Volume 2 Issue 3
May  2022
Turn off MathJax
Article Contents
Wang Weixiao, Xiong Fangyu, Zhu Shaohua, Chen Jinghui, Xie Jun, An Qinyou. Defect engineering in molybdenum-based electrode materials for energy storage[J]. eScience, 2022, 2(3): 278-294. doi: 10.1016/j.esci.2022.04.005
Citation: Wang Weixiao, Xiong Fangyu, Zhu Shaohua, Chen Jinghui, Xie Jun, An Qinyou. Defect engineering in molybdenum-based electrode materials for energy storage[J]. eScience, 2022, 2(3): 278-294. doi: 10.1016/j.esci.2022.04.005

Defect engineering in molybdenum-based electrode materials for energy storage

doi: 10.1016/j.esci.2022.04.005
More Information
  • Molybdenum-based materials have stepped into the spotlight as promising electrodes for energy storage systems due to their abundant valence states, low cost, and high theoretical capacity. However, the performance of conventional molybdenum-based electrode materials has been limited by slow diffusion dynamics and deficient thermodynamics. Applying defect engineering to molybdenum-based electrode materials is a viable method for overcoming these intrinsic limitations to realize superior electrochemical performance for energy storage. Herein, we systematically review recent progress in defect engineering for molybdenum-based electrode materials, including vacancy modulation, doping engineering, topochemical substitution, and amorphization. In particular, the essential optimization mechanisms of defect engineering in molybdenum-based electrode materials are presented: accelerating ion diffusion, enhancing electron transfer, adjusting potential, and maintaining structural stability. We also discuss the existing challenges and future objectives for defect engineering in molybdenum-based electrode materials to realize high-energy and high-power energy storage devices.
  • ● The essential optimization mechanisms of defect engineering in molybdenum-based electrode materials are discussed.
    ● We systematically summarize the recent progress in defect engineering of molybdenum-based electrode materials.
    ● The future objectives of defect engineering in materials for high-performance energy storage devices are presented.
  • loading
  • [1]
    Y. Zhang, F. Wan, S. Huang, S. Wang, Z.Q. Niu, J. Chen, A chemically self-charging aqueous zinc-ion battery, Nat. Commun. 11 (2020) 1–10. doi: 10.1038/s41467-019-13993-7
    [2]
    M.Y. Chuai, J.L. Yang, M.M. Wang, Y. Yuan, Z.C. Liu, Y. Xu, Y.C. Yin, J.F. Sun, X.H. Zheng, N. Chen, W. Chen, High-performance Zn battery with transition metal ions co-regulated electrolytic MnO2, eScience 1 (2021) 178–185. doi: 10.1016/j.esci.2021.11.002
    [3]
    F.Y. Xiong, S.S. Tan, X.H. Yao, Q.Y. An, L.Q. Mai, Crystal defect modulation in cathode materials for non-lithium ion batteries: progress and challenges, Mater. Today 45 (2021) 169–190. doi: 10.1016/j.mattod.2020.12.002
    [4]
    I.A. de Castro, R.S. Datta, J.Z. Ou, A. Castellanos-Gomez, S. Sriram, T. Daeneke, K. Kalantar-zadeh, Molybdenum oxides-from fundamentals to functionality, Adv. Mater. 29 (2017) 1701619. doi: 10.1002/adma.201701619
    [5]
    H.Z. Zhang, W.X. Wu, Q.Y. Liu, F. Yang, X. Shi, X.Q. Liu, M.H. Yu, X.H. Lu, Interlayer engineering of α-MoO3 modulates selective hydronium intercalation in neutral aqueous electrolyte, Angew. Chem. Int. Ed. 60 (2021) 896–903. doi: 10.1002/anie.202010073
    [6]
    H.S. Kim, J.B. Cook, H. Lin, J.S. Ko, S.H. Tolbert, V. Ozolins, B. Dunn, Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x, Nat. Mater. 16 (2017) 454–460. doi: 10.1038/nmat4810
    [7]
    G. Qu, J. Wang, G.Y. Liu, B.B. Tian, C.L. Su, Z.S. Chen, J.P. Rueff, Z.C. Wang, Vanadium doping enhanced electrochemical performance of molybdenum oxide in lithium-ion batteries, Adv. Funct. Mater. 29 (2019) 1805227. doi: 10.1002/adfm.201805227
