Citation: | Wang Li, Qiu Jingyi, Wang Xiaodan, Chen Long, Cao Gaoping, Wang Jianlong, Zhang Hao, He Xiangming. Insights for understanding multiscale degradation of LiFePO4 cathodes[J]. eScience, 2022, 2(2): 125-137. doi: 10.1016/j.esci.2022.03.006 |
[1] |
M.R. Palacin, A. de GuibertWhy do batteries fail?. Science, 351 (2016), p. 1253292
|
[2] |
J.P. Pender, G. Jha, D.H. Youn, J.M. Ziegler, I. Andoni, E.J. Choi, A. Heller, B.S. Dunn, P.S. Weiss, R.M. Penner, C.B. MullinsElectrode degradation in lithium-ion batteries. ACS Nano, 14 (2020) 1243-1295 doi: 10.1021/acsnano.9b04365
|
[3] |
M. Dubarry, N. Qin, P. BrookerCalendar aging of commercial Li-ion cells of different chemistries – a review. Curr. Opin. Electrochem., 9 (2018) 106-113
|
[4] |
X. Han, L. Lu, Y. Zheng, X. Feng, Z. Li, J. Li, M. OuyangAreview on the key issues of the lithium ion battery degradation among the whole life cycle. eTranportation, 1 (2019), p. 100005
|
[5] |
S.C. Nagpure, B. Bhushan, S.S. BabuMulti-scale characterization studies of aged Li-ion large format cells for improved performance: an overview. J.Electrochem. Soc. J. Electrochem. Soc., 160 (2013) A2111-A2154 doi: 10.1149/2.001311jes
|
[6] |
M. Klett, R. Eriksson, J. Groot, P. Svens, K. Ciosek Högström, R.W. Lindström, H. Berg, T. Gustafson, G. Lindbergh, K. EdströmNon-uniform aging of cycled commercial LiFePO4//graphite cylindrical cells revealed by post-mortem analysis. J.Power Sources, 257 (2014) 126-137
|
[7] |
M.R. PalacinUnderstanding ageing in Li-ion batteries: a chemical issue. Chem. Soc. Rev., 47 (2018) 4924-4933
|
[8] |
M.M. Kabir, D.E. DemirocakDegradation mechanisms in Li-ion batteries: a state-of-the-art review. Int. J. Energy Res., 41 (2017) 1963-1986 doi: 10.1002/er.3762
|
[9] |
D. Li, D.L. Danilov, B. Zwikirsch, M. Fichtner, Y. Yang, R.-A. Eichel, P.H.L. NottenModeling the degradation mechanisms of C6/LiFePO4 batteries. J.Power Sources, 375 (2018) 106-117 doi: 10.1007/978-3-030-00018-9_10
|
[10] |
F.H. Gandoman, J. Jaguemont, S. Goutam, R. Gopalakrishnan, Y. Firouz, T. Kalogiannis, N. Omar, J. Van MierloConcept of reliability and safety assessment of lithium-ion batteries in electric vehicles: basics, progress, and challenges. Appl. Energy, 251 (2019), p. 113343
|
[11] |
S. Sharifi-Asl, J. Lu, K. Amine, R. Shahbazian-YassarOxygen release degradation in Li-ion battery cathode materials: mechanisms and mitigating approaches. Adv. Energy Mater., 9 (2019), p. 1900551 doi: 10.1002/aenm.201900551
|
[12] |
M. Lewerenz, J. Münnix, J. Schmalstieg, S. Käbitz, M. Knips, D.U. SauerSystematic aging of commercial LiFePO4Graphite cylindrical cells including a theory explaining rise of capacity during aging. J.Power Sources, 345 (2017) 254-263
|
[13] |
Y. Wang, P. He, H. ZhouOlivine LiFePO4: development and future. Energy Environ. Sci., 4 (2011) 805-817
|
[14] |
J. Wang, X. SunOlivine LiFePO4: the remaining challenges for future energy storage. Energy Environ. Sci., 8 (2015) 1110-1138
|
[15] |
J. Hu, W. Huang, L. Yang, F. PanStructure and performance of the LiFePO4 cathode material: from the bulk to the surface. Nanoscale, 12 (2020) 15036-15044 doi: 10.1039/d0nr03776a
|
[16] |
M. Simolka, J.F. Heger, H. Kaess, I. Biswas, K.A. FriedrichInfluence of cycling profile, depth of discharge and temperature on commercial LFP/C cell ageing: post-mortem material analysis of structure, morphology and chemical composition. J.Appl. Electrochem., 50 (2020) 1101-1117 doi: 10.1007/s10800-020-01465-6
