Citation: | Guo Xu, Wan Xin, Liu Qingtao, Li Yongcheng, Li Wenwen, Shui Jianglan. Phosphated IrMo bimetallic cluster for efficient hydrogen evolution reaction[J]. eScience, 2022, 2(3): 304-310. doi: 10.1016/j.esci.2022.04.002 |
![]() |
![]() |
[1] |
S. Liu, J. Liu, X. Liu, J. Shang, L. Xu, R. Yu, J. Shui, Hydrogen storage in incompletely etched multilayer Ti2CTx at room temperature, Nat. Nanotechnol. 16 (2021) 331–336. doi: 10.1038/s41565-020-00818-8
|
[2] |
X. Guo, X. Wan, J. Shui, Molybdenum-based materials for electrocatalytic nitrogen reduction reaction, Cell Rep. Phys. Sci. 2 (2021) 100447. doi: 10.1016/j.xcrp.2021.100447
|
[3] |
H. Sun, Z. Yan, F. Liu, W. Xu, F. Cheng, J. Chen, Self-supported transition-metalbased electrocatalysts for hydrogen and oxygen evolution, Adv. Mater. 32 (2020) 1806326. doi: 10.1002/adma.201806326
|
[4] |
Z. Pu, I.S. Amiinu, R. Cheng, P. Wang, C. Zhang, S. Mu, W. Zhao, F. Su, G. Zhang, S. Liao, S. Sun, Single-atom catalysts for electrochemical hydrogen evolution reaction: recent advances and future perspectives, Nano-Micro Lett. 12 (2020) 21. doi: 10.1007/s40820-019-0349-y
|
[5] |
L. Zhou, S.Y. Lu, S. Guo, Recent progress on precious metal single atom materials for water splitting catalysis, SusMat 1 (2021) 194–210. doi: 10.1002/sus2.15
|
[6] |
H. Wu, C. Feng, L. Zhang, J. Zhang, D.P. Wilkinson, Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis, Electrochem. Energy Rev. 4 (2021) 473–507. doi: 10.1007/s41918-020-00086-z
|
[7] |
Z. Chen, W. Gong, S. Cong, Z. Wang, G. Song, T. Pan, X. Tang, J. Chen, W. Lu, Z. Zhao, Eutectoid-structured WC/W2C heterostructures: a new platform for longterm alkaline hydrogen evolution reaction at low overpotentials, Nano Energy 68 (2020) 104335. doi: 10.1016/j.nanoen.2019.104335
|
[8] |
H.C. Fu, X.H. Wang, X.H. Chen, Q. Zhang, N.B. Li, H.Q. Luo, Interfacial engineering of Ni(OH)2 on W2C for remarkable alkaline hydrogen production, Appl. Catal. B Environ. 301 (2022) 120818. doi: 10.1016/j.apcatb.2021.120818
|
[9] |
J. Wang, F. Xu, H. Jin, Y. Chen, Y. Wang, Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications, Adv. Mater. 29 (2017) 1605838. doi: 10.1002/adma.201605838
|
[10] |
Z. Li, W. Niu, Z. Yang, A. Kara, Q. Wang, M. Wang, M. Gu, Z. Feng, Y. Du, Y. Yang, Boosting alkaline hydrogen evolution: the dominating role of interior modification in surface electrocatalysis, Energy Environ. Sci. 13 (2020) 3110–3118. doi: 10.1039/D0EE01750G
|
[11] |
C.L. Yang, L.N. Wang, P. Yin, J. Liu, M.X. Chen, Q.Q. Yan, Z.S. Wang, S.L. Xu, S.Q. Chu, C. Cui, H. Ju, J. Zhu, Y. Lin, J. Shui, H.W. Liang, Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells, Science 374 (2021) 459–464. doi: 10.1126/science.abj9980
|
[12] |
J.K. Nørskov, T. Bligaard, A. Logadottir, J.R. Kitchin, J.G. Chen, S. Pandelov, U. Stimming, Trends in the exchange current for hydrogen evolution, J. Electrochem. Soc. 152 (2005) 23–26.
