Citation: | Wang Wang, Wang Zixu, Hu Youcheng, Liu Yucheng, Chen Shengli. A potential-driven switch of activity promotion mode for the oxygen evolution reaction at Co3O4/NiOxHy interface[J]. eScience, 2022, 2(4): 438-444. doi: 10.1016/j.esci.2022.04.004 |
![]() |
![]() |
[1] |
A. Bergmann, T. E. Jones, E. Martinez Moreno, D. Teschner, P. Chernev, M. Gliech, T. Reier, H. Dau and P. Strasser, Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction, Nat. Catal. 1 (2018) 711-719 doi: 10.1038/s41929-018-0141-2
|
[2] |
F. Le Formal, L. Yerly, E. Potapova Mensi, X. Pereira Da Costa, F. Boudoire, N. Guijarro, M. Spodaryk, A. Zuttel and K. Sivula, Influence of composition on performance in metallic iron-nickel-cobalt ternary anodes for alkaline water electrolysis, ACS Catal. 10 (2020) 12139-12147 doi: 10.1021/acscatal.0c03523
|
[3] |
C. Liu, J. Qian, Y. Ye, H. Zhou, C. -J. Sun, C. Sheehan, Z. Zhang, G. Wan, Y. -S. Liu, J. Guo, S. Li, H. Shin, S. Hwang, T. B. Gunnoe, W. A. Goddard and S. Zhang, Oxygen evolution reaction over catalytic single-site Co in a well-defined brookite TiO2 nanorod surface, Nat. Catal. 4 (2021) 36-45 doi: 10.1038/s41929-020-00550-5
|
[4] |
H. Sun, Z. Yan, F. Liu, W. Xu, F. Cheng and J. Chen, Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution, Adv. Mater. 32 (2020) 1806326 doi: 10.1002/adma.201806326
|
[5] |
C. -X. Zhao, J. -N. Liu, J. Wang, D. Ren, B. -Q. Li and Q. Zhang, Recent advances of noble-metal-free bifunctional oxygen reduction and evolution electrocatalysts, Chem. Soc. Rev. 50 (2021) 7745-7778 doi: 10.1039/d1cs00135c
|
[6] |
L. Bai, S. Lee and X. Hu, Spectroscopic and electrokinetic evidence for a bifunctional mechanism of the oxygen evolution reaction, Angew. Chem. Int. Ed. 60 (2021) 3095-3103 doi: 10.1002/anie.202011388
|
[7] |
J. Yin, J. Jin, M. Lu, B. Huang, H. Zhang, Y. Peng, P. Xi and C. -H. Yan, Iridium single atoms coupling with oxygen vacancies boosts oxygen evolution reaction in acid media, J. Am. Chem. Soc. 142 (2020) 18378-18386 doi: 10.1021/jacs.0c05050
|
[8] |
B. Zhang, L. Wang, Z. Cao, S. M. Kozlov, F. P. Garcia de Arquer, C. T. Dinh, J. Li, Z. Wang, X. Zheng, L. Zhang, Y. Wen, O. Voznyy, R. Comin, P. De Luna, T. Regier, W. Bi, E. E. Alp, C. -W. Pao, L. Zheng, Y. Hu, Y. Ji, Y. Li, Y. Zhang, L. Cavallo, H. Peng and E. H. Sargent, High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics, Nat. Catal. 3 (2020) 985-992 doi: 10.1038/s41929-020-00525-6
|
[9] |
B. Qiu, C. Wang, N. Zhang, L. Cai, Y. Xiong and Y. Chai, CeO2-induced interfacial Co2+ octahedral sites and oxygen vacancies for water oxidation, ACS Catal. 9 (2019) 6484-6490 doi: 10.1021/acscatal.9b01819
|
[10] |
F. Lyu, Q. Wang, S. M. Choi and Y. Yin, Noble-metal-free electrocatalysts for oxygen evolution, Small 15 (2019) 1804201 doi: 10.1002/smll.201804201
|
[11] |
L. C. Seitz, C. F. Dickens, K. Nishio, Y. Hikita, J. Montoya, A. Doyle, C. Kirk, A. Vojvodic, H. Y. Hwang, J. K. Norskov and T. F. Jaramillo, A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reactioncatalyst for the oxygen evolution reaction, Science 353 (2016) 1011 doi: 10.1126/science.aaf5050
|
[12] |
Y. Pi, Q. Shao, P. Wang, J. Guo and X. Huang, General formation of monodisperse IrM (M = Ni, Co, Fe) bimetallic nanoclusters as bifunctional electrocatalysts for acidic overall water splitting, Adv. Funct. Mater. 27 (2017) 1700886 doi: 10.1002/adfm.201700886
|
[13] |
J. Song, C. Wei, Z. -F. Huang, C. Liu, L. Zeng, X. Wang and Z. J. Xu, A review on fundamentals for designing oxygen evolution electrocatalysts, Chem. Soc. Rev. 49 (2020) 2196-2214 doi: 10.1039/c9cs00607a
|
[14] |
Z. -P. Wu, X. F. Lu, S. -Q. Zang and X. W. Lou, Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction, Adv. Funct. Mater. 30 (2020) 1910274 doi: 10.1002/adfm.201910274
|
[15] |
K. Wang, X. Wang, Z. Li, B. Yang, M. Ling, X. Gao, J. Lu, Q. Shi, L. Lei, G. Wu and Y. Hou, Designing 3d dual transition metal electrocatalysts for oxygen evolution reaction in alkaline electrolyte: Beyond oxides, Nano Energy 77 (2020) 105162 doi: 10.1016/j.nanoen.2020.105162
|
[16] |
M. Garcia-Mota, M. Bajdich, V. Viswanathan, A. Vojvodic, A. T. Bell and J. K. Noerskov, Importance of correlation in determining electrocatalytic oxygen evolution activity on cobalt oxides, J. Phys. Chem. C 116 (2012) 21077-21082 doi: 10.1021/jp306303y
