ar300179v
|
[6] |
Y.V. Mikhaylik, J.R. Akridge, Polysulfide shuttle study in the Li/S battery system, J. Electrochem. Soc. 151 (2004) A1969–A1976. doi: 10.1149/1.1806394
|
[7] |
L. Hencz, H. Chen, H.Y. Ling, Y.Z. Wang, C. Lai, H.J. Zhao, S.Q. Zhang, Housing sulfur in polymer composite frameworks for Li-S batteries, Nanomicro Lett. 11 (2019) 278–321.
|
[8] |
Y.H. Liu, C.Y. Wang, S.L. Yang, F.F. Cao, H. Ye, 3D MXene architectures as sulfur hosts for high-performance lithium-sulfur batteries, J. Energy Chem. 66 (2022) 429–439. doi: 10.1016/j.jechem.2021.08.040
|
[9] |
E.D. Jing, L. Chen, S.D. Xu, W.Z. Tian, D. Zhang, N.N. Wang, Z.C. Bai, X.X. Zhou, S.B. Liu, D.H. Duan, X.Y. Qiu, Dual redox catalysis of VN/nitrogen-doped graphene nanocomposites for high-performance lithium-sulfur batteries, J. Energy Chem. 64 (2022) 574–582. doi: 10.1016/j.jechem.2021.05.015
|
[10] |
W. Chen, T.Y. Lei, C.Y. Wu, M. Deng, C.H. Gong, K. Hu, Y.C. Ma, L.P. Dai, W.Q. Lv, W.D. He, X.J. Liu, J. Xiong, C.L. Yan, Designing safe electrolyte systems for a highstability lithium-sulfur battery, Adv. Energy Mater. 8 (2018) 1702348. doi: 10.1002/aenm.201702348
|
[11] |
P. Bonnick, K. Niitani, M. Nose, K. Suto, T.S. Arthur, J. Muldoon, A high performance all solid state lithium sulfur battery with lithium thiophosphate solid electrolyte, J. Mater. Chem. 7 (2019) 24173–24179. doi: 10.1039/C9TA06971B
|
[12] |
E.P. Kamphaus, P.B. Balbuena, Localized high concentration electrolyte and its effects on polysulfide structure in solution, J. Phys. Chem. C 125 (2021) 20157–20170. doi: 10.1021/acs.jpcc.1c04559
|
[13] |
K. Xu, X. Liang, L.L. Wang, Y. Wang, J.F. Yun, Y. Sun, H.F. Xiang, Tri-functionalized polypropylene separator by rGO/MoO2 composite for high-performance lithiumsulfur batteries, Rare Metals 40 (2021) 2810–2818. doi: 10.1007/s12598-020-01686-w
|
[14] |
Y.M. Kwon, J. Kim, K.Y. Cho, S. Yoon, Ion shielding functional separator using halloysite containing a negative functional moiety for stability improvement of Li-S batteries, J. Energy Chem. 60 (2021) 334–340. doi: 10.1016/j.jechem.2021.01.029
|
[15] |
Z.H. Wang, J. Zhang, Y.X. Yang, X.Y. Yue, X.M. Hao, W. Sun, D. Rooney, K.N. Sun, Flexible carbon nanofiber/polyvinylidene fluoride composite membranes as interlayers in high-performance lithium-sulfur batteries, J. Power Sources 329 (2016) 305–313. doi: 10.1016/j.jpowsour.2016.08.087
|
[16] |
C.X. Wang, X.W. Fu, S.N. Lin, J. Liu, W.H. Zhong, A protein-enabled protective film with functions of self-adapting and anion-anchoring for stabilizing lithium-metal batteries, J. Energy Chem. 64 (2022) 485–495. doi: 10.1016/j.jechem.2021.05.014
|
[17] |
X. Yue, J. Bao, S.Y. Yang, R.J. Luo, Q.C. Wang, X.J. Wu, Z. Shadike, X.Q. Yang, Y.N. Zhou, Petaloid-shaped ZnO coated carbon felt as a controllable host to construct hierarchical Li composite anode, Nano Energy 71 (2020) 104614. doi: 10.1016/j.nanoen.2020.104614
