Volume 2 Issue 3
May  2022
Turn off MathJax
Article Contents
Huang Tao, Ding Jiafen, Liu Zirui, Zhang Rui, Zhang BoLei, Xiong Kai, Zhang Longzhou, Wang Chong, Shen Shili, Li Cuiyu, Yang Peng, Qiu Feng. Insight into the underlying competitive mechanism for the shift of the charge neutrality point in a trilayer-graphene field-effect transistor[J]. eScience, 2022, 2(3): 319-328. doi: 10.1016/j.esci.2022.03.005
Citation: Huang Tao, Ding Jiafen, Liu Zirui, Zhang Rui, Zhang BoLei, Xiong Kai, Zhang Longzhou, Wang Chong, Shen Shili, Li Cuiyu, Yang Peng, Qiu Feng. Insight into the underlying competitive mechanism for the shift of the charge neutrality point in a trilayer-graphene field-effect transistor[J]. eScience, 2022, 2(3): 319-328. doi: 10.1016/j.esci.2022.03.005

Insight into the underlying competitive mechanism for the shift of the charge neutrality point in a trilayer-graphene field-effect transistor

doi: 10.1016/j.esci.2022.03.005
More Information
  • Corresponding author: E-mail address: fengqiu@ynu.edu.cn (F. Qiu)
  • Received Date: 2021-11-19
  • Revised Date: 2022-01-19
  • Accepted Date: 2022-03-11
  • Available Online: 2022-03-17
  • Layer-number modulation in graphene has become a recent focus of research due to the superior degree of freedom that can be achieved in terms of magic-angle, wettability, superconductivity, and superlattices. However, the intrinsic transport of multilayer graphene is indistinguishable in atmospheric adsorbates and supporting environment, and its underlying charge transfer mechanism has not yet been thoroughly determined. In this study, a shift in the charge neutrality point of trilayer graphene (TLG) is demonstrated to be regulated by three governing factors: oxygen gas (O2), water molecules (H2O), and thermally activated electrons. Absorbed O2 ​induces a high work function in semimetallic TLG, while H2O is not an evident dopant but can strengthen binding against O2 ​desorption. A simplified model is developed to elucidate the competitive mechanism and charge transfer among these two dopants (O2, H2O) and thermal electrons, and the model is demonstrated by work function regulation and Bader charge transfer based on density functional theory calculations. This study provides a strategy to explore transport modulation of multilayer graphene in the fields of ballistic transport and low power consumption of graphene field-effect transistors.
  • ● Design two regulating strategies of work temperature and vacuum pressure, and distinguish oxygen gas (O2) and water molecular (H2O) contribution in a shift for the charge neutrality point of trilayer graphene.
    ● Establish a competitive doping model, and reveal three dominating factors of O2, H2O, and thermally activated electron stemming from underlying SiO2 dielectric in competitive doping behavior.
    ● DFT calculations demonstrate the rationalization of the competitive doping mechanism model.