|
[17] |
Z. Xiao, Y. -C. Huang, C. -L. Dong, C. Xie, Z. Liu, S. Du, W. Chen, D. Yan, L. Tao, Z. Shu, G. Zhang, H. Duan, Y. Wang, Y. Zou, R. Chen and S. Wang, Operando Identification of the dynamic behavior of oxygen vacancy-rich Co3O4 for oxygen evolution reaction, J. Am. Chem. Soc. 142 (2020) 12087-12095 doi: 10.1021/jacs.0c00257
|
[18] |
L. Xu, Q. Jiang, Z. Xiao, X. Li, J. Huo, S. Wang and L. Dai, Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction, Angew. Chem. Int. Ed. 55 (2016) 5277-5281 doi: 10.1002/anie.201600687
|
[19] |
R. Zhang, Y. -C. Zhang, L. Pan, G. -Q. Shen, N. Mahmood, Y. -H. Ma, Y. Shi, W. Jia, L. Wang, X. Zhang, W. Xu and J. -J. Zou, Engineering cobalt defects in cobalt oxide for highly efficient electrocatalytic oxygen evolution, ACS Catal. 8 (2018) 3803-3811 doi: 10.1021/acscatal.8b01046
|
[20] |
Y. Wang, Y. Yang, S. Jia, X. Wang, K. Lyu, Y. Peng, H. Zheng, X. Wei, H. Ren, L. Xiao, J. Wang, D. A. Muller, H. D. Abruna, B. J. Hwang, J. Lu and L. Zhuang, Synergistic Mn-Co catalyst outperforms Pt on high-rate oxygen reduction for alkaline polymer electrolyte fuel cells, Nat. Commun. 10 (2019) 1506 doi: 10.1038/s41467-019-09503-4
|
[21] |
J. Chen, Y. Chen, P. Li, Z. Wen and S. Chen, Energetic span as a rate-determining term for electrocatalytic volcanos, ACS Catal. 8 (2018) 10590-10598 doi: 10.1021/acscatal.8b03008
|
[22] |
Y. Chen, J. Chen and S. Chen, Electrocatalytic volcano relations: surface occupation effects and rational kinetic models, Chin. J. Catal. 43 (2022) 2-10 doi: 10.53388/bmec2022002
|
[23] |
J. S. Yoo, X. Rong, Y. Liu and A. M. Kolpak, Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites, ACS Catal. 8 (2018) 4628-4636 doi: 10.1021/acscatal.8b00612
|
[24] |
G. Kresse and J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci. 6 (1996) 15-50 doi: 10.1016/0927-0256(96)00008-0
|
[25] |
G. Kresse and J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169-11186 doi: 10.1103/PhysRevB.54.11169
|
[26] |
J. P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996) 3865-3868 doi: 10.1103/PhysRevLett.77.3865
|
[27] |
S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys and A. P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study, Phys. Rev. B 57 (1998) 1505-1509 doi: 10.1103/PhysRevB.57.1505
|
[28] |
L. Wang, T. Maxisch and G. Ceder, Oxidation energies of transition metal oxides within the {GGA}+{U} framework, Phys. Rev. B 73 (2006) 195107 doi: 10.1103/PhysRevB.73.195107
|
[29] |
J. K. Noerskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard and H. Jonsson, Origin of the overpotential for oxygen reduction at a fuel-cell cathode, J. Phys. Chem. B 108 (2004) 17886-17892 doi: 10.1021/jp047349j
|
[30] |
D. Ding, K. Shen, X. Chen, H. Chen, J. Chen, T. Fan, R. Wu and Y. Li, Multi-level architecture optimization of MOF-templated Co-based nanoparticles embedded in hollow N-doped carbon polyhedra for efficient OER and ORR, ACS Catal. 8 (2018) 7879-7888 doi: 10.1021/acscatal.8b02504
|
[31] |
L. Wang, H. Chen, Q. Daniel, L. Duan, B. Philippe, Y. Yang, H. Rensmo and L. Sun, Promoting the water oxidation catalysis by synergistic interactions between Ni(OH)2 and carbon nanotubes, Adv. Energy. Mater. 6 (2016) 1600516 doi: 10.1002/aenm.201600516
|
[32] |
X. Kong, C. Zhang, S. Y. Hwang, Q. Chen and Z. Peng, Free-standing holey Ni(OH)2 nanosheets with enhanced activity for water oxidation, Small 13 (2017) 1700334 doi: 10.1002/smll.201700334
|
[33] |
W. T. Hong, R. E. Welsch and Y. Shao-Horn, Descriptors of oxygen-evolution activity for oxides: a statistical evaluation, J. Phys. Chem. C 120 (2016) 78-86 doi: 10.1021/acs.jpcc.5b10071
|
[34] |
J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough and Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles, Science 334 (2011) 1383 doi: 10.1126/science.1212858
|
[35] |
G. Zhao, P. Li, N. Cheng, S. X. Dou and W. Sun, An Ir/Ni(OH)2 heterostructured electrocatalyst for the oxygen evolution reaction: breaking the scaling relation, stabilizing iridium (V), and beyond, Adv. Mater. 32 (2020) 2000872 doi: 10.1002/adma.202000872
|