Citation: | Wang Zhifang, Zhang Yushu, Zhang Penghui, Yan Dong, Liu Jinjin, Chen Yao, Liu Qi, Cheng Peng, Zaworotko Michael J., Zhang Zhenjie. Thermally rearranged covalent organic framework with flame-retardancy as a high safety Li-ion solid electrolyte[J]. eScience, 2022, 2(3): 311-318. doi: 10.1016/j.esci.2022.03.004 |
![]() |
![]() |
[1] |
M. Armand, J.M. Tarascon, Building better batteries, Nature 451 (2008) 652–657. doi: 10.1038/451652a
|
[2] |
J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414 (2001) 359–367. doi: 10.1038/35104644
|
[3] |
J. Lopez, D.G. Mackanic, Y. Cui, Z. Bao, Designing polymers for advanced battery chemistries, Nat. Rev. Mater. 4 (2019) 312–330. doi: 10.1038/s41578-019-0103-6
|
[4] |
T.F. Miller, Z. -G. Wang, G.W. Coates, N.P. Balsara, Designing polymer electrolytes for safe and high capacity rechargeable lithium batteries, Acc. Chem. Res. 50 (2017) 590–593. doi: 10.1021/acs.accounts.6b00568
|
[5] |
A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes, Nat. Rev. Mater. 2 (2017) 16103. doi: 10.1038/natrevmats.2016.103
|
[6] |
W. Liu, S.W. Lee, D. Lin, F. Shi, S. Wang, A.D. Sendek, Y. Cui, Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires, Nat. Energy 2 (2017) 17035. doi: 10.1038/nenergy.2017.35
|
[7] |
S. Xu, H. Dai, S. Zhu, Y. Wu, M. Sun, Y. Chen, K. Fan, C. Zhang, C. Wang, W. Hu, A branched dihydrophenazine-based polymer as a cathode material to achieve dualion batteries with high energy and power density, eScience 1 (2021) 60–68. doi: 10.1016/j.esci.2021.08.002
|
[8] |
C.S. Diercks, O.M. Yaghi, The atom, the molecule, and the covalent organic framework, Science 355 (2017) eaal1585. doi: 10.1126/science.aal1585
|
[9] |
K. Geng, T. He, R. Liu, S. Dalapati, K.T. Tan, Z. Li, S. Tao, Y. Gong, Q. Jiang, D. Jiang, Covalent organic frameworks: design, synthesis, and functions, Chem. Rev. 120 (2020) 8814–8933. doi: 10.1021/acs.chemrev.9b00550
|
[10] |
B. Gui, G. Lin, H. Ding, C. Gao, A. Mal, C. Wang, Three-dimensional covalent organic frameworks: from topology design to applications, Acc. Chem. Res. 53 (2020) 2225–2234. doi: 10.1021/acs.accounts.0c00357
|
[11] |
Y. Yusran, X. Guan, H. Li, Q. Fang, S. Qiu, Postsynthetic functionalization of covalent organic frameworks, Natl. Sci. Rev. 7 (2019) 170–190.