    1 The authors contributed equally to this work.
  • loading
  • eScience-2-3-319.docx
  • [1]
    C. Lee, X. Wei, J.W. Kysar, J.J. s. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science 321 (2008) 385–388. doi: 10.1126/science.1157996
    [2]
    G. Hu, J. Wu, C. Ma, Z. Liang, W. Liu, M. Liu, J.Z. Wu, C. -L. Jia, Controlling the Dirac point voltage of graphene by mechanically bending the ferroelectric gate of a graphene field effect transistor, Mater. Horiz. 6 (2019) 302–310. doi: 10.1039/C8MH01499J
    [3]
    A.K. Geim, Graphene: status and prospects, Science 324 (2009) 1530–1534. doi: 10.1126/science.1158877
    [4]
    K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I. Grigorieva, A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666–669. doi: 10.1126/science.1102896
    [5]
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438 (2005) 197–200. doi: 10.1038/nature04233
    [6]
    L. Kou, F. Hu, B. Yan, T. Frauenheim, C. Chen, Opening a band gap without breaking lattice symmetry: a new route toward robust graphene-based nanoelectronics, Nanoscale 6 (2014) 7474–7479. doi: 10.1039/c4nr01102c
    [7]
    W.J. Zhu, V. Perebeinos, M. Freitag, P. Avouris, Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene, Phys. Rev. B 80 (2009) 235402. doi: 10.1103/PhysRevB.80.235402
    [8]
    K. Sugawara, N. Yamamura, K. Matsuda, W. Norimatsu, M. Kusunoki, T. Sato, T. Takahashi, Selective fabrication of free-standing ABA and ABC trilayer graphene with/without Dirac-cone energy bands, NPG Asia Mater. 10 (2018) e466. doi: 10.1038/am.2017.238
    [9]
    Y. Zhang, T. -T. Tang, C. Girit, Z. Hao, M.C. Martin, A. Zettl, M.F. Crommie, Y.R. Shen, F. Wang, Direct observation of a widely tunable bandgap in bilayer graphene, Nature 459 (2009) 820–823. doi: 10.1038/nature08105
    [10]
    C.H. Lui, Z. Li, K.F. Mak, E. Cappelluti, T.F. Heinz, Observation of an electrically tunable band gap in trilayer graphene, Nat. Phys. 7 (2011) 944–947. doi: 10.1038/nphys2102
    [11]
    J. Zhang, J. Han, G. Peng, X. Yang, X. Yuan, Y. Li, J. Chen, W. Xu, K. Liu, Z. Zhu, W. Cao, Z. Han, J. Dai, M. Zhu, S. Qin, K.S. Novoselov, Light-induced irreversible structural phase transition in trilayer graphene, Light Sci. Appl. 9 (2020) 174. doi: 10.1038/s41377-020-00412-6
    [12]
    W. Bao, L. Jing, J. Velasco, Y. Lee, G. Liu, D. Tran, B. Standley, M. Aykol, S.B. Cronin, D. Smirnov, M. Koshino, E. McCann, M. Bockrath, C.N. Lau, Stackingdependent band gap and quantum transport in trilayer graphene, Nat. Phys. 7 (2011) 948–952. doi: 10.1038/nphys2103
    [13]
    M.F. Craciun, S. Russo, M. Yamamoto, J.B. Oostinga, A.F. Morpurgo, S. Tarucha, Trilayer graphene is a semimetal with a gate-tunable band overlap, Nat. Nanotechnol. 4 (2009) 383–388. doi: 10.1038/nnano.2009.89
    [14]
    K. Zou, F. Zhang, C. Clapp, A.H. MacDonald, J. Zhu, Transport studies of dual-gated ABC and ABA trilayer graphene: band gap opening and band structure tuning in very large perpendicular electric fields, Nano Lett. 13 (2013) 369–373. doi: 10.1021/nl303375a
    [15]
    Z. Gao, S. Wang, J. Berry, Q. Zhang, J. Gebhardt, W.M. Parkin, J. Avila, H. Yi, C. Chen, S. Hurtado-Parra, M. Drndic, A.M. Rappe, D.J. Srolovitz, J.M. Kikkawa, Z. Luo, M.C. Asensio, F. Wang, A.T.C. Johnson, Large-area epitaxial growth of curvature-stabilized ABC trilayer graphene, Nat. Commun. 11 (2020) 546. doi: 10.1038/s41467-019-14022-3
    [16]
    Z. Hao, A. Zimmerman, P. Ledwith, E. Khalaf, D. Najafabadi, K. Watanabe, T. Taniguchi, A. Vishwanath, P. Kim, Electric field tunable unconventional superconductivity in alternating twist magic-angle trilayer graphene, Science 371 (2020) 1131–1138.