    [8]
    M.B. Sreedhara, A.L. Santhosha, A.J. Bhattacharyya, C.N.R. Rao, Composite of few-layer MoO3 nanosheets with graphene as a high performance anode for sodium-ion batteries, J. Mater. Chem. A 4 (2016) 9466–9471. doi: 10.1039/C6TA02561G
    [9]
    Y.N. Ko, Y.C. Kang, S.B. Park, Superior electrochemical properties of MoS2 powders with a MoS2@void@MoS2 configuration, Nanoscale 6 (2014) 4508–4512. doi: 10.1039/c4nr00064a
    [10]
    Y.Y. Liu, G.J. He, H. Jiang, I.P. Parkin, P.R. Shearing, D.J. Brett, Cathode design for aqueous rechargeable multivalent ion batteries: challenges and opportunities, Adv. Funct. Mater. 31 (2021) 2010445. doi: 10.1002/adfm.202010445
    [11]
    E. Mitterreiter, B. Schuler, A. Micevic, E. Mitterreiter, B. Schuler, A. Micevic, D. Hernangómez-Pérez, K. Barthelmi, K.A. Cochrane, J. Kiemle, F. Sigger, J. Klein, E. Wong, E.S. Barnard, K. Watanabe, T. Taniguchi, M. Lorke, F. Jahnke, J.J. Finley, A.M. Schwartzberg, D.Y. Qiu, S. Refaely-Abramson, A.W. Holleitner, A. Weber-Bargioni, C. Kastl, The role of chalcogen vacancies for atomic defect emission in MoS2, Nat. Commun. 12 (2021) 3822. doi: 10.1038/s41467-021-24102-y
    [12]
    W.W. Xu, C.L. Sun, K.N. Zhao, X. Cheng, S.R. Rawal, Y. Xu, Y. Wang, Defect engineering activating (Boosting) zinc storage capacity of MoS2, Energy Stor. Mater. 16 (2019) 527–534. doi: 10.1016/j.ensm.2018.09.009
    [13]
    S. Liu, C.X. Xu, H. Yang, G.S. Qian, S.G. Hua, J. Liu, X.S. Zheng, X.H. Lu, Atomic modulation triggering improved performance of MoO3 nanobelts for fiber-shaped supercapacitors, Small 16 (2020) 1905778. doi: 10.1002/smll.201905778
    [14]
    L. Campanella, G. Pistoia, MoO3: a new electrode material for nonaqueous secondary battery applications, J. Electrochem. Soc. 118 (1971) 1905. doi: 10.1149/1.2407864
    [15]
    W.Y. Li, F.Y. Cheng, Z.L. Tao, J. Chen, Vapor-transportation preparation and reversible lithium intercalation/deintercalation of α-MoO3 microrods, J. Phys. Chem. B 110 (2006) 119–124. doi: 10.1021/jp0553784
    [16]
    I.A. de Castro, R.S. Datta, J.Z. Ou, A. Castellanos-Gomez, S. Sriram, T. Daeneke, K. Kalantar-zadeh, Molybdenum oxides-from fundamentals to functionality, Adv. Mater. 29 (2017) 1701619. doi: 10.1002/adma.201701619
    [17]
    Y.H. Zhu, Y. Yao, Z. Luo, C.Q. Pan, J. Yang, Y.R. Fang, H.T. Deng, C.X. Liu, Q. Tan, F.D. Liu, Y.B. Guo, Nanostructured MoO3 for efficient energy and environmental catalysis, Molecules 25 (2020) 18.
    [18]
    J. Swiatowska-Mrowiecka, S. de Diesbach, V. Maurice, S. Zanna, L. Klein, E. Briand, I. Vickridge, P. Marcus, Li-ion intercalation in thermal oxide thin films of MoO3 as studied by XPS, RBS, and NRA, J. Phys. Chem. C 112 (2008) 11050–11058. doi: 10.1021/jp800147f
    [19]
    M.E. Spahr, P. Novak, O. Haas, R. Nesper, Electrochemical insertion of lithium, sodium, and magnesium in molybdenum (Ⅵ) oxide, J. Power Sources 54 (1995) 346–351. doi: 10.1016/0378-7753(94)02099-O
    [20]
    T. Tao, A.M. Glushenkov, C.F. Zhang, H.Z. Zhang, D. Zhou, Z.P. Guo, H.K. Liu, Q.Y. Chen, H.P. Hu, Y. Chen, MoO3 nanoparticles dispersed uniformly in carbon matrix: a high capacity composite anode for Li-ion batteries, J. Mater. Chem. 21 (2011) 9350–9355. doi: 10.1039/c1jm10220f
    [21]
    W.W. Xia, F. Xu, C.Y. Zhu, H.L. Xin, Q.Y. Xu, P.P. Sun, L.T. Sun, Probing microstructure and phase evolution of α-MoO3 nanobelts for sodium-ion batteries by in situ transmission electron microscopy, Nano Energy 27 (2016) 447–456. doi: 10.1016/j.nanoen.2016.07.017
    [22]
    M.E. Spahr, P. Novak, O. Haas, R. Nesper, Electrochemical insertion of lithium, sodium, and magnesium in molybdenum (Ⅵ) oxide, J. Power Sources 54 (1995) 346–351.