|
[17] |
M. Woody, M. Arbabzadeh, G. Lewis, G. KeoleianStrategies to limit degradation and maximize Li-ion battery service lifetime - critical review and guidance for stakeholders. J.Energy Storage, 28 (2020), p. 101231
|
[18] |
M. Safari, C. DelacourtAging of a commercial graphite/LiFePO4 cell. J.Electrochem. Soc., 158 (2011) A1123-A1135 doi: 10.1149/1.3614529
|
[19] |
K. Amine, J. Liu, I. BelharouakHigh-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells. Electrochem. Comm., 7 (2005) 669-673
|
[20] |
W. Shi, X. Hu, J. Wang, J. Jiang, Y. Zhang, T. YipAnalysis of thermal aging paths for large-format LiFePO4/graphite battery. Electrochim. Acta, 196 (2016) 13-23
|
[21] |
H. Zheng, L. Tan, L. Zhang, Q. Qu, Z. Wan, Y. Wang, M. Shen, H. ZhengCorrelation between lithium deposition on graphite electrode and the capacity loss for LiFePO4/graphite cells. Electrochim. Acta, 173 (2015) 323-330
|
[22] |
D. Anseán, M. Dubarry, A. Devie, B.Y. Liaw, V.M. García, J.C. Viera, M. GonzálezFast charging technique for high power LiFePO4 batteries: a mechanistic analysis of aging. J.Power Sources, 321 (2016) 201-209
|
[23] |
H. Sharifi, B. Mosallanejad, M. Mohammadzad, S.M. Hosseini-Hosseinabad, S. RamakrishnaCycling performance of LiFePO4/graphite batteries and their degradation mechanism analysis via electrochemical and microscopic techniques. Ionics, 28 (2022) 213-228 doi: 10.1007/s11581-021-04258-9
|
[24] |
A.G. Kashkooli, S. Farhad, D.U. Lee, K. Feng, S. Litster, S.K. Babu, L. Zhu, Z. ChenMultiscale modeling of lithium-ion battery electrodes based on nano-scale X-ray computed tomography. J.Power Sources, 307 (2016) 496-509
|
[25] |
A.M. Tripathi, W.N. Su, B.J. HwangIn situ analytical techniques for battery interface analysis. Chem. Soc. Rev., 47 (2018) 736-851
|
[26] |
T. Bond, J. Zhou, J. CullerElectrode stack geometry changes during gas evolution in pouch-cell-type lithium ion batteries. J.Electrochem. Soc., 164 (2017) A6158-A6162 doi: 10.1149/2.0241701jes
|
[27] |
Y. Luo, Y. Bai, A. Mistry, Y. Zhang, D. Zhao, S. Sarkar, J.V. Handy, S. Rezaei, A.C. Chuang, L. Carrillo, K. Wiaderek, M. Pharr, K. Xie, P.P. Mukherjee, B.-X. Xu, S. BanerjeeEffect of crystallite geometries on electrochemical performance of porous intercalation electrodes by multiscale operando investigation. Nat. Mater., 21 (2022) 217-227 doi: 10.1038/s41563-021-01151-8
|
[28] |
R. Scipioni, P.S. Jørgensen, J. Hjelm, P. Norby, C.N. Rasmussen, S.H. JensenDegradation studies on LiFePO4 cathode. ECS Transact., 64 (2015) 97-106 doi: 10.1149/06422.0097ecst
|
[29] |
Y. Kobayashi, H. Miyashiro, A. Yamazaki, Y. MitaUnexpected capacity fade and recovery mechanism of LiFePO4/graphite cells for grid operation. J.Power Sources, 449 (2020), p. 227502
|
[30] |
J.M. Allen, P.J. Weddle, A. Verma, A. Mallarapu, F. Usseglio-Viretta, D.P. Finegan, A.M. Colclasure, W. Mai, V. Schmidt, O. Furat, D. Diercks, T. Tanim, K. SmithQuantifying the influence of charge rate and cathode-particle architectures on degradation of Li-ion cells through 3D continuum-level damage models. J.Power Sources, 512 (2021), p. 230415
|
[31] |
R. Dell, D. RandUnderstanding Batteries. RSC publishing, Cambridge (2001)
|
[32] |
W. ZhangStructure and performance of LiFePO4 cathode materials: a review. J.Power Sources, 196 (2011) 2962-2970
|
[33] |
K. Zaghib, M. Dontigny, A. Guerfi, P. Charest, I. Rodrigues, A. Mauger, C. JulienSafe and fast-charging Li-ion battery with long shelf life for power applications. J.Power Sources, 196 (2011) 3949-3954
