Volume 2 Issue 3
May  2022
Turn off MathJax
Article Contents
Wang Zhifang, Zhang Yushu, Zhang Penghui, Yan Dong, Liu Jinjin, Chen Yao, Liu Qi, Cheng Peng, Zaworotko Michael J., Zhang Zhenjie. Thermally rearranged covalent organic framework with flame-retardancy as a high safety Li-ion solid electrolyte[J]. eScience, 2022, 2(3): 311-318. doi: 10.1016/j.esci.2022.03.004
Citation: Wang Zhifang, Zhang Yushu, Zhang Penghui, Yan Dong, Liu Jinjin, Chen Yao, Liu Qi, Cheng Peng, Zaworotko Michael J., Zhang Zhenjie. Thermally rearranged covalent organic framework with flame-retardancy as a high safety Li-ion solid electrolyte[J]. eScience, 2022, 2(3): 311-318. doi: 10.1016/j.esci.2022.03.004

Thermally rearranged covalent organic framework with flame-retardancy as a high safety Li-ion solid electrolyte

doi: 10.1016/j.esci.2022.03.004
More Information
  • Corresponding author: E-mail address: zhangzhenjie@nankai.edu.cn (Z. Zhang)
  • Received Date: 2022-02-10
  • Revised Date: 2022-02-28
  • Accepted Date: 2022-03-11
  • Available Online: 2022-03-14
  • Solid polymer electrolytes have demonstrated high promise to solve the safety problems caused by conventional liquid electrolytes in lithium ion batteries. However, the inherent flammability of most polymer electrolyte materials remains unresolved, hence hindering their further industrial application. Addressing this challenge, we designed and constructed a thermal-responsive imide-linked covalent organic framework (COF) bearing ortho-positioned hydroxy groups as precursors, which can conduct a thermal rearrangement to transform into a highly crystalline and robust benzoxazole-linked COF upon heating. Benefiting from the release of carbon dioxide through thermal rearrangement reaction, this COF platform exhibited excellent flame retardant properties. By contrast, classic COFs (e.g., boronate ester, imine, olefin, imide linked) were all flammable. Moreover, incorporating polyethylene glycol and Li salt into the COF channels can produce solid polymer electrolytes with outstanding flame retardancy, high ionic conductivity (6.42 ​× ​10−4 ​S ​cm−1) and a high lithium-ion transference number of 0.95. This thermal rearrangement strategy not only opens a new route for the fabrication of ultrastable COFs, but also provides promising perspectives to designing flame-retardant materials for energy-related applications.
  • ● The imide-linked COFs can transform to benzoxazole-linked COFs through thermal rearrangement reaction.
    ● The thermal-responsive imide-linked COFs was first synthesized.
    ● Solid polymer electrolyte based on NKCOF-11 exhibited outstanding fire-safety and high ionic conductivity.
    ● NKCOF-11 exhibited excellent flame retardant properties due to the release of carbon dioxide.
