Citation: | Wang Sanlong, Wang Pengyang, Chen Bingbing, Li Renjie, Ren Ningyu, Li Yucheng, Shi Biao, Huang Qian, Zhao Ying, Grätzel Michael, Zhang Xiaodan. Suppressed recombination for monolithic inorganic perovskite/silicon tandem solar cells with an approximate efficiency of 23%[J]. eScience, 2022, 2(3): 339-346. doi: 10.1016/j.esci.2022.04.001 |
![]() |
![]() |
[1] |
J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu, F. Rotermund, Y. -K. Kim, C.S. Moon, N.J. Jeon, J. -P. Correa-Baena, V. Bulovic, S.S. Shin, M.G. Bawendi, J. Seo, Efficient perovskite solar cells via improved carrier management, Nature 590 (2021) 587–593. doi: 10.1038/s41586-021-03285-w
|
[2] |
J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M.A. Hope, F.T. Eickemeyer, M. Kim, Y.J. Yoon, I.W. Choi, B.P. Darwich, S.J. Choi, Y. Jo, J.H. Lee, B. Walker, S.M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D.S. Kim, M. Grätzel, J.Y. Kim, Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells, Nature 592 (2021) 381–385. doi: 10.1038/s41586-021-03406-5
|
[3] |
Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin, J. You, Surface passivation of perovskite film for efficient solar cells, Nat. Photonics 13 (2019) 460–466. doi: 10.1038/s41566-019-0398-2
|
[4] |
B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D'Haen, L. D'Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F.D. Angelis, H. -G. Boyen, Intrinsic thermal instability of methylammonium lead trihalide perovskite, Adv. Energy Mater. 5 (2015) 1500477. doi: 10.1002/aenm.201500477
|
[5] |
A. Ho-Baillie, M. Zhang, C.F.J. Lau, F. -J. Ma, S. Huang, Untapped potentials of inorganic metal halide perovskite solar cells, Joule 3 (2019) 938–955. doi: 10.1016/j.joule.2019.02.002
|
[6] |
G.E. Eperon, G.M. Paternò, R.J. Sutton, A. Zampetti, A.A. Haghighirad, F. Cacialli, H.J. Snaith, Inorganic caesium lead iodide perovskite solar cells, J. Mater. Chem. 3 (2015) 19688–19695. doi: 10.1039/C5TA06398A
|
[7] |
P. Wang, X. Zhang, Y. Zhou, Q. Jiang, Q. Ye, Z. Chu, X. Li, X. Yang, Z. Yin, J. You, Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells, Nat. Commun. 9 (2018) 2225. doi: 10.1038/s41467-018-04636-4
|
[8] |
B. Yu, J. Shi, S. Tan, Y. Cui, W. Zhao, H. Wu, Y. Luo, D. Li, Q. Meng, Efficient (>20%) and stable all-inorganic cesium lead triiodide solar cell enabled by thiocyanate molten salts, Angew. Chem. Int. Ed. 60 (2021) 13436–13443. doi: 10.1002/anie.202102466
|
[9] |
X. Gu, W. Xiang, Q. Tian, S. Liu, Rational surface-defect control via designed passivation for high-efficiency inorganic perovskite solar cells, Angew. Chem. Int. Ed. 60 (2021) 23164–23170. doi: 10.1002/anie.202109724
|
[10] |
B. Li, Y. Zhang, L. Fu, T. Yu, S. Zhou, L. Zhang, L. Yin, Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for highperformance solar cells, Nat. Commun. 9 (2018) 1076. doi: 10.1038/s41467-018-03169-0
|
[11] |
