Citation: | Wang Mingming, Meng Yahan, Li Ke, Ahmad Touqeer, Chen Na, Xu Yan, Sun Jifei, Chuai Mingyan, Zheng Xinhua, Yuan Yuan, Shen Chunyue, Zhang Ziqi, Chen Wei. Toward dendrite-free and anti-corrosion Zn anodes by regulating a bismuth-based energizer[J]. eScience, 2022, 2(5): 509-517. doi: 10.1016/j.esci.2022.04.003 |
![]() |
![]() |
[1] |
M. Armand, J. M. Tarascon, Building better batteries. Nature 451 (2008) 652-657. doi: 10.1038/451652a
|
[2] |
D. Larcher, J. M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7 (2015) 19-29. doi: 10.1038/nchem.2085
|
[3] |
S. Chu, Y. Cui, N. Liu, The path towards sustainable energy. Nat. Mater. 16 (2016) 16-22.
|
[4] |
S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488 (2012) 294-303. doi: 10.1038/nature11475
|
[5] |
H. Pan, Y. Shao, P. Yan, Y. Cheng, K. S. Han, Z. Nie, C. Wang, J. Yang, X. Li, P. Bhattacharya, K. T. Mueller, J. Liu, Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 1 (2016) 1-6. doi: 10.1038/nenergy.2016.39
|
[6] |
Z. Zhu, W. Wang, Y. Yin, Y. Meng, Z. Liu, T. Jiang, Q. Peng, J. Sun, W. Chen, An ultrafast and ultra-low-temperature hydrogen gas-proton battery, J. Am. Chem. Soc. 143 (2021) 20302–20308. doi: 10.1021/jacs.1c09529
|
[7] |
L. Cao, D. Li, T. Pollard, T. Deng, B. Zhang, C. Yang, L. Chen, J. Vatamanu, E. Hu, M. J. Hourwitz, L. Ma, M. Ding, Q. Li, S. Hou, K. Gaskell, J. T. Fourkas, X. Q. Yang, K. Xu, O. Borodin, C. Wang, Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 16 (2021) 902-910. doi: 10.1038/s41565-021-00905-4
|
[8] |
C. Zhong, B. Liu, J. Ding, X. Liu, Y. Zhong, Y. Li, C. Sun, X. Han, Y. Deng, N. Zhao, W. Hu, Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc-manganese dioxide batteries. Nat. Energy 5 (2020) 440-449. doi: 10.1038/s41560-020-0584-y
|
[9] |
M. Chuai, J. Yang, M. Wang, Y. Yuan, Z. Liu, Y. Xu, Y. Yin, J. Sun, X. Zheng, N. Chen, W. Chen, High-performance Zn battery with transition metal ions co-regulated electrolytic MnO2. eScience 1 (2021) 178-185. doi: 10.1016/j.esci.2021.11.002
|
[10] |
Y. Meng, M. Wang, Z. Zhu, T. Jiang, Z. Liu, N. Chen, C. Shen, Q. Peng, W. Chen, Multifunctional nickel-cobalt phosphates for high-performance hydrogen gas batteries and self-powered water splitting, ACS Appl. Energy Mater. 4 (2021) 12927–12934. doi: 10.1021/acsaem.1c02582
|
[11] |
T. Wang, C. Li, X. Xie, B. Lu, Z. He, S. Liang, J. Zhou, Anode materials for aqueous zinc ion batteries: mechanisms, properties, and perspectives, ACS Nano 14 (2020) 16321–16347. doi: 10.1021/acsnano.0c07041
|
[12] |
M. Wang, X. Zheng, X. Zhang, D. Chao, S.Z. Qiao, H.N. Alshareef, Y. Cui, W. Chen, Opportunities of aqueous manganese-based batteries with deposition and stripping chemistry, Adv. Energy Mater. 11 (2021) 200294.
|
[13] |
Z. Yi, G. Chen, F. Hou, L. Wang, J. Liang, Strategies for the stabilization of Zn metal anodes for Zn-ion batteries, Adv. Energy Mater. 11 (2020) 2003065.