  • loading
  • eScience-2-3-311.zip
  • [1]
    M. Armand, J.M. Tarascon, Building better batteries, Nature 451 (2008) 652–657. doi: 10.1038/451652a
    [2]
    J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414 (2001) 359–367. doi: 10.1038/35104644
    [3]
    J. Lopez, D.G. Mackanic, Y. Cui, Z. Bao, Designing polymers for advanced battery chemistries, Nat. Rev. Mater. 4 (2019) 312–330. doi: 10.1038/s41578-019-0103-6
    [4]
    T.F. Miller, Z. -G. Wang, G.W. Coates, N.P. Balsara, Designing polymer electrolytes for safe and high capacity rechargeable lithium batteries, Acc. Chem. Res. 50 (2017) 590–593. doi: 10.1021/acs.accounts.6b00568
    [5]
    A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes, Nat. Rev. Mater. 2 (2017) 16103. doi: 10.1038/natrevmats.2016.103
    [6]
    W. Liu, S.W. Lee, D. Lin, F. Shi, S. Wang, A.D. Sendek, Y. Cui, Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires, Nat. Energy 2 (2017) 17035. doi: 10.1038/nenergy.2017.35
    [7]
    S. Xu, H. Dai, S. Zhu, Y. Wu, M. Sun, Y. Chen, K. Fan, C. Zhang, C. Wang, W. Hu, A branched dihydrophenazine-based polymer as a cathode material to achieve dualion batteries with high energy and power density, eScience 1 (2021) 60–68. doi: 10.1016/j.esci.2021.08.002
    [8]
    C.S. Diercks, O.M. Yaghi, The atom, the molecule, and the covalent organic framework, Science 355 (2017) eaal1585. doi: 10.1126/science.aal1585
    [9]
    K. Geng, T. He, R. Liu, S. Dalapati, K.T. Tan, Z. Li, S. Tao, Y. Gong, Q. Jiang, D. Jiang, Covalent organic frameworks: design, synthesis, and functions, Chem. Rev. 120 (2020) 8814–8933. doi: 10.1021/acs.chemrev.9b00550
    [10]
    B. Gui, G. Lin, H. Ding, C. Gao, A. Mal, C. Wang, Three-dimensional covalent organic frameworks: from topology design to applications, Acc. Chem. Res. 53 (2020) 2225–2234. doi: 10.1021/acs.accounts.0c00357
    [11]
    Y. Yusran, X. Guan, H. Li, Q. Fang, S. Qiu, Postsynthetic functionalization of covalent organic frameworks, Natl. Sci. Rev. 7 (2019) 170–190.
    [12]
    X. Han, C. Yuan, B. Hou, L. Liu, H. Li, Y. Liu, Y. Cui, Chiral covalent organic frameworks: design, synthesis and property, Chem. Soc. Rev. 49 (2020) 6248–6272. doi: 10.1039/D0CS00009D
    [13]
    J. Liu, T. Yang, Z. -P. Wang, P. -L. Wang, J. Feng, S. -Y. Ding, W. Wang, Pyrimidazolebased covalent organic frameworks: integrating functionality and ultrastability via Isocyanide chemistry, J. Am. Chem. Soc. 142 (2020) 20956–20961. doi: 10.1021/jacs.0c10919
    [14]
    Z. Wang, S. Zhang, Y. Chen, Z. Zhang, S. Ma, Covalent organic frameworks for separation applications, Chem. Soc. Rev. 49 (2020) 708–735. doi: 10.1039/C9CS00827F
    [15]
    Y. Liu, W. Zhou, W.L. Teo, K. Wang, L. Zhang, Y. Zeng, Y. Zhao, Covalent-organicframework-based composite materials, Chem 6 (2020) 3172–3202. doi: 10.1016/j.chempr.2020.08.021
    [16]
    X. Li, K.P. Loh, Recent progress in covalent organic frameworks as solid-state ion conductors, ACS Mater. Lett. 1 (2019) 327–335. doi: 10.1021/acsmaterialslett.9b00185
    [17]
