Volume 2 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Wang Mingming, Meng Yahan, Li Ke, Ahmad Touqeer, Chen Na, Xu Yan, Sun Jifei, Chuai Mingyan, Zheng Xinhua, Yuan Yuan, Shen Chunyue, Zhang Ziqi, Chen Wei. Toward dendrite-free and anti-corrosion Zn anodes by regulating a bismuth-based energizer[J]. eScience, 2022, 2(5): 509-517. doi: 10.1016/j.esci.2022.04.003
Citation: Wang Mingming, Meng Yahan, Li Ke, Ahmad Touqeer, Chen Na, Xu Yan, Sun Jifei, Chuai Mingyan, Zheng Xinhua, Yuan Yuan, Shen Chunyue, Zhang Ziqi, Chen Wei. Toward dendrite-free and anti-corrosion Zn anodes by regulating a bismuth-based energizer[J]. eScience, 2022, 2(5): 509-517. doi: 10.1016/j.esci.2022.04.003

Toward dendrite-free and anti-corrosion Zn anodes by regulating a bismuth-based energizer

doi: 10.1016/j.esci.2022.04.003
More Information
  • Corresponding author: E-mail address: weichen1@ustc.edu.cn (W. Chen)
  • Received Date: 2022-01-05
  • Revised Date: 2022-03-04
  • Accepted Date: 2022-04-11
  • Available Online: 2022-04-14
  • Aqueous rechargeable zinc metal batteries display high theoretical capacity along with economical effectiveness, environmental benignity and high safety. However, dendritic growth and chemical corrosion at the Zn anodes limit their widespread applications. Here, we construct a Zn/Bi electrode via in-situ growth of a Bi-based energizer upon Zn metal surface using a replacement reaction. Experimental and theoretical calculations reveal that the Bi-based energizer composed of metallic Bi and ZnBi alloy contributes to Zn plating/stripping due to strong adsorption energy and fast ion transport rates. The resultant Zn/Bi electrode not only circumvents Zn dendrite growth but also improves Zn anode anti-corrosion performance. Specifically, the corrosion current of the Zn/Bi electrode is reduced by 90% compared to bare Zn. Impressively, an ultra-low overpotential of 12 ​mV and stable cycling for 4000 ​h are achieved in a Zn/Bi symmetric cell. A Zn–Cu/Bi asymmetric cell displays a cycle life of 1000 cycles, with an average Coulombic efficiency as high as 99.6%. In addition, an assembled Zn/Bi-activated carbon hybrid capacitor exhibits a stable life of more than 50, 000 cycles, an energy density of 64 ​Wh kg−1, and a power density of 7 ​kW ​kg−1. The capacity retention rate of a Zn/Bi–MnO2 full cell is improved by over 150% compared to a Zn–MnO2 cell without the Bi-based energizer. Our findings open a new arena for the industrialization of Zn metal batteries for large-scale energy storage applications.
  • ● Developing a dendrite-free and anti-corrosion Zn/Bi electrode via in-situ growth of a Bi-based energizer upon Zn metal surface using a replacement reaction.
    ● The Zn/Bi electrode-based batteries and capacitors showed much improved electrochemical performance for energy-storage applications.
    ● The symmetric Zn/Bi cell achieved an ultra-low overpotential of 12 ​mV and an operation of 4000 ​h.
    ● The asymmetric Zn–Cu/Bi cell achieved 1000 stable cycles with an average Coulombic efficiency of 99.6%.
    Author contributions
    M.W., Y.M., and K.L. contributed equally to this work. M.W., Y.M., and W.C. conceived the idea and co-wrote the manuscript. K.L. provided support for theoretical calculations. W.C. supervised the project. All authors contributed to the data analysis and reviewed and contributed to the final version of the manuscript.
    Conflict of interest
    The authors declare no competing financial interest.