|
[18] |
X. Yue, Q. Zhou, J. Bao, C. Ma, S. Yang, X. Li, D. Sun, F. Fang, X. Wu, Y. Zhou, In situ construction of lithium silicide host with unhindered lithium spread for dendritefree lithium metal anode, Adv. Funct. Mater. 31 (2021) 2008786. doi: 10.1002/adfm.202008786
|
[19] |
X. Yue, X. Li, J. Bao, Q. Qiu, T. Liu, D. Chen, S. Yuan, X. Wu, J. Lu, Y. Zhou, Topdown" Li deposition pathway enabled by an asymmetric design for Li composite electrode, Adv. Energy Mater. 9 (2019) 1901491. doi: 10.1002/aenm.201901491
|
[20] |
Y.S. Su, A. Manthiram, Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer, Nat. Commun. 3 (2012) 1166. doi: 10.1038/ncomms2163
|
[21] |
Q. Pang, J.T. Tang, H. Huang, X. Liang, C. Hart, K.C. Tam, L.F. Nazar, A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium-sulfur batteries, Adv. Mater. 27 (2015) 6021–6028. doi: 10.1002/adma.201502467
|
[22] |
X. Liang, C.Y. Kwok, F. Lodi-Marzano, Q. Pang, M. Cuisinier, H. Huang, C.J. Hart, D. Houtarde, K. Kaup, H. Sommer, T. Brezesinski, J. Janek, L.F. Nazar, Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: the "goldilocks" principle, Adv. Energy Mater. 6 (2016) 1501636. doi: 10.1002/aenm.201501636
|
[23] |
Q. Pang, C.Y. Kwok, D. Kundu, X. Liang, L.F. Nazar, Lightweight metallic MgB2 mediates polysulfide redox and promises high-energy-density lithium-sulfur batteries, Joule 3 (2019) 136–148. doi: 10.1016/j.joule.2018.09.024
|
[24] |
Y.Q. Mao, W. Sun, X.Y. Yue, W.S. Hou, T.T. Deng, L.L. He, L. Fang, R. Sun, Z.H. Wang, K.N. Sun, Flexible free-standing cathode enabled via multifunctional Mo2C for high sulfur loading lithium-sulfur batteries, J. Power Sources 506 (2021) 230254. doi: 10.1016/j.jpowsour.2021.230254
|
[25] |
S. Wang, H. Chen, J. Liao, Q. Sun, F. Zhao, J. Luo, X. Lin, X. Niu, M. Wu, R. Li, X. Sun, Efficient trapping and catalytic conversion of polysulfides by VS4 nanosites for Li–S batteries, ACS Energy Lett. 4 (2019) 755–762. doi: 10.1021/acsenergylett.9b00076
|
[26] |
X.F. Yang, X.J. Gao, Q. Sun, S.P. Jand, Y. Yu, Y. Zhao, X. Li, K. Adair, L.Y. Kuo, J. Rohrer, J.N. Liang, X.T. Lin, M.N. Banis, Y.F. Hu, H.Z. Zhang, X.F. Li, R.Y. Li, H.M. Zhang, P. Kaghazchi, T.K. Sham, X.L. Sun, Promoting the transformation of Li2S2 to Li2S: significantly increasing utilization of active materials for high-sulfurloading Li-S batteries, Adv. Mater. 31 (2019) 1901220. doi: 10.1002/adma.201901220
|
[27] |
F.Y. Fan, M.S. Pan, K.C. Lau, R.S. Assary, W.H. Woodford, L.A. Curtiss, W.C. Carter, Y.M. Chiang, Solvent effects on polysulfide redox kinetics and ionic conductivity in lithium-sulfur batteries, J. Electrochem. Soc. 163 (2016) A3111–A3116. doi: 10.1149/2.1181614jes
|
[28] |
