Volume 2 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
Wang Li, Qiu Jingyi, Wang Xiaodan, Chen Long, Cao Gaoping, Wang Jianlong, Zhang Hao, He Xiangming. Insights for understanding multiscale degradation of LiFePO4 cathodes[J]. eScience, 2022, 2(2): 125-137. doi: 10.1016/j.esci.2022.03.006
Citation: Wang Li, Qiu Jingyi, Wang Xiaodan, Chen Long, Cao Gaoping, Wang Jianlong, Zhang Hao, He Xiangming. Insights for understanding multiscale degradation of LiFePO4 cathodes[J]. eScience, 2022, 2(2): 125-137. doi: 10.1016/j.esci.2022.03.006

Insights for understanding multiscale degradation of LiFePO4 cathodes

doi: 10.1016/j.esci.2022.03.006
More Information
  • Lithium-ion batteries (LIBs) based on olivine LiFePO4 (LFP) offer long cycle/calendar life and good safety, making them one of the dominant batteries in energy storage stations and electric vehicles, especially in China. Yet scientists have a weak understanding of LFP cathode degradation, which restricts the further development of LFP materials and batteries. Here, we critically review reports on LFP cathode degradation with respect to different electric parameters (including C-rates, storage, and long cycling), mechanical stresses, and thermal fields. The detailed chemical and physical aspects of degradation mechanisms at various scales (i.e., from atomic to devices) and their causes are comprehensively summarized, and discussions of related concerns are provided in each section. We close with a systematic overview of LFP degradation research and mediation strategies, suggesting future directions for developing robust, safe LFP batteries with long cycle life.
  • ● A systematical perspective of LFP degradation and mediation strategies are provided for long life and safe LFP batteries.
    ● LFP cathode degradation under different electric parameters, mechanical stresses, and thermal fields are critically reviewed.
    ● Detailed degradation mechanisms from atomic scale to devices are summarized with safety concerns and mechanisms.
  • loading
  • [1]
    M.R. Palacin, A. de GuibertWhy do batteries fail?. Science, 351 (2016), p. 1253292
    [2]
    J.P. Pender, G. Jha, D.H. Youn, J.M. Ziegler, I. Andoni, E.J. Choi, A. Heller, B.S. Dunn, P.S. Weiss, R.M. Penner, C.B. MullinsElectrode degradation in lithium-ion batteries. ACS Nano, 14 (2020) 1243-1295 doi: 10.1021/acsnano.9b04365
    [3]
    M. Dubarry, N. Qin, P. BrookerCalendar aging of commercial Li-ion cells of different chemistries – a review. Curr. Opin. Electrochem., 9 (2018) 106-113
    [4]
    X. Han, L. Lu, Y. Zheng, X. Feng, Z. Li, J. Li, M. OuyangAreview on the key issues of the lithium ion battery degradation among the whole life cycle. eTranportation, 1 (2019), p. 100005
    [5]
    S.C. Nagpure, B. Bhushan, S.S. BabuMulti-scale characterization studies of aged Li-ion large format cells for improved performance: an overview. J.Electrochem. Soc. J. Electrochem. Soc., 160 (2013) A2111-A2154 doi: 10.1149/2.001311jes
    [6]
    M. Klett, R. Eriksson, J. Groot, P. Svens, K. Ciosek Högström, R.W. Lindström, H. Berg, T. Gustafson, G. Lindbergh, K. EdströmNon-uniform aging of cycled commercial LiFePO4//graphite cylindrical cells revealed by post-mortem analysis. J.Power Sources, 257 (2014) 126-137