|
[13] |
Z. Chen, X. Duan, W. Wei, S. Wang, B.-J. Ni, Iridium-based nanomaterials for electrochemical water splitting, Nano Energy 78 (2020) 105270. doi: 10.1016/j.nanoen.2020.105270
|
[14] |
W.H. Lai, L.F. Zhang, W.B. Hua, S. Indris, Z.C. Yan, Z. Hu, B. Zhang, Y. Liu, L. Wang, M. Liu, R. Liu, Y.X. Wang, J.Z. Wang, Z. Hu, H.K. Liu, S.L. Chou, S.X. Dou, General π-electron-assisted strategy for Ir, Pt, Ru, Pd, Fe, Ni single-atom electrocatalysts with bifunctional active sites for highly efficient water splitting, Angew. Chem. Int. Ed. 58 (2019) 11868–11873. doi: 10.1002/anie.201904614
|
[15] |
J. Feng, F. Lv, W. Zhang, P. Li, K. Wang, C. Yang, B. Wang, Y. Yang, J. Zhou, F. Lin, G.C. Wang, S. Guo, Iridium-based multimetallic porous hollow nanocrystals for efficient overall-water-splitting catalysis, Adv. Mater. 29 (2017) 1703798. doi: 10.1002/adma.201703798
|
[16] |
P. Jiang, J. Chen, C. Wang, K. Yang, S. Gong, S. Liu, Z. Lin, M. Li, G. Xia, Y. Yang, J. Su, Q. Chen, Tuning the activity of carbon for electrocatalytic hydrogen evolution via an iridium-cobalt alloy core encapsulated in nitrogen-doped carbon cages, Adv. Mater. 30 (2018) 1705324. doi: 10.1002/adma.201705324
|
[17] |
H. Su, M.A. Soldatov, V. Roldugin, Q. Liu, Platinum single-atom catalyst with selfadjustable valence state for large-current-density acidic water oxidation, eScience 2 (2022) 102–109. doi: 10.1016/j.esci.2021.12.007
|
[18] |
P. Jiang, Y. Lv, C. Chen, H. He, Y. Cai, M. Zhang, A facile route to synthesize Pt-WO3 nanosheets with enhanced electrochemical performance for HER, J. Electrochem. 25 (2019) 562–570.
|
[19] |
Y. Li, Z. Luo, J. Ge, C. Liu, X. Wei, Research progress in hydrogen evolution low noble/non-precious metal catalysts of water electrolysis, J. Electrochem. 24 (2018) 572–588.
|
[20] |
Q.Q. Yan, D.X. Wu, S.Q. Chu, Z.Q. Chen, Y. Lin, M.X. Chen, J. Zhang, X.J. Wu, H.W. Liang, Reversing the charge transfer between platinum and sulfur-doped carbon support for electrocatalytic hydrogen evolution, Nat. Commun. 10 (2019) 4977. doi: 10.1038/s41467-019-12851-w
|
[21] |
C. Peng, W. Zhao, Z. Li, Z. Kuang, G. Cheng, J.T. Miller, S. Sun, H. Chen, Eutectic molten salt assisted synthesis of highly defective and flexible ruthenium oxide for efficient overall water splitting, Chem. Eng. J. 425 (2021) 131707. doi: 10.1016/j.cej.2021.131707
|
[22] |
X. Wang, Y. Zheng, W. Sheng, Z.J. Xu, M. Jaroniec, S.-Z. Qiao, Strategies for design of electrocatalysts for hydrogen evolution under alkaline conditions, Mater, Today Off. 36 (2020) 125–138.
|
[23] |
Y. Zheng, Y. Jiao, A. Vasileff, S.Z. Qiao, The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts, Angew. Chem. Int. Ed. 57 (2018) 7568–7579. doi: 10.1002/anie.201710556
|
[24] |
I. Ledezma-Yanez, W.D.Z. Wallace, P. Sebastián-Pascual, V. Climent, J.M. Feliu, M.T.M. Koper, Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes, Nat. Energy 2 (2017) 17031. doi: 10.1038/nenergy.2017.31
|
[25] |
D. Strmcnik, P.P. Lopes, B. Genorio, V.R. Stamenkovic, N.M. Markovic, Design principles for hydrogen evolution reaction catalyst materials, Nano Energy 29 (2016) 29–36. doi: 10.1016/j.nanoen.2016.04.017