    1 M.W., Y.M. and K.L. contributed equally to this work.
  • loading
  • eScience-2-5-509.docx
  • [1]
    M. Armand, J. M. Tarascon, Building better batteries. Nature 451 (2008) 652-657. doi: 10.1038/451652a
    [2]
    D. Larcher, J. M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7 (2015) 19-29. doi: 10.1038/nchem.2085
    [3]
    S. Chu, Y. Cui, N. Liu, The path towards sustainable energy. Nat. Mater. 16 (2016) 16-22.
    [4]
    S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488 (2012) 294-303. doi: 10.1038/nature11475
    [5]
    H. Pan, Y. Shao, P. Yan, Y. Cheng, K. S. Han, Z. Nie, C. Wang, J. Yang, X. Li, P. Bhattacharya, K. T. Mueller, J. Liu, Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1 (2016) 1-6. doi: 10.1038/nenergy.2016.39
    [6]
    Z. Zhu, W. Wang, Y. Yin, Y. Meng, Z. Liu, T. Jiang, Q. Peng, J. Sun, W. Chen, An ultrafast and ultra-low-temperature hydrogen gas-proton battery, J. Am. Chem. Soc. 143 (2021) 20302–20308. doi: 10.1021/jacs.1c09529
    [7]
    L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang, C. Yang, L. Chen, J. Vatamanu, E. Hu, M. J. Hourwitz, L. Ma, M. Ding, Q. Li, S. Hou, K. Gaskell, J. T. Fourkas, X. Q. Yang, K. Xu, O. Borodin, C. Wang, Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 16 (2021) 902-910. doi: 10.1038/s41565-021-00905-4
    [8]
    C. Zhong, B. Liu, J. Ding, X. Liu, Y. Zhong, Y. Li, C. Sun, X. Han, Y. Deng, N. Zhao, W. Hu, Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc-manganese dioxide batteries. Nat. Energy 5 (2020) 440-449. doi: 10.1038/s41560-020-0584-y
    [9]
    M. Chuai, J. Yang, M. Wang, Y. Yuan, Z. Liu, Y. Xu, Y. Yin, J. Sun, X. Zheng, N. Chen, W. Chen, High-performance Zn battery with transition metal ions co-regulated electrolytic MnO2. eScience 1 (2021) 178-185. doi: 10.1016/j.esci.2021.11.002
    [10]
    Y. Meng, M. Wang, Z. Zhu, T. Jiang, Z. Liu, N. Chen, C. Shen, Q. Peng, W. Chen, Multifunctional nickel-cobalt phosphates for high-performance hydrogen gas batteries and self-powered water splitting, ACS Appl. Energy Mater. 4 (2021) 12927–12934. doi: 10.1021/acsaem.1c02582
    [11]
    T. Wang, C. Li, X. Xie, B. Lu, Z. He, S. Liang, J. Zhou, Anode materials for aqueous zinc ion batteries: mechanisms, properties, and perspectives, ACS Nano 14 (2020) 16321–16347. doi: 10.1021/acsnano.0c07041
    [12]
    M. Wang, X. Zheng, X. Zhang, D. Chao, S.Z. Qiao, H.N. Alshareef, Y. Cui, W. Chen, Opportunities of aqueous manganese-based batteries with deposition and stripping chemistry, Adv. Energy Mater. 11 (2021) 200294.
    [13]
    Z. Yi, G. Chen, F. Hou, L. Wang, J. Liang, Strategies for the stabilization of Zn metal anodes for Zn-ion batteries, Adv. Energy Mater. 11 (2020) 2003065.
    [14]
    W. Du, E. H. Ang, Y. Yang, Y. Zhang, M. Ye, C. C. Li, Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 13 (2020) 3330-3360. doi: 10.1039/D0EE02079F
    [15]
    C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. Engl. 51 (2012) 957-959. doi: 10.1002/anie.201107175
    [16]
    Q. Zhang, J. Luan, L. Fu, S. Wu, Y. Tang, X. Ji, H. Wang, The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive, Angew. Chem. Int. Ed. 58 (2019) 15841–15847. doi: 10.1002/anie.201907830
    [17]
    X. Ji, A perspective of ZnCl2 electrolytes: the physical and electrochemical properties, eScience 1 (2021) 99–107. doi: 10.1016/j.esci.2021.10.004
    [18]
    Y. Zhang, L. Zhao, Y. Liang, X. Wang, Y. Yao, Effect of electrolyte anions on the cycle life of a polymer electrode in aqueous batteries, eScience 1 (2022) 110–115.