    [17]
    Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices, Nature 556 (2018) 43–50. doi: 10.1038/nature26160
    [18]
    L. Sun, L. Lin, Z. Wang, D. Rui, Z. Yu, J. Zhang, Y. Li, X. Liu, K. Jia, K. Wang, L. Zheng, B. Deng, T. Ma, N. Kang, H. Xu, K.S. Novoselov, H. Peng, Z. Liu, A forceengineered lint roller for superclean graphene, Adv. Mater. 31 (2019) 1902978. doi: 10.1002/adma.201902978
    [19]
    T. Feng, D. Xie, G. Li, J. Xu, H. Zhao, T. Ren, H. Zhu, Temperature and gate voltage dependent electrical properties of graphene field-effect transistors, Carbon 78 (2014) 250–256. doi: 10.1016/j.carbon.2014.07.001
    [20]
    H. Xu, Y. Chen, J. Zhang, H. Zhang, Investigating the mechanism of hysteresis effect in graphene electrical field device fabricated on SiO2 substrates using Raman spectroscopy, Small 8 (2012) 2833–2840. doi: 10.1002/smll.201102468
    [21]
    Y. Yang, K. Brenner, R. Murali, The influence of atmosphere on electrical transport in graphene, Carbon 50 (2012) 1727–1733. doi: 10.1016/j.carbon.2011.12.008
    [22]
    H.T. Yang, Strain induced shift of Dirac points and the pseudo-magnetic field in graphene, J. Phys. Condens. Matter 23 (2011) 505502. doi: 10.1088/0953-8984/23/50/505502
    [23]
    F. Chen, J. Xia, N. Tao, Ionic screening of charged-impurity scattering in graphene, Nano Lett. 9 (2009) 1621–1625. doi: 10.1021/nl803922m
    [24]
    P.J. Wessely, F. Wessely, E. Birinci, B. Riedinger, U. Schwalke, Hysteresis of in situ CCVD grown graphene transistors, Electrochem. Solid State 15 (2012) K31–K34. doi: 10.1149/2.019204esl
    [25]
    Z. -M. Liao, B. -H. Han, Y. -B. Zhou, D. -P. Yu, Hysteresis reversion in graphene fieldeffect transistors, J. Chem. Phys. 133 (2010) 044703. doi: 10.1063/1.3460798
    [26]
    T. Lohmann, K. von Klitzing, J.H. Smet, Four-terminal magneto-transport in graphene p-n junctions created by spatially selective doping, Nano Lett. 9 (2009) 1973–1979. doi: 10.1021/nl900203n
    [27]
    M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. v. Klitzing, J.H. Smet, Graphene on a hydrophobic substrate: doping reduction and hysteresis suppression under ambient conditions, Nano Lett. 10 (2010) 1149–1153. doi: 10.1021/nl903162a
    [28]
    F. Qiu, J. Chu, Z. Liu, J. Xiang, J. Yang, C. Wang, Insight into the origins of figures of merit and design strategies for organic/inorganic lead-halide perovskite solar cells, Solar RRL 4 (2020) 2000452. doi: 10.1002/solr.202000452
    [29]
    Z.H. Ni, H.M. Wang, J. Kasim, H.M. Fan, T. Yu, Y.H. Wu, Y.P. Feng, Z.X. Shen, Graphene thickness determination using reflection and contrast spectroscopy, Nano Lett. 7 (2007) 2758–2763. doi: 10.1021/nl071254m
    [30]
    Y. Liu, J. Guo, E. Zhu, L. Liao, S. -J. Lee, M. Ding, I. Shakir, V. Gambin, Y. Huang, X. Duan, Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions, Nature 557 (2018) 696–700. doi: 10.1038/s41586-018-0129-8
    [31]
    W. Zhang, F. Qiu, Y. Li, R. Zhang, H. Liu, L. Li, J. Xie, W. Hu, Lattice defect engineering enables performance-enhanced MoS2 photodetection through a paraelectric BaTiO3 dielectric, ACS Nano (2021) 13370–13379.