    [23]
    C.K. Chan, H.L. Peng, R.D. Twesten, K. Jarausch, X.F. Zhang, Y. Cui, Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons, Nano Lett. 7 (2007) 490–495. doi: 10.1021/nl062883j
    [24]
    J.H. Ku, Y.S. Jung, K.T. Lee, C.H. Kim, S.M. Oh, Thermoelectrochemically activated MoO2 powder electrode for lithium secondary batteries, J. Electrochem. Soc. 156 (2009) A688–A693. doi: 10.1149/1.3141670
    [25]
    H.J. Zhang, J. Shu, K.X. Wang, X.T. Chen, Y.M. Jiang, X. Wei, J.S. Chen, Lithiation mechanism of hierarchical porous MoO2 nanotubes fabricated through one-step carbothermal reduction, J. Mater. Chem. A 2 (2014) 80–86. doi: 10.1039/C3TA14123C
    [26]
    J.H. Ku, J.H. Ryu, S.H. Kim, O.H. Han, S.M. Oh, Reversible lithium storage with high mobility at structural defects in amorphous molybdenum dioxide electrode, Adv. Funct. Mater. 22 (2012) 3658–3664. doi: 10.1002/adfm.201102669
    [27]
    J.F. Huang, Z.W. Xu, L.Y. Cao, Q.L. Zhang, H.B. Ouyang, J.Y. Li, Tailoring MoO2/ graphene oxide nanostructures for stable, high-density sodium-ion battery anodes, Energy Technol. 3 (2015) 1108–1114. doi: 10.1002/ente.201500160
    [28]
    J.D. Yang, J.X. Wang, X. Wang, X.Y. Dong, L. Zhu, W. Zeng, J.F. Wang, F.S. Pan, First-principles prediction of layered MoO2 and MoOSe as promising cathode materials for magnesium ion batteries, Nanotechnology 32 (2021) 495405. doi: 10.1088/1361-6528/ac21f2
    [29]
    T. Böker, R. Severin, A. Müller, C. Janowitz, R. Manzke, D. Voß, P. Krüger, A. Mazur, J. Pollmann, Band structure of MoS2, MoSe2, and α-MoTe2: angleresolved photoelectron spectroscopy and ab initio calculations, Phys. Rev. B 64 (2001) 235305. doi: 10.1103/PhysRevB.64.235305
    [30]
    Y. Wang, G.Z. Xing, Z.J. Han, Y.M. Shi, J.I. Wong, Z.X. Huang, K. Ostrikovcde, H.Y. Yang, Pre-lithiation of onion-like carbon/MoS2 nano-urchin anodes for highperformance rechargeable lithium ion batteries, Nanoscale 6 (2014) 8884–8890. doi: 10.1039/C4NR01553C
    [31]
    X.P. Fang, X.W. Guo, Y. Mao, C.X. Hua, L.Y. Shen, Y.S. Hu, Z.X. Wang, F. Wu, L.Q. Chen, Mechanism of lithium storage in MoS2 and the feasibility of using Li2S/ Mo nanocomposites as cathode materials for lithium-sulfur batteries, Chem. Asian J. 7 (2012) 1013–1017. doi: 10.1002/asia.201100796
    [32]
    W.N. Ren, H.F. Zhang, C. Guan, C.W. Cheng, Ultrathin MoS2 nanosheets@metal organic framework-derived N-doped carbon nanowall arrays as sodium ion battery anode with superior cycling life and rate capability, Adv. Funct. Mater. 27 (2017) 1702116. doi: 10.1002/adfm.201702116
    [33]
    S.Q. Yang, D.X. Li, T.R. Zhang, Z.L. Tao, J. Chen, First-principles study of zigzag MoS2 nanoribbon as a promising cathode material for rechargeable Mg batteries, J. Phys. Chem. C 116 (2012) 1307–1312.
    [34]
    S. Natarajan, S. Mandal, Open-framework structures of transition-metal compounds, Angew. Chem. Int. Ed. 47 (2008) 4798–4828. doi: 10.1002/anie.200701404
    [35]
    Y. Uebou, S. Okada, J.I. Yamaki, Electrochemical insertion of lithium and sodium into (MoO2)2P2O7, J. Power Sources 115 (2003) 119–124. doi: 10.1016/S0378-7753(02)00648-1
    [36]
    T. Buhrmester, N.N. Leyzerovich, K.G. Bramnik, H. Ehrenberg, H. Fuess, Electrochemical intercalation of lithium in ternary metal molybdates MMoO4 (M= Cu, Zn), MRS Online Proc. Libr. 756 (2002) 67. doi: 10.1557/PROC-756-EE6.7
    [37]
    R.L. Smith, G.S. Rohrer, The structure sensitivity of HxMoO3 precipitation on MoO3 (010) during reactions with methanol, J. Catal. 184 (1999) 49–58. doi: 10.1006/jcat.1999.2443
    [38]
    K. Zhu, S.H. Guo, J. Yi, S.Y. Bai, Y.J. Wei, G. Chen, H.S. Zhou, A new layered sodium molybdenum oxide anode for full intercalation-type sodium-ion batteries, J. Mater. Chem. A 3 (2015) 22012–22016.