|
[14] |
W. Du, E. H. Ang, Y. Yang, Y. Zhang, M. Ye, C. C. Li, Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 13 (2020) 3330-3360. doi: 10.1039/D0EE02079F
|
[15] |
C. Xu, B. Li, H. Du, F. Kang, Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. Engl. 51 (2012) 957-959. doi: 10.1002/anie.201107175
|
[16] |
Q. Zhang, J. Luan, L. Fu, S. Wu, Y. Tang, X. Ji, H. Wang, The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive, Angew. Chem. Int. Ed. 58 (2019) 15841–15847. doi: 10.1002/anie.201907830
|
[17] |
X. Ji, A perspective of ZnCl2 electrolytes: the physical and electrochemical properties, eScience 1 (2021) 99–107. doi: 10.1016/j.esci.2021.10.004
|
[18] |
Y. Zhang, L. Zhao, Y. Liang, X. Wang, Y. Yao, Effect of electrolyte anions on the cycle life of a polymer electrode in aqueous batteries, eScience 1 (2022) 110–115.
|
[19] |
Y. Li, P. Wu, W. Zhong, C. Xie, Y. Xie, Q. Zhang, D. Sun, Y. Tang, H. Wang, A progressive nucleation mechanism enables stable zinc stripping-plating behavior. Energy Environ. Sci. 14 (2021) 5563-5571. doi: 10.1039/D1EE01861B
|
[20] |
L. Yuan, J. Hao, C. -C. Kao, C. Wu, H. -K. Liu, S. -X. Dou, S. -Z. Qiao, Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy Environ. Sci. 14 (2021) 5669-5689. doi: 10.1039/D1EE02021H
|
[21] |
Z. Tang, W. Chen, Z. Lyu, Q. Chen, Size-dependent reaction mechanism of λ-MnO2 particles as cathodes in aqueous zinc-ion batteries, Energy Mater. Adv. 2022 (2022) 1–12.
|
[22] |
Y. Wang, Y. Chen, W. Liu, X. Ni, P. Qing, Q. Zhao, W. Wei, X. Ji, J. Ma, L. Chen, Uniform and dendrite-free zinc deposition enabled by in situ formed AgZn3 for the zinc metal anode. J. Mater. Chem. A 9 (2021) 8452-8461. doi: 10.1039/D0TA12177K
|
[23] |
Y. Zhu, Y. Cui, H.N. Alshareef, An anode-free Zn-MnO2 battery, Nano Lett. 21 (2021) 1446–1453. doi: 10.1021/acs.nanolett.0c04519
|
[24] |
L. Tang, W. Lu, H. Zhang, X. Li, Progress and perspective of the cathode materials towards bromine-based flow batteries, Energy Mater. Adv. (2022) 1–22.
|
[25] |
J. Yan, E.H. Ang, Y. Yang, Y. Zhang, M. Ye, W. Du, C.C. Li, High-voltage zinc-ion batteries: design strategies and challenges, Adv. Funct. Mater. 31 (2021) 2010213. doi: 10.1002/adfm.202010213
|
[26] |
Z. Cai, Y. Ou, J. Wang, R. Xiao, L. Fu, Z. Yuan, R. Zhan, Y. Sun, Chemically resistant Cu-Zn/Zn composite anode for long cycling aqueous batteries, Energy Stor. Mater. 27 (2020) 205–211. doi: 10.1016/j.ensm.2020.01.032
|
[27] |
S.J. Zhang, J. Hao, D. Luo, P.F. Zhang, B. Zhang, K. Davey, Z. Lin, S.Z. Qiao, Dual-function electrolyte additive for highly reversible Zn anode, Adv. Energy Mater. 11 (2021) 2102010. doi: 10.1002/aenm.202102010
|
[28] |
P. Cao, X. Zhou, A. Wei, Q. Meng, H. Ye, W. Liu, J. Tang, J. Yang, Fast-charging and ultrahigh-capacity zinc metal anode for high-performance aqueous zinc-ion batteries, Adv. Funct. Mater. 31 (2021) 2100398. doi: 10.1002/adfm.202100398
|
[29] |
C. Deng, X. Xie, J. Han, B. Lu, S. Liang, J. Zhou, Stabilization of Zn metal anode through surface reconstruction of a cerium-based conversion film, Adv. Funct. Mater. 31 (2021) 2103227. doi: 10.1002/adfm.202103227
|
[30] |
M. Wang, N. Chen, Z. Zhu, Y. Meng, C. Shen, X. Zheng, D. Liang, W. Chen, Electrode-less MnO2-metal batteries with deposition and stripping chemistry, Small 17 (2021) 2103921. doi: 10.1002/smll.202103921