    [7]
    M.R. PalacinUnderstanding ageing in Li-ion batteries: a chemical issue. Chem. Soc. Rev., 47 (2018) 4924-4933
    [8]
    M.M. Kabir, D.E. DemirocakDegradation mechanisms in Li-ion batteries: a state-of-the-art review. Int. J. Energy Res., 41 (2017) 1963-1986 doi: 10.1002/er.3762
    [9]
    D. Li, D.L. Danilov, B. Zwikirsch, M. Fichtner, Y. Yang, R.-A. Eichel, P.H.L. NottenModeling the degradation mechanisms of C6/LiFePO4 batteries. J.Power Sources, 375 (2018) 106-117 doi: 10.1007/978-3-030-00018-9_10
    [10]
    F.H. Gandoman, J. Jaguemont, S. Goutam, R. Gopalakrishnan, Y. Firouz, T. Kalogiannis, N. Omar, J. Van MierloConcept of reliability and safety assessment of lithium-ion batteries in electric vehicles: basics, progress, and challenges. Appl. Energy, 251 (2019), p. 113343
    [11]
    S. Sharifi-Asl, J. Lu, K. Amine, R. Shahbazian-YassarOxygen release degradation in Li-ion battery cathode materials: mechanisms and mitigating approaches. Adv. Energy Mater., 9 (2019), p. 1900551 doi: 10.1002/aenm.201900551
    [12]
    M. Lewerenz, J. Münnix, J. Schmalstieg, S. Käbitz, M. Knips, D.U. SauerSystematic aging of commercial LiFePO4Graphite cylindrical cells including a theory explaining rise of capacity during aging. J.Power Sources, 345 (2017) 254-263
    [13]
    Y. Wang, P. He, H. ZhouOlivine LiFePO4: development and future. Energy Environ. Sci., 4 (2011) 805-817
    [14]
    J. Wang, X. SunOlivine LiFePO4: the remaining challenges for future energy storage. Energy Environ. Sci., 8 (2015) 1110-1138
    [15]
    J. Hu, W. Huang, L. Yang, F. PanStructure and performance of the LiFePO4 cathode material: from the bulk to the surface. Nanoscale, 12 (2020) 15036-15044 doi: 10.1039/d0nr03776a
    [16]
    M. Simolka, J.F. Heger, H. Kaess, I. Biswas, K.A. FriedrichInfluence of cycling profile, depth of discharge and temperature on commercial LFP/C cell ageing: post-mortem material analysis of structure, morphology and chemical composition. J.Appl. Electrochem., 50 (2020) 1101-1117 doi: 10.1007/s10800-020-01465-6
    [17]
    M. Woody, M. Arbabzadeh, G. Lewis, G. KeoleianStrategies to limit degradation and maximize Li-ion battery service lifetime - critical review and guidance for stakeholders. J.Energy Storage, 28 (2020), p. 101231
    [18]
    M. Safari, C. DelacourtAging of a commercial graphite/LiFePO4 cell. J.Electrochem. Soc., 158 (2011) A1123-A1135 doi: 10.1149/1.3614529
    [19]
    K. Amine, J. Liu, I. BelharouakHigh-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells. Electrochem. Comm., 7 (2005) 669-673
    [20]
    W. Shi, X. Hu, J. Wang, J. Jiang, Y. Zhang, T. YipAnalysis of thermal aging paths for large-format LiFePO4/graphite battery. Electrochim. Acta, 196 (2016) 13-23
    [21]
    H. Zheng, L. Tan, L. Zhang, Q. Qu, Z. Wan, Y. Wang, M. Shen, H. ZhengCorrelation between lithium deposition on graphite electrode and the capacity loss for LiFePO4/graphite cells. Electrochim. Acta, 173 (2015) 323-330
    [22]
    D. Anseán, M. Dubarry, A. Devie, B.Y. Liaw, V.M. García, J.C. Viera, M. GonzálezFast charging technique for high power LiFePO4 batteries: a mechanistic analysis of aging. J.Power Sources, 321 (2016) 201-209
    [23]