    [39]
    W. Kaveevivitchai, A.J. Jacobson, High capacity rechargeable magnesium-ion batteries based on a microporous molybdenum-vanadium oxide cathode, Chem. Mater. 28 (2016) 4593–4601. doi: 10.1021/acs.chemmater.6b01245
    [40]
    R. Xu, J. Lu, K. Amine, Progress in mechanistic understanding and characterization techniques of Li-S batteries, Adv. Energy Mater. 5 (2015) 1500408. doi: 10.1002/aenm.201500408
    [41]
    Y.Q. Zhang, L. Tao, C. Xie, D.D. Wang, Y.Q. Zou, R. Chen, Y.Y. Wang, S.Y. Wang, Defect engineering on electrode materials for rechargeable batteries, Adv. Mater. 32 (2020) 1905923. doi: 10.1002/adma.201905923
    [42]
    H.L. Wang, J.Z. Niu, J. Shi, W.Z. Lv, H.G. Wang, P.A. van Aken, Z.H. Zhang, R.F. Chen, W. Huang, Facile preparation of MoS2 nanocomposites for efficient potassium-ion batteries by grinding-promoted intercalation exfoliation, Small 17 (2021) 2102263. doi: 10.1002/smll.202102263
    [43]
    J. Jang, H.S. Kim, S. Moon, O.B. Chae, S.J. Ahn, H. Jung, J. Choi, S.M. Oh, J.H. Ryu, T. Yoon, Concentration gradient induced delithiation failure of MoO3 for Li-ion batteries, Nano Lett. 22 (2022) 761–767. doi: 10.1021/acs.nanolett.1c04290
    [44]
    S. Balendhran, S. Walia, H. Nili, J.Z. Ou, S. Zhuiykov, R.B. Kaner, S. Sriram, M. Bhaskaran, K. Kalantar-zadeh, Two-dimensional molybdenum trioxide and dichalcogenides, Adv. Funct. Mater. 23 (2013) 3952–3970. doi: 10.1002/adfm.201300125
    [45]
    C. Shu, J. Wang, J. Long, H.K. Liu, S.X. Dou, Understanding the reaction chemistry during charging in aprotic lithium–oxygen batteries: existing problems and solutions, Adv. Mater. 31 (2019) 1804587. doi: 10.1002/adma.201804587
    [46]
    S. Dou, L. Tao, R.L. Wang, S. El Hankari, R. Chen, S.Y. Wang, Plasma-assisted synthesis and surface modification of electrode materials for renewable energy, Adv. Mater. 30 (2018) 1705850. doi: 10.1002/adma.201705850
    [47]
    G.B. Zhang, T.F. Xiong, M.Y. Yan, L. He, X.B. Liao, C.Q. He, C.S. Yin, H.N. Zhang, L.Q. Mai, α-MoO3-x by plasma etching with improved capacity and stabilized structure for lithium storage, Nano Energy 49 (2018) 555–563. doi: 10.1016/j.nanoen.2018.04.075
    [48]
    M.M. Hu, J.F. Zhu, W.Y. Guo, Q.J. Xu, Y.L. Min, J.C. Fan, Facile ball-milling strategy for constructing covalently connected black phosphorus–MoO3–x heterostructures for enhanced photocatalytic hydrogen evolution, ACS Sustain. Chem. Eng. 10 (2022) 1008–1019. doi: 10.1021/acssuschemeng.1c07355
    [49]
    Y.Z. Xu, L.L. Wang, X. Liu, S.Q. Zhang, C.B. Liu, D.F. Yan, Y.X. Zeng, Y. Pei, Y.T. Liu, S.L. Luo, Monolayer MoS2 with S vacancies from interlayer spacing expanded counterparts for highly efficient electrochemical hydrogen production, J. Mater. Chem. A 4 (2016) 16524–16530. doi: 10.1039/C6TA06534A
    [50]
    P. Xiao, X.M. Ge, H.B. Wang, Z.L. Liu, A. Fisher, X. Wang, Novel molybdenum carbide–tungsten carbide composite nanowires and their electrochemical activation for efficient and stable hydrogen evolution, Adv. Funct. Mater. 25 (2015) 1520–1526. doi: 10.1002/adfm.201403633
    [51]
    Z.H. Xiao, C. Xie, Y.Y. Wang, R. Chen, S.Y. Wang, Recent advances in defect electrocatalysts: preparation and characterization, J. Energy Chem. 53 (2021) 208–225. doi: 10.1016/j.jechem.2020.04.063
    [52]
    L. Li, Z.D. Qin, L. Ries, S. Hong, T. Michel, J. Yang, C. Salameh, M. Bechelany, P. Miele, D. Kaplan, M. Chhowalla, D. Voiry, Role of sulfur vacancies and undercoordinated mo regions in MoS2 nanosheets toward the evolution of hydrogen, ACS Nano 13 (2019) 6824–6834. doi: 10.1021/acsnano.9b01583
    [53]
    D.O. Özgür, G. Ozkan, O. Atakol, H. Çelikkan, Facile ion-exchange method for Zn intercalated MoS2 as an efficient and stable catalyst toward hydrogen evaluation reaction, ACS Appl. Energy Mater. 4 (2021) 2398–2407.