|
[31] |
S. B. Wang, Q. Ran, R. Q. Yao, H. Shi, Z. Wen, M. Zhao, X. Y. Lang, Q. Jiang, Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries. Nat. Commun. 11 (2020) 1634. doi: 10.1038/s41467-020-15478-4
|
[32] |
F. Wang, O. Borodin, T. Gao, X. Fan, W. Sun, F. Han, A. Faraone, J. A. Dura, K. Xu, C. Wang, Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17 (2018) 543-549. doi: 10.1038/s41563-018-0063-z
|
[33] |
Y. Chu, S. Zhang, S. Wu, Z. Hu, G. Cui, J. Luo, In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes. Energy Environ. Sci. 14 (2021) 3609-3620. doi: 10.1039/D1EE00308A
|
[34] |
C. Li, X. Xie, S. Liang, J. Zhou, Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries. Energy Environ. Mater. 3 (2020) 146-159. doi: 10.1002/eem2.12067
|
[35] |
Z. Cai, Y. Ou, B. Zhang, J. Wang, L. Fu, M. Wan, G. Li, W. Wang, L. Wang, J. Jiang, Z.W. Seh, E. Hu, X.Q. Yang, Y. Cui, Y. Sun, A replacement reaction enabled interdigitated metal/solid electrolyte architecture for battery cycling at 20 mA cm-2 and 20 mAh cm-2, J. Am. Chem. Soc. 143 (2021) 3143–3152. doi: 10.1021/jacs.0c11753
|
[36] |
Q. Lu, C. Liu, Y. Du, X. Wang, L. Ding, A. Omar, D. Mikhailova, Uniform Zn deposition achieved by Ag coating for improved aqueous zinc-ion batteries, ACS Appl. Mater. Interfaces 13 (2021) 16869–16875. doi: 10.1021/acsami.0c22911
|
[37] |
X. Xu, Y. Chen, D. Zheng, P. Ruan, Y. Cai, X. Dai, X. Niu, C. Pei, W. Shi, W. Liu, F. Wu, Z. Pan, H. Li, X. Cao, Ultra-fast and scalable saline immersion strategy enabling uniform Zn nucleation and deposition for high-performance Zn-ion batteries, Small 17 (2021) 2101901. doi: 10.1002/smll.202101901
|
[38] |
D. Han, S. Wu, S. Zhang, Y. Deng, C. Cui, L. Zhang, Y. Long, H. Li, Y. Tao, Z. Weng, Q.H. Yang, F. Kang, A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems, Small 16 (2020) 2001736. doi: 10.1002/smll.202001736
|
[39] |
S. Li, J. Fu, G. Miao, S. Wang, W. Zhao, Z. Wu, Y. Zhang, X. Yang, Toward planar and dendrite-free Zn electrodepositions by regulating Sn-crystal textured surface, Adv. Mater. 33 (2021) 2008424. doi: 10.1002/adma.202008424
|
[40] |
X. Guo, Z. Zhang, J. Li, N. Luo, G.-L. Chai, T.S. Miller, F. Lai, P. Shearing, D.J.L. Brett, D. Han, Z. Weng, G. He, I.P. Parkin, Alleviation of dendrite formation on zinc anodes via electrolyte additives, ACS Energy Lett. 6 (2021) 395–403. doi: 10.1021/acsenergylett.0c02371
|
[41] |
C. Liu, Z. Luo, W. Deng, W. Wei, L. Chen, A. Pan, J. Ma, C. Wang, L. Zhu, L. Xie, X.-Y. Cao, J. Hu, G. Zou, H. Hou, X. Ji, Liquid alloy interlayer for aqueous zinc-ion battery, ACS Energy Lett. 6 (2021) 675–683. doi: 10.1021/acsenergylett.0c02569
|
[42] |
J. Hao, B. Li, X. Li, X. Zeng, S. Zhang, F. Yang, S. Liu, D. Li, C. Wu, Z. Guo, An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 32 (2020) 2003021. doi: 10.1002/adma.202003021
|
[43] |
M. Wang, Y. Meng, N. Chen, M. Chuai, C. Shen, X. Zheng, Y. Yuan, J. Sun, Y. Xu, W. Chen, Electrolyte regulation of bismuth ions toward high-performance aqueous manganese-based batteries. ACS Materials Lett. 3 (2021) 1558-1565. doi: 10.1021/acsmaterialslett.1c00480
|
[44] |