    [32]
    P. Garg, S. Balachandran, I. Adlakha, P.J. Lee, T.R. Bieler, K.N. Solanki, Revealing the role of nitrogen on hydride nucleation and stability in pure niobium using firstprinciples calculations, Supercond. Sci. Technol. 31 (2018) 115007. doi: 10.1088/1361-6668/aae147
    [33]
    K. Ren, J. Yu, W. Tang, A two-dimensional vertical van der Waals heterostructure based on g-GaN and Mg(OH)2 used as a promising photocatalyst for water splitting: a first-principles calculation, J. Appl. Phys. 126 (2019) 065701. doi: 10.1063/1.5099125
    [34]
    G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169–11186. doi: 10.1103/PhysRevB.54.11169
    [35]
    G. Kresse, J. Furthmiiller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Phys. Rev. B 6 (1996) 15–50.
    [36]
    J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865–3868. doi: 10.1103/PhysRevLett.77.3865
    [37]
    K. Momma, F. Izumi, VESTA: a three-dimensional visualization system for electronic and structural analysis, J. Appl. Crystallogr. 41 (2008) 653–658. doi: 10.1107/S0021889808012016
    [38]
    K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44 (2011) 1272–1276. doi: 10.1107/S0021889811038970
    [39]
    Hongzhiwei Technology, Device Studio, Version 2021A, China, 2021, https://iresearch.net.cn/cloudSoftware. Available online.
    [40]
    R.T. Tung, Chemical bonding and fermi level pinning at metal-semiconductor interfaces, Phys. Rev. Lett. 84 (2000) 6078–6081. doi: 10.1103/PhysRevLett.84.6078
    [41]
    D. Qiu, E.K. Kim, Electrically tunable and negative Schottky barriers in multilayered graphene/MoS2 heterostructured transistors, Sci. Rep. 5 (2015) 13743. doi: 10.1038/srep13743
    [42]
    K. Takei, H. Fang, S.B. Kumar, R. Kapadia, Q. Gao, M. Madsen, H.S. Kim, C. -H. Liu, Y. -L. Chueh, E. Plis, S. Krishna, H.A. Bechtel, J. Guo, A. Javey, Quantum confinement effects in nanoscale-thickness InAs membranes, Nano Lett. 11 (2011) 5008–5012. doi: 10.1021/nl2030322
    [43]
    C.H. Lui, Z. Li, Z. Chen, P.V. Klimov, L.E. Brus, T.F. Heinz, Imaging stacking order in few-layer graphene, Nano Lett. 11 (2011) 164–169. doi: 10.1021/nl1032827
    [44]
    Z. Sun, Z. Yan, J. Yao, E. Beitler, Y. Zhu, J.M. Tour, Growth of graphene from solid carbon sources, Nature 468 (2010) 549–552. doi: 10.1038/nature09579
    [45]
    Y. Zhang, Y. -W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature 438 (2005) 201–204. doi: 10.1038/nature04235
    [46]
    L. Moriconi, D. Niemeyer, Graphene conductivity near the charge neutral point, Phys. Rev. B 84 (2011) 193401. doi: 10.1103/PhysRevB.84.193401
    [47]
    Z. Jiang, Y. Zhang, H.L. Stormer, P. Kim, Quantum Hall states near the chargeneutral Dirac point in graphene, Phys. Rev. Lett. 99 (2007) 106802. doi: 10.1103/PhysRevLett.99.106802
    [48]
    H. Schmidt, S. Wang, L. Chu, M. Toh, R. Kumar, W. Zhao, A.H. Castro Neto, J. Martin, S. Adam, B. Özyilmaz, G. Eda, Transport properties of monolayer MoS2 grown by chemical vapor deposition, Nano Lett. 14 (2014) 1909–1913. doi: 10.1021/nl4046922