    [19]
    Y. Li, P. Wu, W. Zhong, C. Xie, Y. Xie, Q. Zhang, D. Sun, Y. Tang, H. Wang, A progressive nucleation mechanism enables stable zinc stripping-plating behavior. Energy Environ. Sci. 14 (2021) 5563-5571. doi: 10.1039/D1EE01861B
    [20]
    L. Yuan, J. Hao, C. -C. Kao, C. Wu, H. -K. Liu, S. -X. Dou, S. -Z. Qiao, Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy Environ. Sci. 14 (2021) 5669-5689. doi: 10.1039/D1EE02021H
    [21]
    Z. Tang, W. Chen, Z. Lyu, Q. Chen, Size-dependent reaction mechanism of λ-MnO2 particles as cathodes in aqueous zinc-ion batteries, Energy Mater. Adv. 2022 (2022) 1–12.
    [22]
    Y. Wang, Y. Chen, W. Liu, X. Ni, P. Qing, Q. Zhao, W. Wei, X. Ji, J. Ma, L. Chen, Uniform and dendrite-free zinc deposition enabled by in situ formed AgZn3 for the zinc metal anode. J. Mater. Chem. A 9 (2021) 8452-8461. doi: 10.1039/D0TA12177K
    [23]
    Y. Zhu, Y. Cui, H.N. Alshareef, An anode-free Zn-MnO2 battery, Nano Lett. 21 (2021) 1446–1453. doi: 10.1021/acs.nanolett.0c04519
    [24]
    L. Tang, W. Lu, H. Zhang, X. Li, Progress and perspective of the cathode materials towards bromine-based flow batteries, Energy Mater. Adv. (2022) 1–22.
    [25]
    J. Yan, E.H. Ang, Y. Yang, Y. Zhang, M. Ye, W. Du, C.C. Li, High-voltage zinc-ion batteries: design strategies and challenges, Adv. Funct. Mater. 31 (2021) 2010213. doi: 10.1002/adfm.202010213
    [26]
    Z. Cai, Y. Ou, J. Wang, R. Xiao, L. Fu, Z. Yuan, R. Zhan, Y. Sun, Chemically resistant Cu-Zn/Zn composite anode for long cycling aqueous batteries, Energy Stor. Mater. 27 (2020) 205–211. doi: 10.1016/j.ensm.2020.01.032
    [27]
    S.J. Zhang, J. Hao, D. Luo, P.F. Zhang, B. Zhang, K. Davey, Z. Lin, S.Z. Qiao, Dual-function electrolyte additive for highly reversible Zn anode, Adv. Energy Mater. 11 (2021) 2102010. doi: 10.1002/aenm.202102010
    [28]
    P. Cao, X. Zhou, A. Wei, Q. Meng, H. Ye, W. Liu, J. Tang, J. Yang, Fast-charging and ultrahigh-capacity zinc metal anode for high-performance aqueous zinc-ion batteries, Adv. Funct. Mater. 31 (2021) 2100398. doi: 10.1002/adfm.202100398
    [29]
    C. Deng, X. Xie, J. Han, B. Lu, S. Liang, J. Zhou, Stabilization of Zn metal anode through surface reconstruction of a cerium-based conversion film, Adv. Funct. Mater. 31 (2021) 2103227. doi: 10.1002/adfm.202103227
    [30]
    M. Wang, N. Chen, Z. Zhu, Y. Meng, C. Shen, X. Zheng, D. Liang, W. Chen, Electrode-less MnO2-metal batteries with deposition and stripping chemistry, Small 17 (2021) 2103921. doi: 10.1002/smll.202103921
    [31]
    S. B. Wang, Q. Ran, R. Q. Yao, H. Shi, Z. Wen, M. Zhao, X. Y. Lang, Q. Jiang, Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 11 (2020) 1634. doi: 10.1038/s41467-020-15478-4
    [32]
    F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun, F. Han, A. Faraone, J. A. Dura, K. Xu, C. Wang, Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17 (2018) 543-549. doi: 10.1038/s41563-018-0063-z
    [33]
    Y. Chu, S. Zhang, S. Wu, Z. Hu, G. Cui, J. Luo, In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes. Energy Environ. Sci. 14 (2021) 3609-3620. doi: 10.1039/D1EE00308A