C. Liu, Y. Yang, O.A. Syzgantseva, Y. Ding, M.A. Syzgantseva, X. Zhang, A.M. Asiri, S. Dai, M.K. Nazeeruddin, α-CsPbI3 bilayers via one-step deposition for efficient and stable all-inorganic perovskite solar cells, Adv. Mater. 32 (2020) 2002632. doi: 10.1002/adma.202002632
|
[12] |
Y. Wang, T. Zhang, M. Kan, Y. Li, T. Wang, Y. Zhao, Efficient α-CsPbI3 photovoltaics with surface terminated organic cations, Joule 2 (2018) 2065–2075. doi: 10.1016/j.joule.2018.06.013
|
[13] |
Y. Zhao, J. Duan, Y. Wang, X. Yang, Q. Tang, Precise stress control of inorganic perovskite films for carbon-based solar cells with an ultrahigh voltage of 1.622 V, Nano Energy 67 (2020) 104286. doi: 10.1016/j.nanoen.2019.104286
|
[14] |
G. Tong, T. Chen, H. Li, L. Qiu, Z. Liu, Y. Dang, W. Song, L.K. Ono, Y. Jiang, Y. Qi, Phase transition induced recrystallization and low surface potential barrier leading to 10.91%-efficient CsPbBr3 perovskite solar cells, Nano Energy 65 (2019) 104015. doi: 10.1016/j.nanoen.2019.104015
|
[15] |
Q. Han, Y. -T. Hsieh, L. Meng, J. -L. Wu, P. Sun, E. -P. Yao, S. -Y. Chang, S. -H. Bae, T. Kato, V. Bermudez, Y. Yang, High-performance perovskite/Cu(In, Ga)Se2 monolithic tandem solar cells, Science 361 (2018) 904–908. doi: 10.1126/science.aat5055
|
[16] |
Y. Han, H. Zhao, C. Duan, S. Yang, Z. Yang, Z. Liu, S. Liu, Controlled n-doping in airstable cspbi2br perovskite solar cells with a record efficiency of 16.79, Adv. Funct. Mater. 30 (2020) 1909972. doi: 10.1002/adfm.201909972
|
[17] |
Y. Hou, E. Aydin, M. De Bastiani, C. Xiao, F.H. Isikgor, D. -J. Xue, B. Chen, H. Chen, B. Bahrami, A.H. Chowdhury, A. Johnston, S. -W. Baek, Z. Huang, M. Wei, Y. Dong, J. Troughton, R. Jalmood, A.J. Mirabelli, T.G. Allen, E. Van Kerschaver, M.I. Saidaminov, D. Baran, Q. Qiao, K. Zhu, S. De Wolf, E.H. Sargent, Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon, Science 367 (2020) 1135–1140. doi: 10.1126/science.aaz3691
|
[18] |
A. Al-Ashouri, E. Köhnen, B. Li, A. Magomedov, H. Hempel, P. Caprioglio, J.A. Márquez, A.B. Morales Vilches, E. Kasparavicius, J.A. Smith, N. Phung, D. Menzel, M. Grischek, L. Kegelmann, D. Skroblin, C. Gollwitzer, T. Malinauskas, M. Jošt, G. Matič, B. Rech, R. Schlatmann, M. Topič, L. Korte, A. Abate, B. Stannowski, D. Neher, M. Stolterfoht, T. Unold, V. Getautis, S. Albrecht, Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction, Science 370 (2020) 1300–1309. doi: 10.1126/science.abd4016
|
[19] |
Q. Ye, Y. Zhao, S. Mu, F. Ma, F. Gao, Z. Chu, Z. Yin, P. Gao, X. Zhang, J. You, Cesium lead inorganic solar cell with efficiency beyond 18% via reduced charge recombination, Adv. Mater. 31 (2019) 1905143. doi: 10.1002/adma.201905143
|
[20] |
J. Tian, Q. Xue, X. Tang, Y. Chen, N. Li, Z. Hu, T. Shi, X. Wang, F. Huang, C.J. Brabec, Dual interfacial design for efficient CsPbI2Br perovskite solar cells with improved photostability, Adv. Mater. 31 (2019) 1901152. doi: 10.1002/adma.201901152
|
[21] |