|
[26] |
J. Matthey, Precious Metals Management. http://www.platinum.matthey.com/.
|
[27] |
J. Cai, R. Javed, D. Ye, H. Zhao, J. Zhang, Recent progress in noble metal nanocluster and single atom electrocatalysts for the hydrogen evolution reaction, J. Mater. Chem. 8 (2020) 22467–22487. doi: 10.1039/D0TA06942F
|
[28] |
X. Zeng, J. Shui, X. Liu, Q. Liu, Y. Li, J. Shang, L. Zheng, R. Yu, Single-atom to single-atom grafting of Pt1 onto Fe-N4 Center: Pt1@Fe-N-C multifunctional electrocatalyst with significantly enhanced properties, Adv. Energy Mater. 8 (2018) 1701345. doi: 10.1002/aenm.201701345
|
[29] |
Q. Wang, C.Q. Xu, W. Liu, S.F. Hung, H. Bin Yang, J. Gao, W. Cai, H.M. Chen, J. Li, B. Liu, Coordination engineering of iridium nanocluster bifunctional electrocatalyst for highly efficient and pH-universal overall water splitting, Nat. Commun. 11 (2020) 4246. doi: 10.1038/s41467-020-18064-w
|
[30] |
L. Liu, A. Corma, Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles, Chem. Rev. 118 (2018) 4981–5079. doi: 10.1021/acs.chemrev.7b00776
|
[31] |
Y. Du, H. Sheng, D. Astruc, M. Zhu, Atomically precise noble metal nanoclusters as efficient catalysts: a bridge between structure and properties, Chem. Rev. 120 (2020) 526–622. doi: 10.1021/acs.chemrev.8b00726
|
[32] |
E.C. Tyo, S. Vajda, Catalysis by clusters with precise numbers of atoms, Nat. Nanotechnol. 10 (2015) 577–588. doi: 10.1038/nnano.2015.140
|
[33] |
X. Guo, X. Li, Y. Li, J. Yang, X. Wan, L. Chen, J. Liu, X. Liu, R. Yu, L. Zheng, J. Shui, Molecule template method for precise synthesis of Mo-based alloy clusters and electrocatalytic nitrogen reduction on partially reduced PtMo alloy oxide cluster, Nano Energy 78 (2020) 105211. doi: 10.1016/j.nanoen.2020.105211
|
[34] |
R. Ferrando, J. Jellinek, R.L. Johnston, Nanoalloys: from theory to applications of alloy clusters and nanoparticles, Chem. Rev. 108 (2008) 846–910.
|
[35] |
A. Ghosh, O.F. Mohammed, O.M. Bakr, Atomic-level doping of metal clusters, Acc. Chem. Res. 51 (2018) 3094–3103. doi: 10.1021/acs.accounts.8b00412
|
[36] |
H. Yan, Y. Lin, H. Wu, W. Zhang, Z. Sun, H. Cheng, W. Liu, C. Wang, J. Li, X. Huang, T. Yao, J. Yang, S. Wei, J. Lu, Bottom-up precise synthesis of stable platinum dimers on graphene, Nat. Commun. 8 (2017) 1070–1081. doi: 10.1038/s41467-017-01259-z
|
[37] |
Y. Wang, X. Wan, J. Liu, W. Li, Y. Li, X. Guo, X. Liu, J. Shang, J. Shui, Catalysis stability enhancement of Fe/Co dual-atom site via phosphorus coordination for proton exchange membrane fuel cell, Nano Res. 15 (2022) 3082–3089. doi: 10.1007/s12274-021-3966-y
|
[38] |
C. Dong, Y. Li, D. Cheng, M. Zhang, J. Liu, Y.-G. Wang, D. Xiao, D. Ma, Supported metal clusters: fabrication and application in heterogeneous catalysis, ACS Catal. 10 (2020) 11011–11045. doi: 10.1021/acscatal.0c02818
|
[39] |