    [54]
    P. Gao, Z. Chen, Y.X. Gong, R. Zhang, H. Liu, P. Tang, X.H. Chen, S. Passerini, J.L. Liu, The role of cation vacancies in electrode materials for enhanced electrochemical energy storage: synthesis, advanced characterization, and fundamentals, Adv. Energy Mater. 10 (2020) 1903780. doi: 10.1002/aenm.201903780
    [55]
    H. Li, C. Tsai, A.L. Koh, L.L. Cai, A.W. Contryman, A.H. Fragapane, J.H. Zhao, H.S. Han, H.C. Manoharan, F. Abild-Pedersen, J.K. Nørskov, X.L. Zheng, Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies, Nat. Mater. 15 (2016) 48–53. doi: 10.1038/nmat4465
    [56]
    S.W. Li, Y.C. Liu, X.D. Zhao, K.X. Cui, Q.Y. Shen, P. Li, X.H. Qu, L.F. Jiao, Molecular engineering on MoS2 enables large interlayers and unlocked basal planes for high-performance aqueous Zn-ion storage, Angew. Chem. Int. Ed. 60 (2021) 20286–20293. doi: 10.1002/anie.202108317
    [57]
    Y. Li, R.P. Zhang, W. Zhou, X. Wu, H.B. Zhang, J. Zhang, Hierarchical MoS2 hollow architectures with abundant Mo vacancies for efficient sodium storage, ACS Nano 13 (2019) 5533–5540. doi: 10.1021/acsnano.9b00383
    [58]
    S.H. Liu, F. Li, D. Wang, C.M. Huang, Y.M. Zhao, J.B. Baek, J.T. Xu, 3D macroporous MoxC@N-C with incorporated Mo vacancies as anodes for highperformance lithium-ion batteries, Small Methods 2 (2018) 1800040.
    [59]
    J. Lin, J.J. Xu, W. Zhao, W.J. Dong, R.Z. Li, Z.C. Zhang, F.Q. Huang, In situ synthesis of MoC1-x nanodot@ carbon hybrids for capacitive lithium-ion storage, ACS Appl. Mater. Interfaces 11 (2019) 19977–19985. doi: 10.1021/acsami.9b03230
    [60]
    Y.X. Tao, P. Wang, C.N. Liang, N. Yang, D. Huang, H. Chen, Y.Z. Luo, Tailoring oxygen vacancies in CoMoO4 for superior lithium storage, Chem. Electro. Chem 7 (2020) 4815–4821.
    [61]
    H.N. He, D. Huang, Q.M. Gan, J.N. Hao, S.L. Liu, Z.B. Wu, W.K. Pang, B. Johannessen, Y.G. Tang, J.L. Luo, H.Y. Wang, Z.P. Guo, Anion vacancies regulating endows MoSSe with fast and stable potassium ion storage, ACS Nano 13 (2019) 11843–11852. doi: 10.1021/acsnano.9b05865
    [62]
    W. Zong, R.Q. Lian, G.J. He, H. Guo, Y. Ouyang, J. Wang, F.L. Lai, Y.E. Miao, D.W. Rao, D. Brett, T.X. Liu, Vacancy engineering of group Ⅵ anions in NiCo2A4 (A = O, S, Se) for efficient hydrogen production by weakening the shackles of hydronium ion, Electrochim. Acta 333 (2020) 135515. doi: 10.1016/j.electacta.2019.135515
    [63]
    W. Liu, C. Luo, S.W. Zhang, B. Zhang, J.B. Ma, X.L. Wang, W.H. Liu, Z.J. Li, Q.H. Yang, W. Lv, Cobalt-doping of molybdenum disulfide for enhanced catalytic polysulfide conversion in lithium-sulfur batteries, ACS Nano 15 (2021) 7491–7499. doi: 10.1021/acsnano.1c00896
    [64]
    J. Suh, T.L. Tan, W.J. Zhao, J. Park, D.Y. Lin, T.E. Park, J. Kim, C.H. Jin, N. Saigal, S. Ghosh, Z.M. Wong, Y.B. Chen, F. Wang, W. Walukiewicz, G. Eda, J.Q. Wu, Reconfiguring crystal and electronic structures of MoS2 by substitutional doping, Nat. Commun. 9 (2018) 1–7. doi: 10.1038/s41467-017-02088-w
    [65]
    S. Liu, C.X. Xu, H. Yang, G.S. Qian, S.G. Hua, J. Liu, X.S. Zheng, X.H. Lu, Atomic modulation triggering improved performance of MoO3 nanobelts for fiber-shaped supercapacitors, Small 16 (2020) 1905778. doi: 10.1002/smll.201905778
    [66]
    W.X. Ji, R. Shen, R. Yang, G.Y. Yu, X.F. Guo, L.M. Peng, W.P. Ding, Partially nitrided molybdenum trioxide with promoted performance as an anode material for lithium-ion batteries, J. Mater, Chem. A 2 (2014) 699–704. doi: 10.1039/C3TA13708B
    [67]