J. Zhang, S. Hou, R. Li, B. Chen, F. Hou, X. Cui, J. Liu, Q. Wang, P. Wang, D. Zhang, Y. Zhao, X. Zhang, I/P interface modification for stable and efficient perovskite solar cells, J. Semiconduct. 41 (2020) 52202. doi: 10.1088/1674-4926/41/5/052202
|
[22] |
Q. Jiang, Z. Chu, P. Wang, X. Yang, H. Liu, Y. Wang, Z. Yin, J. Wu, X. Zhang, J. You, Planar-structure perovskite solar cells with efficiency beyond 21, Adv. Mater. 29 (2017) 1703852. doi: 10.1002/adma.201703852
|
[23] |
S. Yang, S. Chen, E. Mosconi, Y. Fang, X. Xiao, C. Wang, Y. Zhou, Z. Yu, J. Zhao, Y. Gao, F. De Angelis, J. Huang, Stabilizing halide perovskite surfaces for solar cell operation with wide-bandgap lead oxysalts, Science 365 (2019) 473–478. doi: 10.1126/science.aax3294
|
[24] |
W. -Q. Wu, P.N. Rudd, Z. Ni, C.H. Van Brackle, H. Wei, Q. Wang, B.R. Ecker, Y. Gao, J. Huang, Reducing surface halide deficiency for efficient and stable iodide-based perovskite solar cells, J. Am. Chem. Soc. 142 (2020) 3989–3996. doi: 10.1021/jacs.9b13418
|
[25] |
W.S. Yang, B. -W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.S. Shin, J. Seo, E.K. Kim, J.H. Noh, Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells, Science 356 (2017) 1376–1379. doi: 10.1126/science.aan2301
|
[26] |
W. Zhang, J. Xiong, J. Li, W.A. Daoud, Guanidinium passivation for air-stable rubidium-incorporated Cs(1 - x)RbxPbI2Br inorganic perovskite solar cells, Sol. RRL 4 (2020) 2000112. doi: 10.1002/solr.202000112
|
[27] |
W. Xu, F. He, M. Zhang, P. Nie, S. Zhang, C. Zhao, R. Luo, J. Li, X. Zhang, S. Zhao, W. -D. Li, F. Kang, C. -W. Nan, G. Wei, Minimizing voltage loss in efficient allinorganic cspbi2br perovskite solar cells through energy level alignment, ACS Energy Lett. 4 (2019) 2491–2499. doi: 10.1021/acsenergylett.9b01662
|
[28] |
Y. Wang, X. Liu, T. Zhang, X. Wang, M. Kan, J. Shi, Y. Zhao, The role of dimethylammonium iodide in CsPbI3 perovskite fabrication: additive or dopant? Angew. Chem. Int. Ed. 131 (2019) 16844–16849. doi: 10.1002/ange.201910800
|
[29] |
Y. Wang, T. Zhang, K. Miao, Y. Zhao, Bifunctional stabilization of all-inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics, J. Am. Chem. Soc. 140 (2018) 12345–12348. doi: 10.1021/jacs.8b07927
|
[30] |
P. Wang, B. Chen, R. Li, S. Wang, Y. Li, X. Du, Y. Zhao, X. Zhang, 2D perovskite or organic material matter? Targeted growth for efficient perovskite solar cells with efficiency exceeding 24, Nano Energy 94 (2022) 106914. doi: 10.1016/j.nanoen.2021.106914
|
[31] |
Y. Ye, Y. Zhao, S. Mu, F. Ma, F. Gao, Z. Chu, Z. Yin, P. Gao, X. Zhang, J. You, Cesium lead inorganic solar cell with efficiency beyond 18% via reduced charge recombination, Adv. Mater. 31 (2019) 1905143. doi: 10.1002/adma.201905143
|
[32] |
Y. Zheng, X. Yang, R. Su, P. Wu, Q. Gong, R. Zhu, High-performance CsPbIxBr3-x allinorganic perovskite solar cells with efficiency over 18% via spontaneous interfacial manipulation, Adv. Funct. Mater. 30 (2018) 2000457.