|
[12] |
X. Han, C. Yuan, B. Hou, L. Liu, H. Li, Y. Liu, Y. Cui, Chiral covalent organic frameworks: design, synthesis and property, Chem. Soc. Rev. 49 (2020) 6248–6272. doi: 10.1039/D0CS00009D
|
[13] |
J. Liu, T. Yang, Z. -P. Wang, P. -L. Wang, J. Feng, S. -Y. Ding, W. Wang, Pyrimidazolebased covalent organic frameworks: integrating functionality and ultrastability via Isocyanide chemistry, J. Am. Chem. Soc. 142 (2020) 20956–20961. doi: 10.1021/jacs.0c10919
|
[14] |
Z. Wang, S. Zhang, Y. Chen, Z. Zhang, S. Ma, Covalent organic frameworks for separation applications, Chem. Soc. Rev. 49 (2020) 708–735. doi: 10.1039/C9CS00827F
|
[15] |
Y. Liu, W. Zhou, W.L. Teo, K. Wang, L. Zhang, Y. Zeng, Y. Zhao, Covalent-organicframework-based composite materials, Chem 6 (2020) 3172–3202. doi: 10.1016/j.chempr.2020.08.021
|
[16] |
X. Li, K.P. Loh, Recent progress in covalent organic frameworks as solid-state ion conductors, ACS Mater. Lett. 1 (2019) 327–335. doi: 10.1021/acsmaterialslett.9b00185
|
[17] |
Z. Wang, Y. Yang, Z. Zhao, P. Zhang, Y. Zhang, J. Liu, S. Ma, P. Cheng, Y. Chen, Z. Zhang, Green synthesis of olefin-linked covalent organic frameworks for hydrogen fuel cell applications, Nat. Commun. 12 (2021) 1982. doi: 10.1038/s41467-021-22288-9
|
[18] |
G. Zhang, Y. -l. Hong, Y. Nishiyama, S. Bai, S. Kitagawa, S. Horike, Accumulation of glassy poly(ethylene oxide) anchored in a covalent organic framework as a solidstate Liþ electrolyte, J. Am. Chem. Soc. 141 (2019) 1227–1234. doi: 10.1021/jacs.8b07670
|
[19] |
Z. Guo, Y. Zhang, Y. Dong, J. Li, S. Li, P. Shao, X. Feng, B. Wang, Fast ion transport pathway provided by polyethylene glycol confined in covalent organic frameworks, J. Am. Chem. Soc. 141 (2019) 1923–1927. doi: 10.1021/jacs.8b13551
|
[20] |
Z. Guo, Y. Zhang, Y. Dong, J. Li, S. Li, P. Shao, X. Feng, B. Wang, Solvent-free, single lithium-ion conducting covalent organic frameworks, J. Am. Chem. Soc. 141 (2019) 5880–5885. doi: 10.1021/jacs.9b00543
|
[21] |
Q. Xu, S. Tao, Q. Jiang, D. Jiang, Ion conduction in polyelectrolyte covalent organic frameworks, J. Am. Chem. Soc. 140 (2018) 7429–7432. doi: 10.1021/jacs.8b03814
|
[22] |
Y. Hu, N. Dunlap, S. Wan, S. Lu, S. Huang, I. Sellinger, M. Ortiz, Y. Jin, S. -h. Lee, W. Zhang, Crystalline lithium imidazolate covalent organic frameworks with high Li-ion conductivity, J. Am. Chem. Soc. 141 (2019) 7518–7525. doi: 10.1021/jacs.9b02448
|
[23] |
D.A. Vazquez-Molina, G.S. Mohammad-Pour, C. Lee, M.W. Logan, X. Duan, J.K. Harper, F.J. Uribe-Romo, Mechanically shaped two-dimensional covalent organic frameworks reveal crystallographic alignment and fast Li-ion conductivity, J. Am. Chem. Soc. 138 (2016) 9767–9770. doi: 10.1021/jacs.6b05568
|
[24] |
H. Chen, H. Tu, C. Hu, Y. Liu, D. Dong, Y. Sun, Y. Dai, S. Wang, H. Qian, Z. Lin, L. Chen, Cationic covalent organic framework nanosheets for fast Li-ion conduction, J. Am. Chem. Soc. 140 (2018) 896–899. doi: 10.1021/jacs.7b12292
|
[25] |
Z. Zhao, W. Chen, S. Impeng, M. Li, R. Wang, Y. Liu, L. Zhang, L. Dong, J. Unruangsri, C. Peng, C. Wang, S. Namuangruk, S. -Y. Lee, Y. Wang, H. Lu, J. Guo, Covalent organic framework-based ultrathin crystalline porous film: manipulating uniformity of fluoride distribution for stabilizing lithium metal anode, J. Mater. Chem. A 8 (2020) 3459–3467. doi: 10.1039/C9TA13384D