|
[34] |
J. Jiang, W. Shi, J. Zheng, P. Zuo, J. Xiao, X. Chen, W. Xu, J.-G. ZhangOptimized operating range for large-format LiFePO4/graphite batteries. J.Electrochem. Soc., 161 (2014) A336-A341 doi: 10.1149/2.052403jes
|
[35] |
E. Sarasketa-Zabala, I. Gandiaga, E. Martinez-Laserna, L.M. Rodriguez-Martinez, I. VillarrealCycle ageing analysis of a LiFePO4/graphite cell with dynamic model validations: towards realistic lifetime predictions. J.Power Sources, 275 (2015) 573-587
|
[36] |
E. Sarasketa-Zabala, F. Aguesse, I. Villarreal, L.M. Rodriguez-Martinez, C.M. López, P. KubiakUnderstanding lithium inventory loss and sudden performance fade in cylindrical cells during cycling with deep-discharge steps. J.Phys. Chem. C, 119 (2014) 896-906
|
[37] |
D.-T. Ngo, R. Scipioni, S.B. Simonsen, P.S. Jørgensen, S.H. JensenATEM study of morphological and structural degradation phenomena in LiFePO4-CB cathodes. Int. J. Energy Res., 40 (2016) 2022-2032 doi: 10.1002/er.3575
|
[38] |
M. Safari, C. DelacourtSimulation-based analysis of aging phenomena in a commercial graphite/LiFePO4 cell. J.Electrochem. Soc., 158 (2011), p. A1436 doi: 10.1149/2.103112jes
|
[39] |
Y. Xiong, Y. Liu, L. Chen, S. Zhang, X. Zhu, T. Shen, D. Ren, X. He, J. Qiu, L. Wang, Q. Hu, H. ZhangNew insight on graphite anode degradation induced by Li-plating. Energy Environ. Mat. (2022), 10.1002/eem2.12334 doi: 10.1002/eem2.12334
|
[40] |
N. Dupré, J.-F. Martin, J. Degryse, V. Fernandez, P. Soudan, D. GuyomardAging of the LiFePO4 positive electrode interface in electrolyte. J.Power Sources, 195 (2010) 7415-7425
|
[41] |
J. Li, S. Dong, C. Wang, Z. Hu, Z. Zhang, H. Zhang, G. CuiAstudy on the interfacial stability of the cathode/polycarbonate interface: implication of overcharge and transition metal redox. J.Mater. Chem., 6 (2018), p. 11846
|
[42] |
Y. Liao, G. Li, N. Xu, T. Chen, X. Wang, W. LiSynergistic effect of electrolyte additives on the improvement in interfacial stability between ionic liquid based gel electrolyte and LiFePO4 cathode. Solid State Ionics, 329 (2019) 31-39
|
[43] |
S. Sun, T. Guan, P. Zuo, Y. Gao, X. Cheng, C. Du, G. YinAccelerated aging analysis on cycle life of LiFePO4/graphite batteries based on different rates. Chemelectrochem, 5 (2018) 2301-2309 doi: 10.1002/celc.201800326
|
[44] |
S. Sun, T. Guan, X. Cheng, P. Zuo, Y. Gao, C. Du, G. YinAccelerated aging and degradation mechanism of LiFePO4/graphite batteries cycled at high discharge rates. RSC Adv., 8 (2018) 25695-25703
|
[45] |
M. Abdel Monem, K. Trad, N. Omar, O. Hegazy, B. Mantels, G. Mulder, P. Van den Bossche, J. Van MierloLithium-ion batteries: evaluation study of different charging methodologies based on aging process. Appl. Energy, 152 (2015) 143-155
|
[46] |
M. Kassem, J. Bernard, R. Revel, S. Pélissier, F. Duclaud, C. DelacourtCalendar aging of a graphite/LiFePO4 cell. J.Power Sources, 208 (2012) 296-305
|
[47] |
M. Hellqvist Kjell, S. Malmgren, K. Ciosek, M. Behm, K. Edström, G. LindberghComparing aging of graphite/LiFePO4 cells at 22 C and 55 C – Electrochemical and photoelectron spectroscopy studies. J.Power Sources, 243 (2013) 290-298
|
[48] |
Y. Zheng, Y.-B. He, K. Qian, B. Li, X. Wang, J. Li, C. Miao, F. KangEffects of state of charge on the degradation of LiFePO4/graphite batteries during accelerated storage test. J.Alloys Compd., 639 (2015) 406-414
|
[49] |