    J.T. Incorvati, L.F. Wan, B. Key, D.H. Zhou, C. Liao, L. Fuoco, M. Holland, H. Wang, D. Prendergast, K.R. Poeppelmeier, J.T. Vaughey, Reversible magnesium intercalation into a layered oxyfluoride cathode, Chem. Mater. 28 (2016) 17–20. doi: 10.1021/acs.chemmater.5b02746
    [68]
    L.F. Wan, J.T. Incorvati, K.R. Poeppelmeier, D. Prendergast, Building a fast lane for Mg diffusion in α-MoO3 by fluorine doping, Chem. Mater. 28 (2016) 6900–6908. doi: 10.1021/acs.chemmater.6b02223
    [69]
    H.F. Liang, Z. Cao, F.W. Ming, W.L. Zhang, D.H. Anjum, Y. Cui, L.G. Cavallo, H.N. Alshareef, Aqueous zinc-ion storage in MoS2 by tuning the intercalation energy, Nano Lett. 19 (2019) 3199–3206. doi: 10.1021/acs.nanolett.9b00697
    [70]
    X.J. Wang, R. Nesper, C. Villevieille, P. Novák, Ammonolyzed MoO3 nanobelts as novel cathode material of rechargeable Li-ion batteries, Adv. Energy Mater. 3 (2013) 606–614. doi: 10.1002/aenm.201200692
    [71]
    H. Ang, H.T. Tan, Z.M. Luo, Y. Zhang, Y.Y. Guo, G. Guo, H. Zhang, Q. Yan, Hydrophilic nitrogen and sulfur Co-doped molybdenum carbide nanosheets for electrochemical hydrogen evolution, Small 11 (2015) 6278–6284. doi: 10.1002/smll.201502106
    [72]
    W.J. Zhou, D.M. Hou, Y.H. Sang, S.H. Yao, J. Zhou, G.Q. Li, L.G. Li, H. Liu, S.W. Chen, MoO2 nanobelts@nitrogen self-doped MoS2 nanosheets as effective electrocatalysts for hydrogen evolution reaction, J. Mater. Chem. A 2 (2014) 11358–11364. doi: 10.1039/c4ta01898b
    [73]
    J.Y.C. Qiu, Z.X. Yang, Q. Li, Y. Li, X. Wu, C.Y. Qi, Q.D. Qiao, Formation of N-doped molybdenum carbide confined in hierarchical and hollow carbon nitride microspheres with enhanced sodium storage properties, J. Mater. Chem. A 4 (2016) 13296–13306. doi: 10.1039/C6TA05025E
    [74]
    G. Ali, M.A.R. Anjum, S. Mehboob, M. Akbar, J.S. Lee, K.Y. Chung, Sulfur-doped molybdenum phosphide as fast dis/charging anode for Li-ion and Na-ion batteries, Int. J. Energy Res. 46 (2022) 8452–8463. doi: 10.1002/er.7647
    [75]
    H.B. Lin, S.L. Zhang, T.R. Zhang, H.L. Ye, Q.F. Yao, G.W. Zheng, J.Y. Lee, Simultaneous cobalt and phosphorous doping of MoS2 for improved catalytic performance on polysulfide conversion in lithium-sulfur batteries, Adv. Energy Mater. 9 (2019) 1902096. doi: 10.1002/aenm.201902096
    [76]
    Y.F. Li, M.F. Chen, H. Liu, P. Zeng, D. Zhang, H. Yu, X. Zhou, C.M. Guo, Z.G. Luo, Y. Wang, B.B. Chang, X.Y. Wang, Catalytic-conversion behavior of MoS2 for polysulfides by nickel introduction and phosphorous-doping in advanced lithiumsulfur batteries, Chem. Eng. J. 425 (2021) 131640. doi: 10.1016/j.cej.2021.131640
    [77]
    X.H. Yao, Y.L. Zhao, F.A. Castro, L.Q. Mai, Rational design of preintercalated electrodes for rechargeable batteries, ACS Energy Lett. 4 (2019) 771–778. doi: 10.1021/acsenergylett.8b02555
    [78]
    K. Kang, G. Ceder, Factors that affect Li mobility in layered lithium transition metal oxides, Phys. Rev. B 74 (2006) 094105. doi: 10.1103/PhysRevB.74.094105
    [79]
    Y.F. Dong, X.M. Xu, S. Li, C.H. Han, K.N. Zhao, L. Zhang, C.J. Niu, Z. Huang, L.Q. Mai, Inhibiting effect of Na+ pre-intercalation in MoO3 nanobelts with enhanced electrochemical performance, Nano Energy 15 (2015) 145–152. doi: 10.1016/j.nanoen.2015.04.015
    [80]
    M. Baldoni, L. Craco, G. Seifert, S. Leoni, A two-electron mechanism of lithium insertion into layered α-MoO3: a DFT and DFT+ U study, J. Mater. Chem. A 1 (2013) 1778–1784. doi: 10.1039/C2TA00839D
    [81]
    H.M. Liu, Y.G. Wang, L. Li, K.X. Wang, E. Hosonoa, H.S. Zhou, Facile synthesis of NaV6O15 nanorods and its electrochemical behavior as cathode material in rechargeable lithium batteries, J. Mater. Chem. 19 (2009) 7885–7891. doi: 10.1039/b912906e