    [34]
    C. Li, X. Xie, S. Liang, J. Zhou, Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energy Environ. Mater. 3 (2020) 146-159. doi: 10.1002/eem2.12067
    [35]
    Z. Cai, Y. Ou, B. Zhang, J. Wang, L. Fu, M. Wan, G. Li, W. Wang, L. Wang, J. Jiang, Z.W. Seh, E. Hu, X.Q. Yang, Y. Cui, Y. Sun, A replacement reaction enabled interdigitated metal/solid electrolyte architecture for battery cycling at 20 mA cm-2 and 20 mAh cm-2, J. Am. Chem. Soc. 143 (2021) 3143–3152. doi: 10.1021/jacs.0c11753
    [36]
    Q. Lu, C. Liu, Y. Du, X. Wang, L. Ding, A. Omar, D. Mikhailova, Uniform Zn deposition achieved by Ag coating for improved aqueous zinc-ion batteries, ACS Appl. Mater. Interfaces 13 (2021) 16869–16875. doi: 10.1021/acsami.0c22911
    [37]
    X. Xu, Y. Chen, D. Zheng, P. Ruan, Y. Cai, X. Dai, X. Niu, C. Pei, W. Shi, W. Liu, F. Wu, Z. Pan, H. Li, X. Cao, Ultra-fast and scalable saline immersion strategy enabling uniform Zn nucleation and deposition for high-performance Zn-ion batteries, Small 17 (2021) 2101901. doi: 10.1002/smll.202101901
    [38]
    D. Han, S. Wu, S. Zhang, Y. Deng, C. Cui, L. Zhang, Y. Long, H. Li, Y. Tao, Z. Weng, Q.H. Yang, F. Kang, A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems, Small 16 (2020) 2001736. doi: 10.1002/smll.202001736
    [39]
    S. Li, J. Fu, G. Miao, S. Wang, W. Zhao, Z. Wu, Y. Zhang, X. Yang, Toward planar and dendrite-free Zn electrodepositions by regulating Sn-crystal textured surface, Adv. Mater. 33 (2021) 2008424. doi: 10.1002/adma.202008424
    [40]
    X. Guo, Z. Zhang, J. Li, N. Luo, G.-L. Chai, T.S. Miller, F. Lai, P. Shearing, D.J.L. Brett, D. Han, Z. Weng, G. He, I.P. Parkin, Alleviation of dendrite formation on zinc anodes via electrolyte additives, ACS Energy Lett. 6 (2021) 395–403. doi: 10.1021/acsenergylett.0c02371
    [41]
    C. Liu, Z. Luo, W. Deng, W. Wei, L. Chen, A. Pan, J. Ma, C. Wang, L. Zhu, L. Xie, X.-Y. Cao, J. Hu, G. Zou, H. Hou, X. Ji, Liquid alloy interlayer for aqueous zinc-ion battery, ACS Energy Lett. 6 (2021) 675–683. doi: 10.1021/acsenergylett.0c02569
    [42]
    J. Hao, B. Li, X. Li, X. Zeng, S. Zhang, F. Yang, S. Liu, D. Li, C. Wu, Z. Guo, An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 32 (2020) 2003021. doi: 10.1002/adma.202003021
    [43]
    M. Wang, Y. Meng, N. Chen, M. Chuai, C. Shen, X. Zheng, Y. Yuan, J. Sun, Y. Xu, W. Chen, Electrolyte regulation of bismuth ions toward high-performance aqueous manganese-based batteries. ACS Materials Lett. 3 (2021) 1558-1565. doi: 10.1021/acsmaterialslett.1c00480
    [44]
    Y. Zhao, A. Du, S. Dong, F. Jiang, Z. Guo, X. Ge, X. Qu, X. Zhou, G. Cui, A bismuth-based protective layer for magnesium metal anode in noncorrosive electrolytes. ACS Energy Lett. 6 (2021) 2594-2601. doi: 10.1021/acsenergylett.1c01243
    [45]
    Y. Sui, X. Ji, Anticatalytic strategies to suppress water electrolysis in aqueous batteries. Chem. Rev. 121 (2021) 6654-6695. doi: 10.1021/acs.chemrev.1c00191