O.S. Mendoza-Hernandez, E. Hosono, D. Asakura, H. Matsuda, S. Shironita, M. Umeda, Y. SoneImpact of calendar degradation on the performance of LiFePO4 – ggaphite Li-ion cells during charge-discharge cycling at -5 °C. J.Electrochem. Soc., 166 (2019) A3525-A3530 doi: 10.1149/2.1201914jes
|
[50] |
M. Dubarry, B.Y. Liaw, M.-S. Chen, S.-S. Chyan, K.-C. Han, W.-T. Sie, S.-H. WuIdentifying battery aging mechanisms in large format Li ion cells. J.Power Sources, 196 (2011) 3420-3425
|
[51] |
M. Naumann, M. Schimpe, P. Keil, H.C. Hesse, A. JossenAnalysis and modeling of calendar aging of a commercial LiFePO4/graphite cell. J.Energy Storage, 17 (2018) 153-169
|
[52] |
P. Keil, S.F. Schuster, J. Wilhelm, J. Travi, A. Hauser, R.C. Karl, A. JossenCalendar aging of lithium-ion batteries. J.Electrochem. Soc., 163 (2016) A1872-A1880 doi: 10.1149/2.0411609jes
|
[53] |
Y. Preger, H.M. Barkholtz, A. Fresquez, D.L. Campbell, B.W. Juba, J. Romàn-Kustas, S.R. Ferreira, B. ChalamalaDegradation of commercial lithium-ion cells as a function of chemistry and cycling conditions. J.Electrochem. Soc., 167 (2020), p. 120532 doi: 10.1149/1945-7111/abae37
|
[54] |
T. Waldmann, M. Wilka, M. Kasper, M. Fleischhammer, M. Wohlfahrt-MehrensTemperature dependent ageing mechanisms in Lithium-ion batteries – A Post-Mortem study. J.Power Sources, 262 (2014) 129-135
|
[55] |
D. Li, D.L. Danilov, J. Xie, L. Raijmakers, L. Gao, Y. Yang, P.H.L. NottenDegradation mechanisms of C6/LiFePO4 batteries: experimental analyses of calendar aging. Electrochim. Acta, 190 (2016) 1124-1133
|
[56] |
C. Delacourt, M. SafariLife simulation of a graphite/LiFePO4 cell under cycling and storage. J.Electrochem. Soc., 159 (2012) A1283-A1291 doi: 10.1149/2.049208jes
|
[57] |
S. Grolleau, A. Delaille, H. Gualous, P. Gyan, R. Revel, J. Bernard, E. Redondo-Iglesias, J. PeterCalendar aging of commercial graphite/LiFePO4 cell – predicting capacity fade under time dependent storage conditions. J.Power Sources, 255 (2014) 450-458
|
[58] |
J. Wang, P. Liu, J. Hicks-Garner, E. Sherman, S. Soukiazian, M. Verbrugge, H. Tataria, J. Musser, P. FinamoreCycle-life model for graphite-LiFePO4 cells. J.Power Sources, 196 (2011) 3942-3948
|
[59] |
T. Rauhala, K. Jalkanen, T. Romann, E. Lust, N. Omar, T. KallioLow-temperature aging mechanisms of commercial graphite/LiFePO4 cells cycled with a simulated electric vehicle load profile—a post-mortem study. J.Energy Storage, 20 (2018) 344-356
|
[60] |
E. Prada, D. Di Domenico, Y. Creff, J. Bernard, V. Sauvant-Moynot, F. HuetSimplified electrochemical and thermal model of LiFePO4-graphite Li-ion batteries for fast charge applications. J.Electrochem. Soc., 159 (2012) A1508-A1519 doi: 10.1149/2.064209jes
|
[61] |
M. Fleckenstein, O. Bohlen, M.A. Roscher, B. BäkerCurrent density and state of charge inhomogeneities in Li-ion battery cells with LiFePO4 as cathode material due to temperature gradients. J.Power Sources, 196 (2011) 4769-4778
|
[62] |
B. Xu, W. Diao, G. Wen, S.-Y. Choe, J. Kim, M. PechtDecoupling the thermal and non-thermal effects of discharge C-rate on the capacity fade of lithium-ion batteries. J.Power Sources, 510 (2021), p. 230390
|
[63] |
A. Awarke, S. Lauer, M. Wittler, S. PischingerQuantifying the effects of strains on the conductivity and porosity of LiFePO4 based Li-ion composite cathodes using a multi-scale approach. Comput. Mater. Sci., 50 (2011) 871-879
|
[64] |