    [82]
    L.Q. Mai, B. Hu, W. Chen, Y.Y. Qi, C.S. Lao, R.S. Yang, Y. Dai, Z.L. Wang, Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries, Adv. Mater. 19 (2007) 3712–3716. doi: 10.1002/adma.200700883
    [83]
    W.W. Yang, J.W. Xiao, Y. Ma, S.Q. Cui, P. Zhang, P.B. Zhai, L.J. Meng, X.G. Wang, Y. Wei, Z.G. Du, B.X. Li, Z.B. Sun, S.B. Yang, Q.F. Zhang, Y.J. Gong, Tin intercalated ultrathin MoO3 nanoribbons for advanced lithium-sulfur batteries, Adv. Energy Mater. 9 (2019) 1803137. doi: 10.1002/aenm.201803137
    [84]
    X. Sha, L. Chen, A.C. Cooper, G.P. Pez, H. Cheng, Hydrogen absorption and diffusion in bulk α-MoO3, J. Phys. Chem. C 113 (2009) 11399–11407. doi: 10.1021/jp9017212
    [85]
    Y. Zhao, L.P. Wang, M.T. Sougrati, Z.X. Feng, Y. Leconte, A. Fisher, M. Srinivasan, Z.C. Xu, A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes, Adv. Energy Mater. 7 (2017) 1601424. doi: 10.1002/aenm.201601424
    [86]
    J. Park, J.S. Kim, J.W. Park, T.H. Nam, K.W. Kim, J.H. Ahn, G.X. Wang, H.J. Ahn, Discharge mechanism of MoS2 for sodium ion battery: electrochemical measurements and characterization, Electrochim. Acta 92 (2013) 427–432. doi: 10.1016/j.electacta.2013.01.057
    [87]
    K.D. Rasamani, F. Alimohammadi, Y. Sun, Interlayer-expanded MoS2, Mater. Today 20 (2017) 83–91. doi: 10.1016/j.mattod.2016.10.004
    [88]
    J.Q. Yang, X.L. Zhou, D.H. Wu, X.D. Zhao, Z. Zhou, S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries, Adv. Mater. 29 (2017) 1604108. doi: 10.1002/adma.201604108
    [89]
    J. Shuai, H.D. Yoo, Y. Liang, Y. Li, Y. Yao, L.C. Grabow, Density functional theory study of Li, Na, and Mg intercalation and diffusion in MoS2 with controlled interlayer spacing, Mater. Res. Express 3 (2016) 064001. doi: 10.1088/2053-1591/3/6/064001
    [90]
    D.L. Chao, C.R. Zhu, P.H. Yang, X.H. Xia, J.L. Liu, J. Wang, X.F. Fan, S.V. Savilov, J.Y. Lin, H.J. Fan, Z.X. Shen, Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance, Nat. Commun. 7 (2016) 1–8.
    [91]
    L. David, R. Bhandavat, G. Singh, MoS2/graphene composite paper for sodium-ion battery electrodes, ACS Nano 8 (2014) 1759–1770. doi: 10.1021/nn406156b
    [92]
    X.J. Wang, R. Nesper, C. Villevieille, P. Novák, Ammonolyzed MoO3 nanobelts as novel cathode material of rechargeable Li-ion batteries, Adv. Energy Mater. 3 (2013) 606–614. doi: 10.1002/aenm.201200692
    [93]
    K. Zhang, P. Li, S.Y. Guo, J.Y. Jeong, B.J. Jin, X.M. Li, S.L. Zhang, H.B. Zeng, J.H. Park, An Ångström-level d-spacing controlling synthetic route for MoS2 towards stable intercalation of sodium ions, J. Mater. Chem. A 6 (2018) 22513–22518. doi: 10.1039/C8TA09066A
    [94]
    X. Xiao, H. Wang, P. Urbankowski, Y. Gogotsi, Topochemical synthesis of 2D materials, Chem. Soc. Rev. 47 (2018) 8744–8765. doi: 10.1039/C8CS00649K
    [95]
    K.T. Lee, T.N. Ramesh, F. Nan, G. Botton, L.F. Nazar, Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries, Chem. Mater. 23 (2011) 3593–3600. doi: 10.1021/cm200450y
    [96]
    D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi, Prototype systems for rechargeable magnesium batteries, Nature 407 (2000) 724–727. doi: 10.1038/35037553
    [97]
    C. Ritter, E. Gocke, C. Fischer, R. Schöllhorn, Neutron diffraction study on the crystal structure of lithium intercalated chevrel phases, Mater. Res. Bull. 27 (1992) 1217–1225. doi: 10.1016/0025-5408(92)90229-S
    [98]
    M.S. Chae, H.H. Kwak, S.T. Hong, Calcium molybdenum bronze as a stable highcapacity cathode material for calcium-ion batteries, ACS Appl. Energy Mater. 3 (2020) 5107–5112.