    [49]
    E.H. Hwang, S. Adam, S.D. Sarma, Carrier transport in two-dimensional graphene layers, Phys. Rev. Lett. 98 (2007) 186806. doi: 10.1103/PhysRevLett.98.186806
    [50]
    E.H. Hwang, S. Das Sarma, Screening-induced temperature-dependent transport in two-dimensional graphene, Phys. Rev. B 79 (2009) 165404. doi: 10.1103/PhysRevB.79.165404
    [51]
    K. Kaasbjerg, K.S. Thygesen, K.W. Jacobsen, Phonon-limited mobility in n-type single-layer MoS2 from first principles, Phys. Rev. B 85 (2012) 115317. doi: 10.1103/PhysRevB.85.115317
    [52]
    H. Wang, Y. Wu, C. Cong, J. Shang, T. Yu, Hysteresis of electronic transport in graphene transistors, ACS Nano 4 (2010) 7221–7228. doi: 10.1021/nn101950n
    [53]
    H. Li, M.I.B. Utama, S. Wang, W. Zhao, S. Zhao, X. Xiao, Y. Jiang, L. Jiang, T. Taniguchi, K. Watanabe, A. Weber-Bargioni, A. Zettl, F. Wang, Global control of stacking-order phase transition by doping and electric field in few-layer graphene, Nano Lett. 20 (2020) 3106–3112. doi: 10.1021/acs.nanolett.9b05092
    [54]
    H. Wang, Y. Wu, C. Cong, J. Shang, T. Yu, Hysteresis of electronic transport in graphene transistors, ACS Nano 4 (2010) 7221–7228. doi: 10.1021/nn101950n
    [55]
    J. Lu, X. Zhang, G. Su, W. Yang, K. Han, X. Yu, Y. Wan, X. Wang, P. Yang, Large-area uniform few-layer PtS2: synthesis, structure and physical properties, Mater. Today Phys. 18 (2021) 100376. doi: 10.1016/j.mtphys.2021.100376
    [56]
    D.S. Jakob, H. Wang, X.G. Xu, Pulsed force kelvin probe force microscopy, ACS Nano 14 (2020) 4839–4848. doi: 10.1021/acsnano.0c00767
    [57]
    Y. -J. Chen, M. -J. Zhang, S. Yuan, Y. Qiu, X. -B. Wang, X. Jiang, Z. Gao, Y. Lin, F. Pan, Insight into interfaces and junction of polycrystalline silicon solar cells by kelvin probe force microscopy, Nano Energy 36 (2017) 303–312. doi: 10.1016/j.nanoen.2017.04.045
    [58]
    P. Zhao, G. Bhattacharya, S.J. Fishlock, J.G.M. Guy, A. Kumar, C. Tsonos, Z. Yu, S. Raj, J.A. McLaughlin, J. Luo, N. Soin, Replacing the metal electrodes in triboelectric nanogenerators: high-performance laser-induced graphene electrodes, Nano Energy 75 (2020) 104958. doi: 10.1016/j.nanoen.2020.104958
    [59]
    N. Zhou, R. Wang, X. Zhou, H. Song, X. Xiong, Y. Ding, J. Lü, L. Gan, T. Zhai, PGaSe/N-MoS2 vertical heterostructures synthesized by van der Waals epitaxy for photoresponse modulation, Small 14 (2018) 1702731. doi: 10.1002/smll.201702731
    [60]
    C. Xiao, F. Zhang, Z. Li, S.P. Harvey, X. Chen, K. Wang, C. -S. Jiang, K. Zhu, M. AlJassim, Inhomogeneous doping of perovskite materials by dopants from holetransport layer, Matter 2 (2020) 261–272. doi: 10.1016/j.matt.2019.10.005
    [61]
    H.E. Romero, N. Shen, P. Joshi, H.R. Gutierrez, S.A. Tadigadapa, J.O. Sofo, P.C. Eklund, n-Type behavior of graphene supported on Si/SiO2 substrates, ACS Nano 2 (2008) 2037–2044. doi: 10.1021/nn800354m
    [62]