B. Özdogru, H. Dykes, S. Padwal, S. Harimkar, Ö.Ö. ÇaprazElectrochemical strain evolution in iron phosphate composite cathodes during lithium and sodium ion intercalation. Electrochim. Acta, 353 (2020), p. 136594
|
[65] |
S.C. Nagpure, R.G. Downing, B. Bhushan, S.S. Babu, L. CaoNeutron depth profiling technique for studying aging in Li-ion batteries. Electrochim. Acta, 56 (2011) 4735-4743
|
[66] |
K.L. Bassett, Ö. Özgür Çapraz, B. Özdogru, A.A. Gewirth, N.R. SottosCathode/electrolyte interface-dependent changes in stress and strain in lithium iron phosphate composite cathodes. J.Electrochem. Soc., 166 (2019) A2707-A2714 doi: 10.1149/2.1391912jes
|
[67] |
D.E. Demirocak, B. BhushanProbing the aging effects on nanomechanical properties of a thin film LiFePO4 cathode. ECS Transact., 73 (2016) 57-66 doi: 10.1149/07301.0057ecst
|
[68] |
Y. Yang, R. Xu, K. Zhang, S.J. Lee, L. Mu, P. Liu, C.K. Waters, S. Spence, Z. Xu, C. Wei, D.J. Kautz, Q. Yuan, Y. Dong, Y.S. Yu, X. Xiao, H.K. Lee, P. Pianetta, P. Cloetens, J.S. Lee, K. Zhao, F. Lin, Y. LiuQuantification of heterogeneous degradation in Li-ion batteries. Adv. Energy Mater., 9 (2019), p. 1900674 doi: 10.1002/aenm.201900674
|
[69] |
D.E. Demirocak, B. BhushanProbing the aging effects on nanomechanical properties of a LiFePO4 cathode in a large format prismatic cell. J.Power Sources, 280 (2015) 256-262
|
[70] |
K. Bachtin, D. Kramer, V.S.K. Chakravadhanula, X. Mu, V. Trouillet, M. Kaus, S. Indris, H. Ehrenberg, C. RothActivation and degradation of electrospun LiFePO4 battery cathodes. J.Power Sources, 396 (2018) 386-394
|
[71] |
P. Liu, J. Wang, J. Hicks-Garner, E. Sherman, S. Soukiazian, M. Verbrugge, H. Tataria, J. Musser, P. FinamoreAging mechanisms of LiFePO4 batteries deduced by electrochemical and structural analyses. J.Electrochem. Soc., 157 (2010) A499-A507 doi: 10.1149/1.3294790
|
[72] |
B. Rowden, N. Carcia-AraezEstimating lithium-ion battery behavior from half-cell data. Energy Rep., 7 (2021) 97-103
|
[73] |
J. Wang, Y. Tang, J. Yang, R. Li, G. Liang, X. SunNature of LiFePO4 aging process: roles of impurity phases. J.Power Sources, 238 (2013) 454-463
|
[74] |
E.R. Logan, H. Hebecker, A. Eldesoky, A. Luscombe, M.B. Johnson, J.R. DahnPerformance and degradation of LiFePO4/graphite cells: the impact of water contamination and an evaluation of common electrolyte additives. J.Electrochem. Soc., 167 (2020), p. 130543 doi: 10.1149/1945-7111/abbbbe
|
[75] |
Y. Li, X. Feng, D. Ren, M. Ouyang, L. Lu, X. HanThermal runaway triggered by plated lithium on the anode after fast charging. ACS Appl. Mater. Interfaces, 11 (2019) 46839-46850 doi: 10.1021/acsami.9b16589
|
[76] |
J. Liu, Q. Duan, M. Ma, C. Zhao, J. Sun, Q. WangAging mechanisms and thermal stability of aged commercial 18650 lithium ion battery induced by slight overcharging cycling. J.Power Sources, 445 (2020), p. 227263
|
[77] |
C. Essl, A. Golubkov, A. FuchsInfluence of aging on the failing behavior of automotive lithium-ion batteries. Batteries, 7 (2021), p. 23 doi: 10.3390/batteries7020023
|
[78] |
J. Groot, M. Swierczynski, A.I. Stan, S.K. KærOn the complex ageing characteristics of high-power LiFePO4/graphite battery cells cycled with high charge and discharge currents. J.Power Sources, 286 (2015) 475-487
|
[79] |
Y. Li, K. Liu, A.M. Foley, A. Zülke, M. Berecibar, E. Nanini-Maury, J. Van Mierlo, H.E. HosterData-driven health estimation and lifetime prediction of lithium-ion batteries: a review. Renew. Sustain. Energy Rev., 113 (2019), p. 109254
|