    Z. Wang, Y. Yang, Z. Zhao, P. Zhang, Y. Zhang, J. Liu, S. Ma, P. Cheng, Y. Chen, Z. Zhang, Green synthesis of olefin-linked covalent organic frameworks for hydrogen fuel cell applications, Nat. Commun. 12 (2021) 1982. doi: 10.1038/s41467-021-22288-9
    [18]
    G. Zhang, Y. -l. Hong, Y. Nishiyama, S. Bai, S. Kitagawa, S. Horike, Accumulation of glassy poly(ethylene oxide) anchored in a covalent organic framework as a solidstate Liþ electrolyte, J. Am. Chem. Soc. 141 (2019) 1227–1234. doi: 10.1021/jacs.8b07670
    [19]
    Z. Guo, Y. Zhang, Y. Dong, J. Li, S. Li, P. Shao, X. Feng, B. Wang, Fast ion transport pathway provided by polyethylene glycol confined in covalent organic frameworks, J. Am. Chem. Soc. 141 (2019) 1923–1927. doi: 10.1021/jacs.8b13551
    [20]
    Z. Guo, Y. Zhang, Y. Dong, J. Li, S. Li, P. Shao, X. Feng, B. Wang, Solvent-free, single lithium-ion conducting covalent organic frameworks, J. Am. Chem. Soc. 141 (2019) 5880–5885. doi: 10.1021/jacs.9b00543
    [21]
    Q. Xu, S. Tao, Q. Jiang, D. Jiang, Ion conduction in polyelectrolyte covalent organic frameworks, J. Am. Chem. Soc. 140 (2018) 7429–7432. doi: 10.1021/jacs.8b03814
    [22]
    Y. Hu, N. Dunlap, S. Wan, S. Lu, S. Huang, I. Sellinger, M. Ortiz, Y. Jin, S. -h. Lee, W. Zhang, Crystalline lithium imidazolate covalent organic frameworks with high Li-ion conductivity, J. Am. Chem. Soc. 141 (2019) 7518–7525. doi: 10.1021/jacs.9b02448
    [23]
    D.A. Vazquez-Molina, G.S. Mohammad-Pour, C. Lee, M.W. Logan, X. Duan, J.K. Harper, F.J. Uribe-Romo, Mechanically shaped two-dimensional covalent organic frameworks reveal crystallographic alignment and fast Li-ion conductivity, J. Am. Chem. Soc. 138 (2016) 9767–9770. doi: 10.1021/jacs.6b05568
    [24]
    H. Chen, H. Tu, C. Hu, Y. Liu, D. Dong, Y. Sun, Y. Dai, S. Wang, H. Qian, Z. Lin, L. Chen, Cationic covalent organic framework nanosheets for fast Li-ion conduction, J. Am. Chem. Soc. 140 (2018) 896–899. doi: 10.1021/jacs.7b12292
    [25]
    Z. Zhao, W. Chen, S. Impeng, M. Li, R. Wang, Y. Liu, L. Zhang, L. Dong, J. Unruangsri, C. Peng, C. Wang, S. Namuangruk, S. -Y. Lee, Y. Wang, H. Lu, J. Guo, Covalent organic framework-based ultrathin crystalline porous film: manipulating uniformity of fluoride distribution for stabilizing lithium metal anode, J. Mater. Chem. A 8 (2020) 3459–3467. doi: 10.1039/C9TA13384D
    [26]
    Z. Cheng, M. Xie, Y. Mao, J. Ou, S. Zhang, Z. Zhao, J. Li, F. Fu, J. Wu, Y. Shen, D. Lu, H. Chen, Building lithiophilic ion-conduction highways on garnet-type solid-state Li þ conductors, Adv. Energy Mater. 10 (2020) 1904230. doi: 10.1002/aenm.201904230
    [27]
    C. Montoro, D. Rodríguez-San-Miguel, E. Polo, R. Escudero-Cid, M.L. RuizGonzález, J.A.R. Navarro, P. Ocon, F. Zamora, Ionic conductivity and potential application for fuel cell of a modified imine-based covalent organic framework, J. Am. Chem. Soc. 139 (2017) 10079–10086. doi: 10.1021/jacs.7b05182
    [28]
