Citation: | Wang Weixiao, Xiong Fangyu, Zhu Shaohua, Chen Jinghui, Xie Jun, An Qinyou. Defect engineering in molybdenum-based electrode materials for energy storage[J]. eScience, 2022, 2(3): 278-294. doi: 10.1016/j.esci.2022.04.005 |
[1] |
Y. Zhang, F. Wan, S. Huang, S. Wang, Z.Q. Niu, J. Chen, A chemically self-charging aqueous zinc-ion battery, Nat. Commun. 11 (2020) 1–10. doi: 10.1038/s41467-019-13993-7
|
[2] |
M.Y. Chuai, J.L. Yang, M.M. Wang, Y. Yuan, Z.C. Liu, Y. Xu, Y.C. Yin, J.F. Sun, X.H. Zheng, N. Chen, W. Chen, High-performance Zn battery with transition metal ions co-regulated electrolytic MnO2, eScience 1 (2021) 178–185. doi: 10.1016/j.esci.2021.11.002
|
[3] |
F.Y. Xiong, S.S. Tan, X.H. Yao, Q.Y. An, L.Q. Mai, Crystal defect modulation in cathode materials for non-lithium ion batteries: progress and challenges, Mater. Today 45 (2021) 169–190. doi: 10.1016/j.mattod.2020.12.002
|
[4] |
I.A. de Castro, R.S. Datta, J.Z. Ou, A. Castellanos-Gomez, S. Sriram, T. Daeneke, K. Kalantar-zadeh, Molybdenum oxides-from fundamentals to functionality, Adv. Mater. 29 (2017) 1701619. doi: 10.1002/adma.201701619
|
[5] |
H.Z. Zhang, W.X. Wu, Q.Y. Liu, F. Yang, X. Shi, X.Q. Liu, M.H. Yu, X.H. Lu, Interlayer engineering of α-MoO3 modulates selective hydronium intercalation in neutral aqueous electrolyte, Angew. Chem. Int. Ed. 60 (2021) 896–903. doi: 10.1002/anie.202010073
|
[6] |
H.S. Kim, J.B. Cook, H. Lin, J.S. Ko, S.H. Tolbert, V. Ozolins, B. Dunn, Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3-x, Nat. Mater. 16 (2017) 454–460. doi: 10.1038/nmat4810
|
[7] |
G. Qu, J. Wang, G.Y. Liu, B.B. Tian, C.L. Su, Z.S. Chen, J.P. Rueff, Z.C. Wang, Vanadium doping enhanced electrochemical performance of molybdenum oxide in lithium-ion batteries, Adv. Funct. Mater. 29 (2019) 1805227. doi: 10.1002/adfm.201805227
|
[8] |
M.B. Sreedhara, A.L. Santhosha, A.J. Bhattacharyya, C.N.R. Rao, Composite of few-layer MoO3 nanosheets with graphene as a high performance anode for sodium-ion batteries, J. Mater. Chem. A 4 (2016) 9466–9471. doi: 10.1039/C6TA02561G
|
[9] |
Y.N. Ko, Y.C. Kang, S.B. Park, Superior electrochemical properties of MoS2 powders with a MoS2@void@MoS2 configuration, Nanoscale 6 (2014) 4508–4512. doi: 10.1039/c4nr00064a
|
[10] |
Y.Y. Liu, G.J. He, H. Jiang, I.P. Parkin, P.R. Shearing, D.J. Brett, Cathode design for aqueous rechargeable multivalent ion batteries: challenges and opportunities, Adv. Funct. Mater. 31 (2021) 2010445. doi: 10.1002/adfm.202010445
|
[11] |