S.Z. Wang, S.P. Feng, J.W. Liang, Q.M. Su, F.P. Zhao, H.J. Song, M.H. Zheng, Q. Sun, Z.X. Song, X.H. Jia, J. Yang, Y. Li, J.X. Liao, R.Y. Li, X.L. Sun, Insight into MoS2-MoN heterostructure to accelerate polysulfide conversion toward high-energy-density lithium-sulfur batteries, Adv. Energy Mater. 11 (2021) 2003314. doi: 10.1002/aenm.202003314
|
[29] |
C. Ye, Y. Jiao, H.Y. Jin, A.D. Slattery, K. Davey, H.H. Wang, S.Z. Qiao, 2D MoN-VN heterostructure to regulate polysulfides for highly efficient lithium-sulfur batteries, Angew. Chem. Int. Ed. 57 (2018) 16703–16707. doi: 10.1002/anie.201810579
|
[30] |
Y.Z. Song, W. Zhao, L. Kong, L. Zhang, X.Y. Zhu, Y.L. Shao, F. Ding, Q. Zhang, J.Y. Sun, Z.F. Liu, Synchronous immobilization and conversion of polysulfides on a VO2-VN binary host targeting high sulfur load Li-S batteries, Energy Environ. Sci. 11 (2018) 2620–2630. doi: 10.1039/C8EE01402G
|
[31] |
T. Yang, J. Xia, Z.H. Piao, L. Yang, S.C. Zhang, Y.L. Xing, G.M. Zhou, Graphenebased materials for flexible lithium-sulfur batteries, ACS Nano 15 (2021) 13901–13923. doi: 10.1021/acsnano.1c03183
|
[32] |
P.Q. Guo, D.Q. Liu, Z.J. Liu, X.N. Shang, Q.M. Liu, D.Y. He, Dual functional MoS2/ graphene interlayer as an efficient polysulfide barrier for advanced lithium-sulfur batteries, Electrochim. Acta 256 (2017) 28–36. doi: 10.1016/j.electacta.2017.10.003
|
[33] |
L. Chen, H. Yu, W.X. Li, M. Dirican, Y. Liu, X.W. Zhang, Interlayer design based on carbon materials for lithium-sulfur batteries: a review, J. Mater. Chem. 8 (2020) 10709–10735. doi: 10.1039/D0TA03028G
|
[34] |
D. Tian, X.Q. Song, M.X. Wang, X. Wu, Y. Qiu, B. Guan, X.Z. Xu, L.S. Fan, N.Q. Zhang, K.N. Sun, MoN supported on graphene as a bifunctional interlayer for advanced Li-S batteries, Adv. Energy Mater. 9 (2019) 1901940. doi: 10.1002/aenm.201901940
|
[35] |
G.M. Zhou, H.Z. Tian, Y. Jin, X.Y. Tao, B.F. Liu, R.F. Zhang, Z.W. Seh, D. Zhuo, Y.Y. Liu, J. Sun, J. Zhao, C.X. Zu, D.S. Wu, Q.F. Zhang, Y. Cui, Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries, Proc. Natl. Acad. Sci. U.S.A. 114 (2017) 840–845. doi: 10.1073/pnas.1615837114
|
[36] |
Y.Z. Wang, X.Y. Shan, D.W. Wang, Z.H. Sun, H.M. Cheng, F. Li, A rechargeable quasi-symmetrical MoS2 battery, Joule 2 (2018) 1278–1286. doi: 10.1016/j.joule.2018.04.007
|
[37] |
S.Z. Wang, J.X. Liao, X.F. Yang, J.N. Liang, Q. Sun, J.W. Liang, F.P. Zhao, A. Koo, F.P. Kong, Y. Yao, X.J. Gao, M.Q. Wu, S.Z. Yang, R.Y. Li, X.L. Sun, Designing a highly efficient polysulfide conversion catalyst with paramontroseite for highperformance and long-life lithium-sulfur batteries, Nano Energy 57 (2019) 230–240. doi: 10.1016/j.nanoen.2018.12.020
|
[38] |
H.D. Liu, Z.L. Chen, H. Man, S.P. Yang, Y. Song, F. Fang, R.C. Che, D.L. Sun, Template-guided synthesis of porous MoN microrod as an effective sulfur host for high-performance lithium-sulfur batteries, J. Alloys Compd. 842 (2020) 155764. doi: 10.1016/j.jallcom.2020.155764