Y. Zhao, A. Du, S. Dong, F. Jiang, Z. Guo, X. Ge, X. Qu, X. Zhou, G. Cui, A bismuth-based protective layer for magnesium metal anode in noncorrosive electrolytes. ACS Energy Lett. 6 (2021) 2594-2601. doi: 10.1021/acsenergylett.1c01243
|
[45] |
Y. Sui, X. Ji, Anticatalytic strategies to suppress water electrolysis in aqueous batteries. Chem. Rev. 121 (2021) 6654-6695. doi: 10.1021/acs.chemrev.1c00191
|
[46] |
J. Greeley, T. F. Jaramillo, J. Bonde, I. B. Chorkendorff, J. K. Norskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 5 (2006) 909-913. doi: 10.1038/nmat1752
|
[47] |
L. Ma, Q. Li, Y. Ying, F. Ma, S. Chen, Y. Li, H. Huang, C. Zhi, Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes. Adv. Mater. 33 (2021) 2007406. doi: 10.1002/adma.202007406
|
[48] |
P. Sun, L. Ma, W. Zhou, M. Qiu, Z. Wang, D. Chao, W. Mai, Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. Engl. 60 (2021) 18247-18255. doi: 10.1002/anie.202105756
|
[49] |
J. Shi, T. Sun, J. Bao, S. Zheng, H. Du, L. Li, X. Yuan, T. Ma, Z. Tao, Water-in-Deep eutectic Solvent”Electrolytes for high-performance aqueous Zn-ion batteries, Adv. Funct. Mater. 31 (2021) 2102035. doi: 10.1002/adfm.202102035
|
[50] |
X. Wang, J. Meng, X. Lin, Y. Yang, S. Zhou, Y. Wang, A. Pan, Stable zinc metal anodes with textured crystal faces and functional zinc compound coatings. Adv. Funct. Mater. 31 (2021) 2106114. doi: 10.1002/adfm.202106114
|
[51] |
C. Huang, X. Zhao, S. Liu, Y. Hao, Q. Tang, A. Hu, Z. Liu, X. Chen, Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions. Adv. Mater. 33 (2021) 2100445. doi: 10.1002/adma.202100445
|
[52] |
X. Yang, C. Li, Z. Sun, S. Yang, Z. Shi, R. Huang, B. Liu, S. Li, Y. Wu, M. Wang, Y. Su, S. Dou, J. Sun, Interfacial manipulation via in situ grown ZnSe cultivator toward highly reversible Zn metal anodes. Adv. Mater. 33 (2021) 2105951. doi: 10.1002/adma.202105951
|
[53] |
Y. Yang, C. Liu, Z. Lv, H. Yang, Y. Zhang, M. Ye, L. Chen, J. Zhao, C. C. Li, Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes. Adv. Mater. 33 (2021) 2007388. doi: 10.1002/adma.202007388
|
[54] |
W. Wang, G. Huang, Y. Wang, Z. Cao, L. Cavallo, M. N. Hedhili, H. N. Alshareef, Organic acid etching strategy for dendrite suppression in aqueous zinc-ion batteries. Adv. Energy Mater. 12 (2022) 2102797. doi: 10.1002/aenm.202102797
|
[55] |
P. X. Sun, Z. Cao, Y. X. Zeng, W. W. Xie, N. W. Li, D. Luan, S. Yang, L. Yu, X. W. D. Lou, formation of super-assembled TiOx/Zn/N-doped carbon inverse opal towards dendrite-free Zn anodes. Angew. Chem. Int. Ed. Engl. 61 (2022) e202115649.
|
[56] |
G. Liang, J. Zhu, B. Yan, Q. Li, A. Chen, Z. Chen, X. Wang, B. Xiong, J. Fan, J. Xu, C. Zhi, Gradient fluorinated alloy to enable highly reversible Zn-metal anode chemistry. Energy Environ. Sci. (2022). doi: 10.1039/D1EE03749H
|
[57] |
S. Jiao, J. Fu, M. Wu, T. Hua, H. Hu, Ion sieve: tailoring Zn2+ desolvation kinetics and flux toward dendrite-free metallic zinc anodes. ACS Nano 16 (2021) 1013-1024.
|
[58] |
J. Zheng, Z. Huang, Y. Zeng, W. Liu, B. Wei, Z. Qi, Z. Wang, C. Xia, H. Liang, Electrostatic shielding regulation of magnetron sputtered Al-based alloy protective coatings enables highly reversible zinc anodes. Nano Lett. 22 (2022) 1017-1023. doi: 10.1021/acs.nanolett.1c03917
|