E. Mitterreiter, B. Schuler, A. Micevic, E. Mitterreiter, B. Schuler, A. Micevic, D. Hernangómez-Pérez, K. Barthelmi, K.A. Cochrane, J. Kiemle, F. Sigger, J. Klein, E. Wong, E.S. Barnard, K. Watanabe, T. Taniguchi, M. Lorke, F. Jahnke, J.J. Finley, A.M. Schwartzberg, D.Y. Qiu, S. Refaely-Abramson, A.W. Holleitner, A. Weber-Bargioni, C. Kastl, The role of chalcogen vacancies for atomic defect emission in MoS2, Nat. Commun. 12 (2021) 3822. doi: 10.1038/s41467-021-24102-y
|
[12] |
W.W. Xu, C.L. Sun, K.N. Zhao, X. Cheng, S.R. Rawal, Y. Xu, Y. Wang, Defect engineering activating (Boosting) zinc storage capacity of MoS2, Energy Stor. Mater. 16 (2019) 527–534. doi: 10.1016/j.ensm.2018.09.009
|
[13] |
S. Liu, C.X. Xu, H. Yang, G.S. Qian, S.G. Hua, J. Liu, X.S. Zheng, X.H. Lu, Atomic modulation triggering improved performance of MoO3 nanobelts for fiber-shaped supercapacitors, Small 16 (2020) 1905778. doi: 10.1002/smll.201905778
|
[14] |
L. Campanella, G. Pistoia, MoO3: a new electrode material for nonaqueous secondary battery applications, J. Electrochem. Soc. 118 (1971) 1905. doi: 10.1149/1.2407864
|
[15] |
W.Y. Li, F.Y. Cheng, Z.L. Tao, J. Chen, Vapor-transportation preparation and reversible lithium intercalation/deintercalation of α-MoO3 microrods, J. Phys. Chem. B 110 (2006) 119–124. doi: 10.1021/jp0553784
|
[16] |
I.A. de Castro, R.S. Datta, J.Z. Ou, A. Castellanos-Gomez, S. Sriram, T. Daeneke, K. Kalantar-zadeh, Molybdenum oxides-from fundamentals to functionality, Adv. Mater. 29 (2017) 1701619. doi: 10.1002/adma.201701619
|
[17] |
Y.H. Zhu, Y. Yao, Z. Luo, C.Q. Pan, J. Yang, Y.R. Fang, H.T. Deng, C.X. Liu, Q. Tan, F.D. Liu, Y.B. Guo, Nanostructured MoO3 for efficient energy and environmental catalysis, Molecules 25 (2020) 18.
|
[18] |
J. Swiatowska-Mrowiecka, S. de Diesbach, V. Maurice, S. Zanna, L. Klein, E. Briand, I. Vickridge, P. Marcus, Li-ion intercalation in thermal oxide thin films of MoO3 as studied by XPS, RBS, and NRA, J. Phys. Chem. C 112 (2008) 11050–11058. doi: 10.1021/jp800147f
|
[19] |
M.E. Spahr, P. Novak, O. Haas, R. Nesper, Electrochemical insertion of lithium, sodium, and magnesium in molybdenum (Ⅵ) oxide, J. Power Sources 54 (1995) 346–351. doi: 10.1016/0378-7753(94)02099-O
|
[20] |
T. Tao, A.M. Glushenkov, C.F. Zhang, H.Z. Zhang, D. Zhou, Z.P. Guo, H.K. Liu, Q.Y. Chen, H.P. Hu, Y. Chen, MoO3 nanoparticles dispersed uniformly in carbon matrix: a high capacity composite anode for Li-ion batteries, J. Mater. Chem. 21 (2011) 9350–9355. doi: 10.1039/c1jm10220f
|
[21] |
W.W. Xia, F. Xu, C.Y. Zhu, H.L. Xin, Q.Y. Xu, P.P. Sun, L.T. Sun, Probing microstructure and phase evolution of α-MoO3 nanobelts for sodium-ion batteries by in situ transmission electron microscopy, Nano Energy 27 (2016) 447–456. doi: 10.1016/j.nanoen.2016.07.017
|
[22] |
M.E. Spahr, P. Novak, O. Haas, R. Nesper, Electrochemical insertion of lithium, sodium, and magnesium in molybdenum (Ⅵ) oxide, J. Power Sources 54 (1995) 346–351.