|
[26] |
Z. Cheng, M. Xie, Y. Mao, J. Ou, S. Zhang, Z. Zhao, J. Li, F. Fu, J. Wu, Y. Shen, D. Lu, H. Chen, Building lithiophilic ion-conduction highways on garnet-type solid-state Li þ conductors, Adv. Energy Mater. 10 (2020) 1904230. doi: 10.1002/aenm.201904230
|
[27] |
C. Montoro, D. Rodríguez-San-Miguel, E. Polo, R. Escudero-Cid, M.L. RuizGonzález, J.A.R. Navarro, P. Ocon, F. Zamora, Ionic conductivity and potential application for fuel cell of a modified imine-based covalent organic framework, J. Am. Chem. Soc. 139 (2017) 10079–10086. doi: 10.1021/jacs.7b05182
|
[28] |
H.S. Sasmal, H.B. Aiyappa, S.N. Bhange, S. Karak, A. Halder, S. Kurungot, R. Banerjee, Superprotonic conductivity in flexible porous covalent organic framework membranes, Angew. Chem. Int. Ed. 57 (2018) 10894–10898. doi: 10.1002/anie.201804753
|
[29] |
Z. -C. Guo, Z. -Q. Shi, X. -Y. Wang, Z. -F. Li, G. Li, Proton conductive covalent organic frameworks, Coord. Chem. Rev. 422 (2020) 213465. doi: 10.1016/j.ccr.2020.213465
|
[30] |
I. Castano, A.M. Evans, H. Li, E. Vitaku, M.J. Strauss, J. -L. Brédas, N.C. Gianneschi, W.R. Dichtel, Chemical control over nucleation and anisotropic growth of twodimensional covalent organic frameworks, ACS Cent. Sci. 5 (2019) 1892–1899. doi: 10.1021/acscentsci.9b00944
|
[31] |
S. -Y. Jiang, S. -X. Gan, X. Zhang, H. Li, Q. -Y. Qi, F. -Z. Cui, J. Lu, X. Zhao, Aminallinked covalent organic frameworks through condensation of secondary amine with aldehyde, J. Am. Chem. Soc. 141 (2019) 14981–14986. doi: 10.1021/jacs.9b08017
|
[32] |
X. He, Y. Yang, H. Wu, G. He, Z. Xu, Y. Kong, L. Cao, B. Shi, Z. Zhang, C. Tongsh, K. Jiao, K. Zhu, Z. Jiang, De novo design of covalent organic framework membranes toward ultrafast anion transport, Adv. Mater. 32 (2020) 2001284.
|
[33] |
S. Kandambeth, K. Dey, R. Banerjee, Covalent organic frameworks: chemistry beyond the structure, J. Am. Chem. Soc. 141 (2019) 1807–1822. doi: 10.1021/jacs.8b10334
|
[34] |
X. -T. Li, J. Zou, T. -H. Wang, H. -C. Ma, G. -J. Chen, Y. -B. Dong, Construction of covalent organic frameworks via three-component one-pot strecker and povarov reactions, J. Am. Chem. Soc. 142 (2020) 6521–6526. doi: 10.1021/jacs.0c00969
|
[35] |
M. Yu, R. Dong, X. Feng, Two-dimensional carbon-rich conjugated frameworks for electrochemical energy applications, J. Am. Chem. Soc. 142 (2020) 12903–12915. doi: 10.1021/jacs.0c05130
|
[36] |
R. -R. Liang, S. -Y. Jiang, R. -H. A, X. Zhao, Two-dimensional covalent organic frameworks with hierarchical porosity, Chem. Soc. Rev. 49 (2020) 3920–3951. doi: 10.1039/D0CS00049C
|
[37] |
X. Zhao, P. Pachfule, A. Thomas, Covalent organic frameworks (COFs) for electrochemical applications, Chem. Soc. Rev. 50 (2021) 6871–6973. doi: 10.1039/D0CS01569E
|
[38] |
Y. Su, Y. Wan, H. Xu, K. -i. Otake, X. Tang, L. Huang, S. Kitagawa, C. Gu, Crystalline and stable benzofuran-linked covalent organic frameworks from irreversible cascade reactions, J. Am. Chem. Soc. 142 (2020) 13316–13321. doi: 10.1021/jacs.0c05970
|
[39] |
Z. Yang, H. Chen, S. Wang, W. Guo, T. Wang, X. Suo, D. -e. Jiang, X. Zhu, I. Popovs, S. Dai, Transformation strategy for highly crystalline covalent triazine frameworks: from staggered AB to eclipsed AA stacking, J. Am. Chem. Soc. 142 (2020) 6856–6860. doi: 10.1021/jacs.0c00365