M. Peng, C. Dong, R. Gao, D. Xiao, H. Liu, D. Ma, Fully exposed cluster catalyst (FECC): toward rich surface sites and full atom utilization efficiency, ACS Cent. Sci. 7 (2021) 262–273. doi: 10.1021/acscentsci.0c01486
|
[40] |
X. Chen, M. Peng, X. Cai, Y. Chen, Z. Jia, Y. Deng, B. Mei, Z. Jiang, D. Xiao, X. Wen, N. Wang, H. Liu, D. Ma, Regulating coordination number in atomically dispersed Pt species on defect-rich graphene for n-butane dehydrogenation reaction, Nat. Commun. 12 (2021) 2664. doi: 10.1038/s41467-021-22948-w
|
[41] |
J. Zhang, Y. Deng, X. Cai, Y. Chen, M. Peng, Z. Jia, Z. Jiang, P. Ren, S. Yao, J. Xie, D. Xiao, X. Wen, N. Wang, H. Liu, D. Ma, Tin-assisted fully exposed platinum clusters stabilized on defect-rich graphene for dehydrogenation reaction, ACS Catal. 9 (2019) 5998–6005. doi: 10.1021/acscatal.9b00601
|
[42] |
Y. Guo, L. Feng, C. Wu, X. Wang, X. Zhang, Confined pyrolysis transformation of ZIF-8 to hierarchically ordered porous Zn-N-C nanoreactor for efficient CO2 photoconversion under mild conditions, J. Catal. 390 (2020) 213–223. doi: 10.1016/j.jcat.2020.07.037
|
[43] |
J. Liu, X. Wan, S. Liu, X. Liu, L. Zheng, R. Yu, J. Shui, Hydrogen passivation of M-NC (M = Fe, Co) catalysts for storage stability and ORR activity improvements, Adv. Mater. 33 (2021) 2103600. doi: 10.1002/adma.202103600
|
[44] |
Z.-Y. Yu, R. Huang, J. Liu, G. Li, Q.-T. Song, S.-G. Sun, Preparation of PdCoIr tetrahedron nanocatalysts and its performance toward ethanol oxidation reaction, J. Electrochem. 27 (2021) 63–75.
|
[45] |
P. Xiao, M.A. Sk, L. Thia, X. Ge, R.J. Lim, J.-Y. Wang, K.H. Lim, X. Wang, Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction, Energy Environ. Sci. 7 (2014) 2624–2629. doi: 10.1039/C4EE00957F
|
[46] |
T. Wang, X. Cao, L. Jiao, Ni2P/NiMoP heterostructure as a bifunctional electrocatalyst for energy-saving hydrogen production, eScience 1 (2021) 69–74. doi: 10.1016/j.esci.2021.09.002
|
[47] |
Q. Liu, Y. Li, L. Zheng, J. Shang, X. Liu, R. Yu, J. Shui, Sequential synthesis and active-site coordination principle of precious metal single-atom catalysts for oxygen reduction reaction and PEM fuel cells, Adv. Energy Mater. 10 (2020) 2000689. doi: 10.1002/aenm.202000689
|
[48] |
Z. Pu, J. Zhao, I.S. Amiinu, W. Li, M. Wang, D. He, S. Mu, A universal synthesis strategy for P-rich noble metal diphosphide-based electrocatalysts for the hydrogen evolution reaction, Energy Environ. Sci. 12 (2019) 952–957. doi: 10.1039/C9EE00197B
|
[49] |
J. Tang, X. Peng, T. Lin, X. Huang, B. Luo, L. Wang, Confining ultrafine tin monophosphide in Ti3C2Tx interlayers for rapid and stable sodium ion storage, eScience 1 (2022) 203–211.
|
[50] |
P. Wang, Y. Luo, G. Zhang, M. Wu, Z. Chen, S. Sun, Z. Shi, MnOx-decorated nickeliron phosphides nanosheets: interface modifications for robust overall water splitting at ultra-high current densities, Small 18 (2021) 2105803.