    H. Sharifi, B. Mosallanejad, M. Mohammadzad, S.M. Hosseini-Hosseinabad, S. RamakrishnaCycling performance of LiFePO4/graphite batteries and their degradation mechanism analysis via electrochemical and microscopic techniques. Ionics, 28 (2022) 213-228 doi: 10.1007/s11581-021-04258-9
    [24]
    A.G. Kashkooli, S. Farhad, D.U. Lee, K. Feng, S. Litster, S.K. Babu, L. Zhu, Z. ChenMultiscale modeling of lithium-ion battery electrodes based on nano-scale X-ray computed tomography. J.Power Sources, 307 (2016) 496-509
    [25]
    A.M. Tripathi, W.N. Su, B.J. HwangIn situ analytical techniques for battery interface analysis. Chem. Soc. Rev., 47 (2018) 736-851
    [26]
    T. Bond, J. Zhou, J. CullerElectrode stack geometry changes during gas evolution in pouch-cell-type lithium ion batteries. J.Electrochem. Soc., 164 (2017) A6158-A6162 doi: 10.1149/2.0241701jes
    [27]
    Y. Luo, Y. Bai, A. Mistry, Y. Zhang, D. Zhao, S. Sarkar, J.V. Handy, S. Rezaei, A.C. Chuang, L. Carrillo, K. Wiaderek, M. Pharr, K. Xie, P.P. Mukherjee, B.-X. Xu, S. BanerjeeEffect of crystallite geometries on electrochemical performance of porous intercalation electrodes by multiscale operando investigation. Nat. Mater., 21 (2022) 217-227 doi: 10.1038/s41563-021-01151-8
    [28]
    R. Scipioni, P.S. Jørgensen, J. Hjelm, P. Norby, C.N. Rasmussen, S.H. JensenDegradation studies on LiFePO4 cathode. ECS Transact., 64 (2015) 97-106 doi: 10.1149/06422.0097ecst
    [29]
    Y. Kobayashi, H. Miyashiro, A. Yamazaki, Y. MitaUnexpected capacity fade and recovery mechanism of LiFePO4/graphite cells for grid operation. J.Power Sources, 449 (2020), p. 227502
    [30]
    J.M. Allen, P.J. Weddle, A. Verma, A. Mallarapu, F. Usseglio-Viretta, D.P. Finegan, A.M. Colclasure, W. Mai, V. Schmidt, O. Furat, D. Diercks, T. Tanim, K. SmithQuantifying the influence of charge rate and cathode-particle architectures on degradation of Li-ion cells through 3D continuum-level damage models. J.Power Sources, 512 (2021), p. 230415
    [31]
    R. Dell, D. RandUnderstanding Batteries. RSC publishing, Cambridge (2001)
    [32]
    W. ZhangStructure and performance of LiFePO4 cathode materials: a review. J.Power Sources, 196 (2011) 2962-2970
    [33]
    K. Zaghib, M. Dontigny, A. Guerfi, P. Charest, I. Rodrigues, A. Mauger, C. JulienSafe and fast-charging Li-ion battery with long shelf life for power applications. J.Power Sources, 196 (2011) 3949-3954
    [34]
    J. Jiang, W. Shi, J. Zheng, P. Zuo, J. Xiao, X. Chen, W. Xu, J.-G. ZhangOptimized operating range for large-format LiFePO4/graphite batteries. J.Electrochem. Soc., 161 (2014) A336-A341 doi: 10.1149/2.052403jes
    [35]
    E. Sarasketa-Zabala, I. Gandiaga, E. Martinez-Laserna, L.M. Rodriguez-Martinez, I. VillarrealCycle ageing analysis of a LiFePO4/graphite cell with dynamic model validations: towards realistic lifetime predictions. J.Power Sources, 275 (2015) 573-587
    [36]
    E. Sarasketa-Zabala, F. Aguesse, I. Villarreal, L.M. Rodriguez-Martinez, C.M. López, P. KubiakUnderstanding lithium inventory loss and sudden performance fade in cylindrical cells during cycling with deep-discharge steps. J.Phys. Chem. C, 119 (2014) 896-906
    [37]