|
[40] |
N. Keller, T. Bein, Optoelectronic processes in covalent organic frameworks, Chem. Soc. Rev. 50 (2021) 1813–1845. doi: 10.1039/D0CS00793E
|
[41] |
W. He, P. Song, B. Yu, Z. Fang, H. Wang, Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants, Prog. Mater. Sci. 114 (2020) 100687. doi: 10.1016/j.pmatsci.2020.100687
|
[42] |
X. Wang, E.N. Kalali, J. -T. Wan, D. -Y. Wang, Carbon-family materials for flame retardant polymeric materials, Prog. Polym. Sci. 69 (2017) 22–46. doi: 10.1016/j.progpolymsci.2017.02.001
|
[43] |
B. -W. Liu, L. Chen, D. -M. Guo, X. -F. Liu, Y. -F. Lei, X. -M. Ding, Y. -Z. Wang, Fire-safe polyesters enabled by end-group capturing chemistry, Angew. Chem. Int. Ed. 58 (2019) 9188–9193. doi: 10.1002/anie.201900356
|
[44] |
B. -Y. Ryu, T. Emrick, Thermally induced structural transformation of bisphenol- 1, 2, 3-triazole polymers: smart, self-extinguishing materials, Angew. Chem. Int. Ed. 49 (2010) 9644–9647. doi: 10.1002/anie.201005456
|
[45] |
Q. Fang, Z. Zhuang, S. Gu, R.B. Kaspar, J. Zheng, J. Wang, S. Qiu, Y. Yan, Designed synthesis of large-pore crystalline polyimide covalent organic frameworks, Nat. Commun. 5 (2014) 4503. doi: 10.1038/ncomms5503
|
[46] |
H.B. Park, C.H. Jung, Y.M. Lee, A.J. Hill, S.J. Pas, S.T. Mudie, E. Van Wagner, B.D. Freeman, D.J. Cookson, Polymers with cavities tuned for fast selective transport of small molecules and ions, Science 318 (2007) 254. doi: 10.1126/science.1146744
|
[47] |
R. Guo, D.F. Sanders, Z.P. Smith, B.D. Freeman, D.R. Paul, J.E. McGrath, Synthesis and characterization of thermally rearranged (TR) polymers: influence of orthopositioned functional groups of polyimide precursors on TR process and gas transport properties, J. Mater. Chem. A 1 (2013) 262–272. doi: 10.1039/C2TA00799A
|
[48] |
D. Lin, C. Hu, H. Chen, J. Qu, L. Dai, Microporous N, P-codoped graphitic nanosheets as an efficient electrocatalyst for oxygen reduction in whole pH range for energy conversion and biosensing dissolved oxygen, Chem. Eur. J. 24 (2018) 18487–18493. doi: 10.1002/chem.201802040
|
[49] |
P. Zhang, F. Wang, M. Yu, X. Zhuang, X. Feng, Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems, Chem. Soc. Rev. 47 (2018) 7426–7451. doi: 10.1039/C8CS00561C
|
[50] |
H. Wei, F. Wang, H. Sun, Z. Zhu, C. Xiao, W. Liang, B. Yang, L. Chen, A. Li, Benzotriazole-based conjugated microporous polymers as efficient flame retardants with better thermal insulation properties, J. Mater. Chem. A 6 (2018) 8633–8642. doi: 10.1039/C7TA11283A
|
[51] |
Z. Xie, B. Wang, Z. Yang, X. Yang, X. Yu, G. Xing, Y. Zhang, L. Chen, Stable 2D heteroporous covalent organic frameworks for efficient ionic conduction, Angew. Chem. Int. Ed. 58 (2019) 15742–15746. doi: 10.1002/anie.201909554
|
[52] |
F. Meng, S. Bi, Z. Sun, B. Jiang, D. Wu, J. -S. Chen, F. Zhang, Synthesis of ionic vinylene-linked covalent organic frameworks through quaternization-activated Knoevenagel condensation, Angew. Chem. Int. Ed. 60 (2021) 13614–13620. doi: 10.1002/anie.202104375
|
[53] |
S. Ashraf, Y. Zuo, S. Li, C. Liu, H. Wang, X. Feng, P. Li, B. Wang, Crystalline anionic germanate covalent organic framework for high CO2 selectivity and fast Li ion conduction, Chem. Eur. J. 25 (2019) 13479–13483. doi: 10.1002/chem.201903011
|