    [46]
    J. Greeley, T. F. Jaramillo, J. Bonde, I. B. Chorkendorff, J. K. Norskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5 (2006) 909-913. doi: 10.1038/nmat1752
    [47]
    L. Ma, Q. Li, Y. Ying, F. Ma, S. Chen, Y. Li, H. Huang, C. Zhi, Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes. Adv. Mater. 33 (2021) 2007406. doi: 10.1002/adma.202007406
    [48]
    P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang, D. Chao, W. Mai, Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. Engl. 60 (2021) 18247-18255. doi: 10.1002/anie.202105756
    [49]
    J. Shi, T. Sun, J. Bao, S. Zheng, H. Du, L. Li, X. Yuan, T. Ma, Z. Tao, Water-in-Deep eutectic Solvent”Electrolytes for high-performance aqueous Zn-ion batteries, Adv. Funct. Mater. 31 (2021) 2102035. doi: 10.1002/adfm.202102035
    [50]
    X. Wang, J. Meng, X. Lin, Y. Yang, S. Zhou, Y. Wang, A. Pan, Stable zinc metal anodes with textured crystal faces and functional zinc compound coatings. Adv. Funct. Mater. 31 (2021) 2106114. doi: 10.1002/adfm.202106114
    [51]
    C. Huang, X. Zhao, S. Liu, Y. Hao, Q. Tang, A. Hu, Z. Liu, X. Chen, Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions. Adv. Mater. 33 (2021) 2100445. doi: 10.1002/adma.202100445
    [52]
    X. Yang, C. Li, Z. Sun, S. Yang, Z. Shi, R. Huang, B. Liu, S. Li, Y. Wu, M. Wang, Y. Su, S. Dou, J. Sun, Interfacial manipulation via in situ grown ZnSe cultivator toward highly reversible Zn metal anodes. Adv. Mater. 33 (2021) 2105951. doi: 10.1002/adma.202105951
    [53]
    Y. Yang, C. Liu, Z. Lv, H. Yang, Y. Zhang, M. Ye, L. Chen, J. Zhao, C. C. Li, Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes. Adv. Mater. 33 (2021) 2007388. doi: 10.1002/adma.202007388
    [54]
    W. Wang, G. Huang, Y. Wang, Z. Cao, L. Cavallo, M. N. Hedhili, H. N. Alshareef, Organic acid etching strategy for dendrite suppression in aqueous zinc-ion batteries. Adv. Energy Mater. 12 (2022) 2102797. doi: 10.1002/aenm.202102797
    [55]
    P. X. Sun, Z. Cao, Y. X. Zeng, W. W. Xie, N. W. Li, D. Luan, S. Yang, L. Yu, X. W. D. Lou, formation of super-assembled TiOx/Zn/N-doped carbon inverse opal towards dendrite-free Zn anodes. Angew. Chem. Int. Ed. Engl. 61 (2022) e202115649.
    [56]
    G. Liang, J. Zhu, B. Yan, Q. Li, A. Chen, Z. Chen, X. Wang, B. Xiong, J. Fan, J. Xu, C. Zhi, Gradient fluorinated alloy to enable highly reversible Zn-metal anode chemistry. Energy Environ. Sci. (2022). doi: 10.1039/D1EE03749H
    [57]
    S. Jiao, J. Fu, M. Wu, T. Hua, H. Hu, Ion sieve: tailoring Zn2+ desolvation kinetics and flux toward dendrite-free metallic zinc anodes. ACS Nano 16 (2021) 1013-1024.
    [58]
    J. Zheng, Z. Huang, Y. Zeng, W. Liu, B. Wei, Z. Qi, Z. Wang, C. Xia, H. Liang, Electrostatic shielding regulation of magnetron sputtered Al-based alloy protective coatings enables highly reversible zinc anodes. Nano Lett. 22 (2022) 1017-1023. doi: 10.1021/acs.nanolett.1c03917
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (193) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return