    H.S. Sasmal, H.B. Aiyappa, S.N. Bhange, S. Karak, A. Halder, S. Kurungot, R. Banerjee, Superprotonic conductivity in flexible porous covalent organic framework membranes, Angew. Chem. Int. Ed. 57 (2018) 10894–10898. doi: 10.1002/anie.201804753
    [29]
    Z. -C. Guo, Z. -Q. Shi, X. -Y. Wang, Z. -F. Li, G. Li, Proton conductive covalent organic frameworks, Coord. Chem. Rev. 422 (2020) 213465. doi: 10.1016/j.ccr.2020.213465
    [30]
    I. Castano, A.M. Evans, H. Li, E. Vitaku, M.J. Strauss, J. -L. Brédas, N.C. Gianneschi, W.R. Dichtel, Chemical control over nucleation and anisotropic growth of twodimensional covalent organic frameworks, ACS Cent. Sci. 5 (2019) 1892–1899. doi: 10.1021/acscentsci.9b00944
    [31]
    S. -Y. Jiang, S. -X. Gan, X. Zhang, H. Li, Q. -Y. Qi, F. -Z. Cui, J. Lu, X. Zhao, Aminallinked covalent organic frameworks through condensation of secondary amine with aldehyde, J. Am. Chem. Soc. 141 (2019) 14981–14986. doi: 10.1021/jacs.9b08017
    [32]
    X. He, Y. Yang, H. Wu, G. He, Z. Xu, Y. Kong, L. Cao, B. Shi, Z. Zhang, C. Tongsh, K. Jiao, K. Zhu, Z. Jiang, De novo design of covalent organic framework membranes toward ultrafast anion transport, Adv. Mater. 32 (2020) 2001284.
    [33]
    S. Kandambeth, K. Dey, R. Banerjee, Covalent organic frameworks: chemistry beyond the structure, J. Am. Chem. Soc. 141 (2019) 1807–1822. doi: 10.1021/jacs.8b10334
    [34]
    X. -T. Li, J. Zou, T. -H. Wang, H. -C. Ma, G. -J. Chen, Y. -B. Dong, Construction of covalent organic frameworks via three-component one-pot strecker and povarov reactions, J. Am. Chem. Soc. 142 (2020) 6521–6526. doi: 10.1021/jacs.0c00969
    [35]
    M. Yu, R. Dong, X. Feng, Two-dimensional carbon-rich conjugated frameworks for electrochemical energy applications, J. Am. Chem. Soc. 142 (2020) 12903–12915. doi: 10.1021/jacs.0c05130
    [36]
    R. -R. Liang, S. -Y. Jiang, R. -H. A, X. Zhao, Two-dimensional covalent organic frameworks with hierarchical porosity, Chem. Soc. Rev. 49 (2020) 3920–3951. doi: 10.1039/D0CS00049C
    [37]
    X. Zhao, P. Pachfule, A. Thomas, Covalent organic frameworks (COFs) for electrochemical applications, Chem. Soc. Rev. 50 (2021) 6871–6973. doi: 10.1039/D0CS01569E
    [38]
    Y. Su, Y. Wan, H. Xu, K. -i. Otake, X. Tang, L. Huang, S. Kitagawa, C. Gu, Crystalline and stable benzofuran-linked covalent organic frameworks from irreversible cascade reactions, J. Am. Chem. Soc. 142 (2020) 13316–13321. doi: 10.1021/jacs.0c05970
    [39]
    Z. Yang, H. Chen, S. Wang, W. Guo, T. Wang, X. Suo, D. -e. Jiang, X. Zhu, I. Popovs, S. Dai, Transformation strategy for highly crystalline covalent triazine frameworks: from staggered AB to eclipsed AA stacking, J. Am. Chem. Soc. 142 (2020) 6856–6860. doi: 10.1021/jacs.0c00365
    [40]
    N. Keller, T. Bein, Optoelectronic processes in covalent organic frameworks, Chem. Soc. Rev. 50 (2021) 1813–1845. doi: 10.1039/D0CS00793E
    [41]
    W. He, P. Song, B. Yu, Z. Fang, H. Wang, Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants, Prog. Mater. Sci. 114 (2020) 100687. doi: 10.1016/j.pmatsci.2020.100687
    [42]