    [99]
    T.S. Arthur, K. Kato, J. Germain, J.H. Guo, P.A. Glans, Y.S. Liu, D. Holmes, X.D. Fan, F. Mizuno, Amorphous V2O5-P2O5 as high-voltage cathodes for magnesium batteries, Chem. Commun. 51 (2015) 15657–15660. doi: 10.1039/C5CC07161E
    [100]
    S.Q. Wang, X. Cai, Y. Song, X. Sun, X.X. Liu, VOx@MoO3 nanorod composite for high-performance supercapacitors, Adv. Funct. Mater. 28 (2018) 1803901. doi: 10.1002/adfm.201803901
    [101]
    G. Wang, Y. Ji, L. Zhang, Y. Zhu, P.I. Gouma, M. Dudley, Synthesis of molybdenum oxide nanoplatelets during crystallization of the precursor gel from its hybrid nanocomposites, Chem. Mater. 19 (2007) 979–981. doi: 10.1021/cm062454m
    [102]
    G.E. Buono-Core, G. Cabello, A.H. Klahn, A. Lucero, M.V. Nuñez, B. Torrejón, C. Castillo, Growth and characterization of molybdenum oxide thin films prepared by photochemical metal-organic deposition (PMOD), Polyhedron 29 (2010) 1551–1554. doi: 10.1016/j.poly.2010.01.036
    [103]
    C.Y. Yu, H. Xu, Y.J. Gong, R.Y. Chen, Z.Y. Hui, X. Zhao, Y. Sun, Q. Chen, J.Y. Zhou, W.X. Ji, G.Z. Sun, W. Huang, The Jahn-Teller effect for amorphization of molybdenum trioxide towards high-performance fiber supercapacitor, Research 2021 (2021) 6742715.
    [104]
    L.Q. Bai, Y.H. Zhang, L.K. Zhang, Y.X. Zhang, L. Sun, N. Ji, X.W. Li, H.C. Si, Y. Zhang, H.W. Huang, Jahn-Teller distortions in molybdenum oxides: an achievement in exploring high rate supercapacitor applications and robust photocatalytic potential, Nano Energy 53 (2018) 982–992. doi: 10.1016/j.nanoen.2018.09.028
    [105]
    J. Jiang, Y.L. Hu, X.R. He, Z.P. Li, F. Li, X. Chen, Y. Niu, J. Song, P. Huang, G.Y. Tian, C. Wang, An amorphous-crystalline nanosheet arrays structure for ultrahigh electrochemical performance supercapattery, Small 17 (2021), 2102565. doi: 10.1002/smll.202102565
    [106]
    M. Song, H. Tan, X. Li, A.I.Y. Tok, P. Liang, D. Chao, H.J. Fan, Atomic-layerdeposited amorphous MoS2 for durable and flexible Li-O2 batteries, Small Methods 4 (2020) 1900274. doi: 10.1002/smtd.201900274
    [107]
    K.J. Zhu, X.F. Wang, J. Liu, S. Li, H. Wang, L.Y. Yang, S.L. Liu, T. Xie, Novel amorphous MoS2/MoO3/nitrogen-doped carbon composite with excellent electrochemical performance for lithium ion batteries and sodium ion batteries, ACS Sustain. Chem. Eng. 5 (2017) 8025–8034. doi: 10.1021/acssuschemeng.7b01595
    [108]
    X.D. Yan, L.H. Tian, J. Murowchick, X.B. Chen, Partially amorphized MnMoO4 for highly efficient energy storage and the hydrogen evolution reaction, J. Mater. Chem. A 4 (2016) 3683–3688. doi: 10.1039/C6TA00744A
    [109]
    J.S. Meng, H.C. Guo, C.J. Niu, Y.L. Zhao, L. Xu, Q. Li, L.Q. Mai, Advances in structure and property optimizations of battery electrode materials, Joule 1 (2017) 522–547. doi: 10.1016/j.joule.2017.08.001
    [110]
    K. Toyoura, Y. Koyama, A. Kuwabara, F. Oba, I. Tanaka, First-principles approach to chemical diffusion of lithium atoms in a graphite intercalation compound, Phys. Rev. B 78 (2008) 214303. doi: 10.1103/PhysRevB.78.214303
    [111]
    D. Morgan, A. Van der Ven, G. Ceder, Li conductivity in LixMPO4 (M= Mn, Fe, Co, Ni) olivine materials, Electrochem. Solid-State Lett. 7 (2003) 30.
    [112]
    B.C. Melot, J.M. Tarascon, Design and preparation of materials for advanced electrochemical storage, Acc. Chem. Res. 46 (2013) 1226–1238. doi: 10.1021/ar300088q
    [113]
    J. Gao, S.Q. Shi, H. Li, Brief overview of electrochemical potential in lithium ion batteries, Chin. Phys. B 25 (2015) 018210.
    [114]
    K. Tang, S.A. Farooqi, X.F. Wang, C.L. Yan, Recent progress on molybdenum oxides for rechargeable batteries, ChemSusChem 12 (2019) 755–771. doi: 10.1002/cssc.201801860
    [115]
    X.Z. Yu, B. Wang, D.C. Gong, Z. Xu, B.G. Lu, Graphene nanoribbons on highly porous 3D graphene for high-capacity and ultrastable Al-ion batteries, Adv. Mater. 29 (2017) 1604118. doi: 10.1002/adma.201604118
    [116]
    G.H. Lee, S. Lee, J.C. Kim, D.W. Kim, Y.K. Kang, D.W. Kim, MnMoO4 electrocatalysts for superior long-life and high-rate lithium-oxygen batteries, Adv. Mater. 7 (2017) 1601741.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article Metrics

    Article views (153) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return