|
[33] |
P. Wang, B. Chen, R. Li, S. Wang, N. Ren, Y. Li, S. Mazumdar, B. Shi, Y. Zhao, X. Zhang, Cobalt chloride hexahydrate assisted in reducing energy loss in perovskite solar cells with record open-circuit voltage of 1.20 V, ACS Energy Lett. 6 (2021) 2121–2128. doi: 10.1021/acsenergylett.1c00443
|
[34] |
Z. Ni, C. Bao, Y. Liu, Q. Jiang, W. -Q. Wu, S. Chen, X. Dai, B. Chen, B. Hartweg, Z. Yu, Z. Holman, J. Huang, Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells, Science 367 (2020) 1352–1358. doi: 10.1126/science.aba0893
|
[35] |
B. Chen, P.N. Rudd, S. Yang, Y. Yuan, J. Huang, Imperfections and their passivation in halide perovskite solar cells, Chem. Soc. Rev. 48 (2019) 3842–3867. doi: 10.1039/C8CS00853A
|
[36] |
T. Liu, Y. Li, S. Feng, W. Yang, R. Xu, X. Zhang, H. Yang, W. Fu, Incorporation of nickel ions to enhance integrity and stability of perovskite crystal lattice for highperformance planar heterojunction solar cells, ACS Appl. Mater. Interfaces 12 (2020) 904–913. doi: 10.1021/acsami.9b19330
|
[37] |
H. Zhu, Y. Ren, L. Pan, O. Ouellette, F.T. Eickemeyer, Y. Wu, X. Li, S. Wang, H. Liu, X. Dong, S.M. Zakeeruddin, Y. Liu, A. Hagfeldt, M. Grätzel, Synergistic effect of fluorinated passivator and hole transport dopant enables stable perovskite solar cells with an efficiency near 24, J. Am. Chem. Soc. 143 (2021) 3231–3237. doi: 10.1021/jacs.0c12802
|
[38] |
R. Li, P. Wang, B. Chen, X. Cui, Y. Ding, Y. Li, D. Zhang, Y. Zhao, X. Zhang, NiOx/ Spiro hole transport bilayers for stable perovskite solar cells with efficiency exceeding 21, ACS Energy Lett. 5 (2019) 79–86.
|
[39] |
S. Wang, T. Sakurai, W. Wen, Y. Qi, Energy level alignment at interfaces in metal halide perovskite solar cells, Adv. Mater. Interfaces 5 (2018) 1800260. doi: 10.1002/admi.201800260
|
[40] |
T. -S. Su, F.T. Eickemeyer, M.A. Hope, F. Jahanbakhshi, M. Mladenović, J. Li, Z. Zhou, A. Mishra, J. -H. Yum, D. Ren, A. Krishna, O. Ouellette, T. -C. Wei, H. Zhou, H. -H. Huang, M.D. Mensi, K. Sivula, S.M. Zakeeruddin, J.V. Milić, A. Hagfeldt, U. Rothlisberger, L. Emsley, H. Zhang, M. Grätzel, Crown ether modulation enables over 23% efficient formamidinium-based perovskite solar cells, J. Am. Chem. Soc. 142 (2020) 19980–19991. doi: 10.1021/jacs.0c08592
|
[41] |
Z. Guo, A.K. Jena, I. Takei, G.M. Kim, M.A. Kamarudin, Y. Sanehira, A. Ishii, Y. Numata, S. Hayase, T. Miyasaka, VOC over 1.4 V for amorphous tin-oxide-based dopant-free CsPbI2Br perovskite solar cells, J. Am. Chem. Soc. 142 (2020) 9725–9734.
|
[42] |
Y. -W. Jang, S. Lee, K.M. Yeom, K. Jeong, K. Choi, M. Choi, J.H. Noh, Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth, Nat. Energy 6 (2021) 63–71. doi: 10.1038/s41560-020-00749-7
|
[43] |
M. Jošt, L. Kegelmann, L. Korte, S. Albrecht, Monolithic Perovskite Tandem Solar Cells: a review of the present status and advanced characterization methods toward 30% efficiency, Adv. Energy Mater. 10 (2020) 1904102. doi: 10.1002/aenm.201904102
|
[44] |
The National Renewable Energy Laboratory, Best Research-Cell Efficiencies. https://www.nrel.gov/pv/cell-efficiency.html (accessed 28 March 2022).
|