    W. Kim, A. Javey, O. Vermesh, Q. Wang, Y. Li, H. Dai, Hysteresis caused by water molecules in carbon nanotube field-effect transistors, Nano Lett. 3 (2003) 193–198. doi: 10.1021/nl0259232
    [63]
    V. Chakrapani, J. Angus, A. Anderson, S. Wolter, B. Stoner, G. Sumanasekera, Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple, Science 318 (2007) 1424–1430. doi: 10.1126/science.1148841
    [64]
    S. Berciaud, S. Ryu, L.E. Brus, T.F. Heinz, Probing the intrinsic properties of exfoliated graphene: Raman spectroscopy of free-standing monolayers, Nano Lett. 9 (2009) 346–352. doi: 10.1021/nl8031444
    [65]
    J. -H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2, Nat. Nanotechnol. 3 (2008) 206–209. doi: 10.1038/nnano.2008.58
    [66]
    F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov, Detection of individual gas molecules adsorbed on graphene, Nat. Mater. 6 (2007) 652–655. doi: 10.1038/nmat1967
    [67]
    Y. -J. Kang, J. Kang, K.J. Chang, Electronic structure of graphene and doping effect on SiO2, Phys. Rev. B 78 (2008) 115404. doi: 10.1103/PhysRevB.78.115404
    [68]
    O.D. Jurchescu, J. Baas, T.T.M. Palstra, Electronic transport properties of pentacene single crystals upon exposure to air, Appl. Phys. Lett. 87 (2005) 052102. doi: 10.1063/1.2001130
    [69]
    K.T. Nguyen, A. Gaur, M. Shim, Fano lineshape and phonon softening in single isolated metallic carbon nanotubes, Phys. Rev. Lett. 98 (2007) 145504. doi: 10.1103/PhysRevLett.98.145504
    [70]
    S. Ryu, L. Liu, S. Berciaud, Y. -J. Yu, H. Liu, P. Kim, G.W. Flynn, L.E. Brus, Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate, Nano Lett. 10 (2010) 4944–4951. doi: 10.1021/nl1029607
    [71]
    D. Yoon, Y. -W. Son, H. Cheong, Negative thermal expansion coefficient of graphene measured by Raman spectroscopy, Nano Lett. 11 (2011) 3227–3231. doi: 10.1021/nl201488g
    [72]
    Z. Gao, S. Wang, J. Berry, Q. Zhang, J. Gebhardt, W.M. Parkin, J. Avila, H. Yi, C. Chen, S. Hurtado-Parra, M. Drndić, A.M. Rappe, D.J. Srolovitz, J.M. Kikkawa, Z. Luo, M.C. Asensio, F. Wang, A.T.C. Johnson, Large-area epitaxial growth of curvature-stabilized ABC trilayer graphene, Nat. Commun. 11 (2020) 546. doi: 10.1038/s41467-019-14022-3
    [73]
    S.K. Gupta, H.R. Soni, P.K. Jha, Electronic and phonon bandstructures of pristine few layer and metal doped graphene using first principles calculations, AIP Adv. 3 (2013) 032117. doi: 10.1063/1.4794949
    [74]
    X.F. Fan, W.T. Zheng, V. Chihaia, Z.X. Shen, J. -L. Kuo, Interaction between graphene and the surface of SiO2, J. Phys. Condens. Matter 24 (2012) 305004. doi: 10.1088/0953-8984/24/30/305004
    [75]
    H. Hibino, H. Kageshima, M. Kotsugi, F. Maeda, F.Z. Guo, Y. Watanabe, Dependence of electronic properties of epitaxial few-layer graphene on the number of layers investigated by photoelectron emission microscopy, Phys. Rev. B 79 (2009) 125437. doi: 10.1103/PhysRevB.79.125437
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (105) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return