    D.-T. Ngo, R. Scipioni, S.B. Simonsen, P.S. Jørgensen, S.H. JensenATEM study of morphological and structural degradation phenomena in LiFePO4-CB cathodes. Int. J. Energy Res., 40 (2016) 2022-2032 doi: 10.1002/er.3575
    [38]
    M. Safari, C. DelacourtSimulation-based analysis of aging phenomena in a commercial graphite/LiFePO4 cell. J.Electrochem. Soc., 158 (2011), p. A1436 doi: 10.1149/2.103112jes
    [39]
    Y. Xiong, Y. Liu, L. Chen, S. Zhang, X. Zhu, T. Shen, D. Ren, X. He, J. Qiu, L. Wang, Q. Hu, H. ZhangNew insight on graphite anode degradation induced by Li-plating. Energy Environ. Mat. (2022), 10.1002/eem2.12334 doi: 10.1002/eem2.12334
    [40]
    N. Dupré, J.-F. Martin, J. Degryse, V. Fernandez, P. Soudan, D. GuyomardAging of the LiFePO4 positive electrode interface in electrolyte. J.Power Sources, 195 (2010) 7415-7425
    [41]
    J. Li, S. Dong, C. Wang, Z. Hu, Z. Zhang, H. Zhang, G. CuiAstudy on the interfacial stability of the cathode/polycarbonate interface: implication of overcharge and transition metal redox. J.Mater. Chem., 6 (2018), p. 11846
    [42]
    Y. Liao, G. Li, N. Xu, T. Chen, X. Wang, W. LiSynergistic effect of electrolyte additives on the improvement in interfacial stability between ionic liquid based gel electrolyte and LiFePO4 cathode. Solid State Ionics, 329 (2019) 31-39
    [43]
    S. Sun, T. Guan, P. Zuo, Y. Gao, X. Cheng, C. Du, G. YinAccelerated aging analysis on cycle life of LiFePO4/graphite batteries based on different rates. Chemelectrochem, 5 (2018) 2301-2309 doi: 10.1002/celc.201800326
    [44]
    S. Sun, T. Guan, X. Cheng, P. Zuo, Y. Gao, C. Du, G. YinAccelerated aging and degradation mechanism of LiFePO4/graphite batteries cycled at high discharge rates. RSC Adv., 8 (2018) 25695-25703
    [45]
    M. Abdel Monem, K. Trad, N. Omar, O. Hegazy, B. Mantels, G. Mulder, P. Van den Bossche, J. Van MierloLithium-ion batteries: evaluation study of different charging methodologies based on aging process. Appl. Energy, 152 (2015) 143-155
    [46]
    M. Kassem, J. Bernard, R. Revel, S. Pélissier, F. Duclaud, C. DelacourtCalendar aging of a graphite/LiFePO4 cell. J.Power Sources, 208 (2012) 296-305
    [47]
    M. Hellqvist Kjell, S. Malmgren, K. Ciosek, M. Behm, K. Edström, G. LindberghComparing aging of graphite/LiFePO4 cells at 22 C and 55 C – Electrochemical and photoelectron spectroscopy studies. J.Power Sources, 243 (2013) 290-298
    [48]
    Y. Zheng, Y.-B. He, K. Qian, B. Li, X. Wang, J. Li, C. Miao, F. KangEffects of state of charge on the degradation of LiFePO4/graphite batteries during accelerated storage test. J.Alloys Compd., 639 (2015) 406-414
    [49]
    O.S. Mendoza-Hernandez, E. Hosono, D. Asakura, H. Matsuda, S. Shironita, M. Umeda, Y. SoneImpact of calendar degradation on the performance of LiFePO4 – ggaphite Li-ion cells during charge-discharge cycling at -5 °C. J.Electrochem. Soc., 166 (2019) A3525-A3530 doi: 10.1149/2.1201914jes
    [50]
    M. Dubarry, B.Y. Liaw, M.-S. Chen, S.-S. Chyan, K.-C. Han, W.-T. Sie, S.-H. WuIdentifying battery aging mechanisms in large format Li ion cells. J.Power Sources, 196 (2011) 3420-3425
    [51]
    M. Naumann, M. Schimpe, P. Keil, H.C. Hesse, A. JossenAnalysis and modeling of calendar aging of a commercial LiFePO4/graphite cell. J.Energy Storage, 17 (2018) 153-169
    [52]