    X. Wang, E.N. Kalali, J. -T. Wan, D. -Y. Wang, Carbon-family materials for flame retardant polymeric materials, Prog. Polym. Sci. 69 (2017) 22–46. doi: 10.1016/j.progpolymsci.2017.02.001
    [43]
    B. -W. Liu, L. Chen, D. -M. Guo, X. -F. Liu, Y. -F. Lei, X. -M. Ding, Y. -Z. Wang, Fire-safe polyesters enabled by end-group capturing chemistry, Angew. Chem. Int. Ed. 58 (2019) 9188–9193. doi: 10.1002/anie.201900356
    [44]
    B. -Y. Ryu, T. Emrick, Thermally induced structural transformation of bisphenol- 1, 2, 3-triazole polymers: smart, self-extinguishing materials, Angew. Chem. Int. Ed. 49 (2010) 9644–9647. doi: 10.1002/anie.201005456
    [45]
    Q. Fang, Z. Zhuang, S. Gu, R.B. Kaspar, J. Zheng, J. Wang, S. Qiu, Y. Yan, Designed synthesis of large-pore crystalline polyimide covalent organic frameworks, Nat. Commun. 5 (2014) 4503. doi: 10.1038/ncomms5503
    [46]
    H.B. Park, C.H. Jung, Y.M. Lee, A.J. Hill, S.J. Pas, S.T. Mudie, E. Van Wagner, B.D. Freeman, D.J. Cookson, Polymers with cavities tuned for fast selective transport of small molecules and ions, Science 318 (2007) 254. doi: 10.1126/science.1146744
    [47]
    R. Guo, D.F. Sanders, Z.P. Smith, B.D. Freeman, D.R. Paul, J.E. McGrath, Synthesis and characterization of thermally rearranged (TR) polymers: influence of orthopositioned functional groups of polyimide precursors on TR process and gas transport properties, J. Mater. Chem. A 1 (2013) 262–272. doi: 10.1039/C2TA00799A
    [48]
    D. Lin, C. Hu, H. Chen, J. Qu, L. Dai, Microporous N, P-codoped graphitic nanosheets as an efficient electrocatalyst for oxygen reduction in whole pH range for energy conversion and biosensing dissolved oxygen, Chem. Eur. J. 24 (2018) 18487–18493. doi: 10.1002/chem.201802040
    [49]
    P. Zhang, F. Wang, M. Yu, X. Zhuang, X. Feng, Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems, Chem. Soc. Rev. 47 (2018) 7426–7451. doi: 10.1039/C8CS00561C
    [50]
    H. Wei, F. Wang, H. Sun, Z. Zhu, C. Xiao, W. Liang, B. Yang, L. Chen, A. Li, Benzotriazole-based conjugated microporous polymers as efficient flame retardants with better thermal insulation properties, J. Mater. Chem. A 6 (2018) 8633–8642. doi: 10.1039/C7TA11283A
    [51]
    Z. Xie, B. Wang, Z. Yang, X. Yang, X. Yu, G. Xing, Y. Zhang, L. Chen, Stable 2D heteroporous covalent organic frameworks for efficient ionic conduction, Angew. Chem. Int. Ed. 58 (2019) 15742–15746. doi: 10.1002/anie.201909554
    [52]
    F. Meng, S. Bi, Z. Sun, B. Jiang, D. Wu, J. -S. Chen, F. Zhang, Synthesis of ionic vinylene-linked covalent organic frameworks through quaternization-activated Knoevenagel condensation, Angew. Chem. Int. Ed. 60 (2021) 13614–13620. doi: 10.1002/anie.202104375
    [53]
    S. Ashraf, Y. Zuo, S. Li, C. Liu, H. Wang, X. Feng, P. Li, B. Wang, Crystalline anionic germanate covalent organic framework for high CO2 selectivity and fast Li ion conduction, Chem. Eur. J. 25 (2019) 13479–13483. doi: 10.1002/chem.201903011
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (170) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return