|
[39] |
Z.H. Gu, C. Cheng, T.R. Yan, G.L. Liu, J.S. Jiang, J. Mao, K.H. Dai, J. Li, J.P. Wu, L. Zhang, Synergistic effect of Co3Fe7 alloy and N-doped hollow carbon spheres with high activity and stability for high-performance lithium-sulfur batteries, Nano Energy 86 (2021) 106111. doi: 10.1016/j.nanoen.2021.106111
|
[40] |
Z.M. Tong, L. Huang, H.P. Liu, W. Lei, H.J. Zhang, S.W. Zhang, Q.L. Jia, Defective graphitic carbon nitride modified separators with efficient polysulfide traps and catalytic sites for fast and reliable sulfur electrochemistry, Adv. Funct. Mater. 31 (2021) 2010455. doi: 10.1002/adfm.202010455
|
[41] |
W.Q. Yao, W.Z. Zheng, J. Xu, C.X. Tian, K. Han, W.Z. Sun, S.X. Xiao, ZnS-SnS@NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium-sulfur batteries, ACS Nano 15 (2021) 7114–7130. doi: 10.1021/acsnano.1c00270
|
[42] |
C. Deng, Z.W. Wang, S.P. Wang, J.X. Yu, D.J. Martin, A.K. Nanjundan, Y. Yamauchi, Double-layered modified separators as shuttle suppressing interlayers for lithium-sulfur batteries, ACS Appl. Mater. Interfaces 11 (2019) 541–549. doi: 10.1021/acsami.8b14196
|
[43] |
Y.Q. Wang, J.J. He, Z.Q. Zhang, Z.H. Liu, C.S. Huang, Y.C. Jin, Graphdiyne-modified polyimide separator: a polysulfide-immobilizing net hinders the shuttling of polysulfides in lithium-sulfur battery, ACS Appl. Mater. Interfaces 11 (2019) 35738–35745. doi: 10.1021/acsami.9b11989
|
[44] |
L. Zhu, L.J. You, P.H. Zhu, X.Q. Shen, L.Z. Yang, K.S. Xiao, High performance lithium-sulfur batteries with a sustainable and environmentally friendly carbon aerogel modified separator, ACS Sustain. Chem. Eng. 6 (2018) 248–257. doi: 10.1021/acssuschemeng.7b02322
|
[45] |
H.Y. Pan, Z. Tan, H.H. Zhou, L.L. Jiang, Z.Y. Huang, Q.X. Feng, Q. Zhou, S. Ma, Y.F. Kuang, Fe3C-N-doped carbon modified separator for high performance lithium-sulfur batteries, J. Energy Chem. 39 (2019) 101–108. doi: 10.1016/j.jechem.2019.01.019
|
[46] |
D.Q. He, J.T. Meng, X.Y. Chen, Y.Q. Liao, Z.X. Cheng, L.X. Yuan, Z. Li, Y.H. Huang, Ultrathin conductive interlayer with high-density antisite defects for advanced lithium-sulfur batteries, Adv. Funct. Mater. 31 (2021) 2001201. doi: 10.1002/adfm.202001201
|
[47] |
L.W. Yang, Y. Li, Y. Wang, Q. Li, Y.X. Chen, B.H. Zhong, X.D. Guo, Z.G. Wu, Y.X. Liu, G.K. Wang, Y. Song, W. Xiang, Y.J. Zhong, Nitrogen-doped sheet VO2 modified separator to enhanced long-cycle performance lithium-sulfur battery, J. Power Sources 501 (2021) 230040. doi: 10.1016/j.jpowsour.2021.230040
|
[48] |
C. Chen, Q.B. Jiang, H.F. Xu, Y.P. Zhang, B.K. Zhang, Z.Y. Zhang, Z. Lin, S.Q. Zhang, Ni/SiO2/Graphene-modified separator as a multifunctional polysulfide barrier for advanced lithium-sulfur batteries, Nano Energy 76 (2020) 105033. doi: 10.1016/j.nanoen.2020.105033
|