    P. Keil, S.F. Schuster, J. Wilhelm, J. Travi, A. Hauser, R.C. Karl, A. JossenCalendar aging of lithium-ion batteries. J.Electrochem. Soc., 163 (2016) A1872-A1880 doi: 10.1149/2.0411609jes
    [53]
    Y. Preger, H.M. Barkholtz, A. Fresquez, D.L. Campbell, B.W. Juba, J. Romàn-Kustas, S.R. Ferreira, B. ChalamalaDegradation of commercial lithium-ion cells as a function of chemistry and cycling conditions. J.Electrochem. Soc., 167 (2020), p. 120532 doi: 10.1149/1945-7111/abae37
    [54]
    T. Waldmann, M. Wilka, M. Kasper, M. Fleischhammer, M. Wohlfahrt-MehrensTemperature dependent ageing mechanisms in Lithium-ion batteries – A Post-Mortem study. J.Power Sources, 262 (2014) 129-135
    [55]
    D. Li, D.L. Danilov, J. Xie, L. Raijmakers, L. Gao, Y. Yang, P.H.L. NottenDegradation mechanisms of C6/LiFePO4 batteries: experimental analyses of calendar aging. Electrochim. Acta, 190 (2016) 1124-1133
    [56]
    C. Delacourt, M. SafariLife simulation of a graphite/LiFePO4 cell under cycling and storage. J.Electrochem. Soc., 159 (2012) A1283-A1291 doi: 10.1149/2.049208jes
    [57]
    S. Grolleau, A. Delaille, H. Gualous, P. Gyan, R. Revel, J. Bernard, E. Redondo-Iglesias, J. PeterCalendar aging of commercial graphite/LiFePO4 cell – predicting capacity fade under time dependent storage conditions. J.Power Sources, 255 (2014) 450-458
    [58]
    J. Wang, P. Liu, J. Hicks-Garner, E. Sherman, S. Soukiazian, M. Verbrugge, H. Tataria, J. Musser, P. FinamoreCycle-life model for graphite-LiFePO4 cells. J.Power Sources, 196 (2011) 3942-3948
    [59]
    T. Rauhala, K. Jalkanen, T. Romann, E. Lust, N. Omar, T. KallioLow-temperature aging mechanisms of commercial graphite/LiFePO4 cells cycled with a simulated electric vehicle load profile—a post-mortem study. J.Energy Storage, 20 (2018) 344-356
    [60]
    E. Prada, D. Di Domenico, Y. Creff, J. Bernard, V. Sauvant-Moynot, F. HuetSimplified electrochemical and thermal model of LiFePO4-graphite Li-ion batteries for fast charge applications. J.Electrochem. Soc., 159 (2012) A1508-A1519 doi: 10.1149/2.064209jes
    [61]
    M. Fleckenstein, O. Bohlen, M.A. Roscher, B. BäkerCurrent density and state of charge inhomogeneities in Li-ion battery cells with LiFePO4 as cathode material due to temperature gradients. J.Power Sources, 196 (2011) 4769-4778
    [62]
    B. Xu, W. Diao, G. Wen, S.-Y. Choe, J. Kim, M. PechtDecoupling the thermal and non-thermal effects of discharge C-rate on the capacity fade of lithium-ion batteries. J.Power Sources, 510 (2021), p. 230390
    [63]
    A. Awarke, S. Lauer, M. Wittler, S. PischingerQuantifying the effects of strains on the conductivity and porosity of LiFePO4 based Li-ion composite cathodes using a multi-scale approach. Comput. Mater. Sci., 50 (2011) 871-879
    [64]
    B. Özdogru, H. Dykes, S. Padwal, S. Harimkar, Ö.Ö. ÇaprazElectrochemical strain evolution in iron phosphate composite cathodes during lithium and sodium ion intercalation. Electrochim. Acta, 353 (2020), p. 136594
    [65]
    S.C. Nagpure, R.G. Downing, B. Bhushan, S.S. Babu, L. CaoNeutron depth profiling technique for studying aging in Li-ion batteries. Electrochim. Acta, 56 (2011) 4735-4743
    [66]