|
[51] |
Y. Liu, Y. Zhu, J. Shen, J. Huang, X. Yang, C. Li, CoP nanoparticles anchored on N, Pdual-doped graphene-like carbon as a catalyst for water splitting in non-acidic media, Nanoscale 10 (2018) 2603–2612. doi: 10.1039/C7NR07274K
|
[52] |
X. Zhou, X. Liao, X. Pan, M. Yan, L. He, P. Wu, Y. Zhao, W. Luo, L. Mai, Unveiling the role of surface P-O group in P-doped Co3O4 for electrocatalytic oxygen evolution by On-chip micro-device, Nano Energy 83 (2021) 105748. doi: 10.1016/j.nanoen.2021.105748
|
[53] |
Y.L. Wu, X. Li, Y.S. Wei, Z. Fu, W. Wei, X.T. Wu, Q.L. Zhu, Q. Xu, Ordered macroporous superstructure of nitrogen-doped nanoporous carbon implanted with ultrafine Ru nanoclusters for efficient pH-universal hydrogen evolution reaction, Adv. Mater. 33 (2021) 2006965. doi: 10.1002/adma.202006965
|
[54] |
M. Qiao, Y. Wang, Q. Wang, G. Hu, X. Mamat, S. Zhang, S. Wang, Hierarchically ordered porous carbon with atomically dispersed FeN4 for ultraefficient oxygen reduction reaction in proton-exchange membrane fuel cells, Angew. Chem. Int. Ed. 59 (2020) 2688–2694. doi: 10.1002/anie.201914123
|
[55] |
C. Zhang, D. Qin, Y. Zhou, F. Qin, H. Wang, W. Wang, Y. Yang, G. Zeng, Dual optimization approach to Mo single atom dispersed g-C3N4 photocatalyst: morphology and defect evolution, Appl. Catal. B Environ. 303 (2022) 120904. doi: 10.1016/j.apcatb.2021.120904
|
[56] |
J. Rong, G. Zhu, W. Ryan Osterloh, Y. Fang, Z. Ou, F. Qiu, K.M. Kadish, In situ construction MoS2-Pt nanosheets on 3D MOF-derived S, N-doped carbon substrate for highly efficient alkaline hydrogen evolution reaction, Chem. Eng. J. 412 (2021) 127556. doi: 10.1016/j.cej.2020.127556
|
[57] |
J. Deng, H. Li, J. Xiao, Y. Tu, D. Deng, H. Yang, H. Tian, J. Li, P. Ren, X. Bao, Triggering the electrocatalytic hydrogen evolution activity of the inert twodimensional MoS2 surface via single-atom metal doping, Energy Environ. Sci. 8 (2015) 1594–1601. doi: 10.1039/C5EE00751H
|
[58] |
D. Cao, J. Wang, H. Zhang, H. Xu, D. Cheng, Growth of IrCu nanoislands with rich IrCu/Ir interfaces enables highly efficient overall water splitting in non-acidic electrolytes, Chem. Eng. J. 416 (2021) 129128. doi: 10.1016/j.cej.2021.129128
|
[59] |
C. Lv, X. Wang, L. Gao, A. Wang, S. Wang, R. Wang, X. Ning, Y. Li, D.W. Boukhvalov, Z. Huang, C. Zhang, Triple functions of Ni(OH)2 on the surface of WN nanowires remarkably promoting electrocatalytic activity in full water splitting, ACS Catal. 10 (2020) 13323–13333. doi: 10.1021/acscatal.0c02891
|
[60] |
B. Mao, P. Sun, Y. Jiang, T. Meng, D. Guo, J. Qin, M. Cao, Identifying the transfer kinetics of adsorbed hydroxyl as a descriptor of alkaline hydrogen evolution reaction, Angew. Chem. Int. Ed. 59 (2020) 15232–15237. doi: 10.1002/anie.202006722
|
[61] |
R. Subbaraman, D. Tripkovic, K.C. Chang, D. Strmcnik, A.P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N.M. Markovic, Trends in activity for the water electrolyser reactions on 3d M(Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts, Nat. Mater. 11 (2012) 550–557. doi: 10.1038/nmat3313
|
[62] |
J. Durst, A. Siebel, C. Simon, F. Hasché, J. Herranz, H.A. Gasteiger, New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism, Energy Environ. Sci. 7 (2014) 2255–2260. doi: 10.1039/C4EE00440J
|
[63] |
J. Staszak-Jirkovsky, C.D. Malliakas, P.P. Lopes, N. Danilovic, S.S. Kota, K.C. Chang, B. Genorio, D. Strmcnik, V.R. Stamenkovic, M.G. Kanatzidis, N.M. Markovic, Design of active and stable Co-Mo-Sx chalcogels as pH-universal catalysts for the hydrogen evolution reaction, Nat. Mater. 15 (2016) 197–203. doi: 10.1038/nmat4481
|
[64] |
V.R. Stamenkovic, D. Strmcnik, P.P. Lopes, N.M. Markovic, Energy and fuels from electrochemical interfaces, Nat. Mater. 16 (2017) 57–69. doi: 10.1038/nmat4738
|