    K.L. Bassett, Ö. Özgür Çapraz, B. Özdogru, A.A. Gewirth, N.R. SottosCathode/electrolyte interface-dependent changes in stress and strain in lithium iron phosphate composite cathodes. J.Electrochem. Soc., 166 (2019) A2707-A2714 doi: 10.1149/2.1391912jes
    [67]
    D.E. Demirocak, B. BhushanProbing the aging effects on nanomechanical properties of a thin film LiFePO4 cathode. ECS Transact., 73 (2016) 57-66 doi: 10.1149/07301.0057ecst
    [68]
    Y. Yang, R. Xu, K. Zhang, S.J. Lee, L. Mu, P. Liu, C.K. Waters, S. Spence, Z. Xu, C. Wei, D.J. Kautz, Q. Yuan, Y. Dong, Y.S. Yu, X. Xiao, H.K. Lee, P. Pianetta, P. Cloetens, J.S. Lee, K. Zhao, F. Lin, Y. LiuQuantification of heterogeneous degradation in Li-ion batteries. Adv. Energy Mater., 9 (2019), p. 1900674 doi: 10.1002/aenm.201900674
    [69]
    D.E. Demirocak, B. BhushanProbing the aging effects on nanomechanical properties of a LiFePO4 cathode in a large format prismatic cell. J.Power Sources, 280 (2015) 256-262
    [70]
    K. Bachtin, D. Kramer, V.S.K. Chakravadhanula, X. Mu, V. Trouillet, M. Kaus, S. Indris, H. Ehrenberg, C. RothActivation and degradation of electrospun LiFePO4 battery cathodes. J.Power Sources, 396 (2018) 386-394
    [71]
    P. Liu, J. Wang, J. Hicks-Garner, E. Sherman, S. Soukiazian, M. Verbrugge, H. Tataria, J. Musser, P. FinamoreAging mechanisms of LiFePO4 batteries deduced by electrochemical and structural analyses. J.Electrochem. Soc., 157 (2010) A499-A507 doi: 10.1149/1.3294790
    [72]
    B. Rowden, N. Carcia-AraezEstimating lithium-ion battery behavior from half-cell data. Energy Rep., 7 (2021) 97-103
    [73]
    J. Wang, Y. Tang, J. Yang, R. Li, G. Liang, X. SunNature of LiFePO4 aging process: roles of impurity phases. J.Power Sources, 238 (2013) 454-463
    [74]
    E.R. Logan, H. Hebecker, A. Eldesoky, A. Luscombe, M.B. Johnson, J.R. DahnPerformance and degradation of LiFePO4/graphite cells: the impact of water contamination and an evaluation of common electrolyte additives. J.Electrochem. Soc., 167 (2020), p. 130543 doi: 10.1149/1945-7111/abbbbe
    [75]
    Y. Li, X. Feng, D. Ren, M. Ouyang, L. Lu, X. HanThermal runaway triggered by plated lithium on the anode after fast charging. ACS Appl. Mater. Interfaces, 11 (2019) 46839-46850 doi: 10.1021/acsami.9b16589
    [76]
    J. Liu, Q. Duan, M. Ma, C. Zhao, J. Sun, Q. WangAging mechanisms and thermal stability of aged commercial 18650 lithium ion battery induced by slight overcharging cycling. J.Power Sources, 445 (2020), p. 227263
    [77]
    C. Essl, A. Golubkov, A. FuchsInfluence of aging on the failing behavior of automotive lithium-ion batteries. Batteries, 7 (2021), p. 23 doi: 10.3390/batteries7020023
    [78]
    J. Groot, M. Swierczynski, A.I. Stan, S.K. KærOn the complex ageing characteristics of high-power LiFePO4/graphite battery cells cycled with high charge and discharge currents. J.Power Sources, 286 (2015) 475-487
    [79]
    Y. Li, K. Liu, A.M. Foley, A. Zülke, M. Berecibar, E. Nanini-Maury, J. Van Mierlo, H.E. HosterData-driven health estimation and lifetime prediction of lithium-ion batteries: a review. Renew. Sustain. Energy Rev., 113 (2019), p. 109254
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (194) PDF downloads(37) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return