|
[23] |
C.K. Chan, H.L. Peng, R.D. Twesten, K. Jarausch, X.F. Zhang, Y. Cui, Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons, Nano Lett. 7 (2007) 490–495. doi: 10.1021/nl062883j
|
[24] |
J.H. Ku, Y.S. Jung, K.T. Lee, C.H. Kim, S.M. Oh, Thermoelectrochemically activated MoO2 powder electrode for lithium secondary batteries, J. Electrochem. Soc. 156 (2009) A688–A693. doi: 10.1149/1.3141670
|
[25] |
H.J. Zhang, J. Shu, K.X. Wang, X.T. Chen, Y.M. Jiang, X. Wei, J.S. Chen, Lithiation mechanism of hierarchical porous MoO2 nanotubes fabricated through one-step carbothermal reduction, J. Mater. Chem. A 2 (2014) 80–86. doi: 10.1039/C3TA14123C
|
[26] |
J.H. Ku, J.H. Ryu, S.H. Kim, O.H. Han, S.M. Oh, Reversible lithium storage with high mobility at structural defects in amorphous molybdenum dioxide electrode, Adv. Funct. Mater. 22 (2012) 3658–3664. doi: 10.1002/adfm.201102669
|
[27] |
J.F. Huang, Z.W. Xu, L.Y. Cao, Q.L. Zhang, H.B. Ouyang, J.Y. Li, Tailoring MoO2/ graphene oxide nanostructures for stable, high-density sodium-ion battery anodes, Energy Technol. 3 (2015) 1108–1114. doi: 10.1002/ente.201500160
|
[28] |
J.D. Yang, J.X. Wang, X. Wang, X.Y. Dong, L. Zhu, W. Zeng, J.F. Wang, F.S. Pan, First-principles prediction of layered MoO2 and MoOSe as promising cathode materials for magnesium ion batteries, Nanotechnology 32 (2021) 495405. doi: 10.1088/1361-6528/ac21f2
|
[29] |
T. Böker, R. Severin, A. Müller, C. Janowitz, R. Manzke, D. Voß, P. Krüger, A. Mazur, J. Pollmann, Band structure of MoS2, MoSe2, and α-MoTe2: angleresolved photoelectron spectroscopy and ab initio calculations, Phys. Rev. B 64 (2001) 235305. doi: 10.1103/PhysRevB.64.235305
|
[30] |
Y. Wang, G.Z. Xing, Z.J. Han, Y.M. Shi, J.I. Wong, Z.X. Huang, K. Ostrikovcde, H.Y. Yang, Pre-lithiation of onion-like carbon/MoS2 nano-urchin anodes for highperformance rechargeable lithium ion batteries, Nanoscale 6 (2014) 8884–8890. doi: 10.1039/C4NR01553C
|
[31] |
X.P. Fang, X.W. Guo, Y. Mao, C.X. Hua, L.Y. Shen, Y.S. Hu, Z.X. Wang, F. Wu, L.Q. Chen, Mechanism of lithium storage in MoS2 and the feasibility of using Li2S/ Mo nanocomposites as cathode materials for lithium-sulfur batteries, Chem. Asian J. 7 (2012) 1013–1017. doi: 10.1002/asia.201100796
|
[32] |
W.N. Ren, H.F. Zhang, C. Guan, C.W. Cheng, Ultrathin MoS2 nanosheets@metal organic framework-derived N-doped carbon nanowall arrays as sodium ion battery anode with superior cycling life and rate capability, Adv. Funct. Mater. 27 (2017) 1702116. doi: 10.1002/adfm.201702116
|
[33] |
S.Q. Yang, D.X. Li, T.R. Zhang, Z.L. Tao, J. Chen, First-principles study of zigzag MoS2 nanoribbon as a promising cathode material for rechargeable Mg batteries, J. Phys. Chem. C 116 (2012) 1307–1312.
|
[34] |
S. Natarajan, S. Mandal, Open-framework structures of transition-metal compounds, Angew. Chem. Int. Ed. 47 (2008) 4798–4828. doi: 10.1002/anie.200701404
|
[35] |
Y. Uebou, S. Okada, J.I. Yamaki, Electrochemical insertion of lithium and sodium into (MoO2)2P2O7, J. Power Sources 115 (2003) 119–124. doi: 10.1016/S0378-7753(02)00648-1
|
[36] |
T. Buhrmester, N.N. Leyzerovich, K.G. Bramnik, H. Ehrenberg, H. Fuess, Electrochemical intercalation of lithium in ternary metal molybdates MMoO4 (M= Cu, Zn), MRS Online Proc. Libr. 756 (2002) 67. doi: 10.1557/PROC-756-EE6.7
|
[37] |
R.L. Smith, G.S. Rohrer, The structure sensitivity of HxMoO3 precipitation on MoO3 (010) during reactions with methanol, J. Catal. 184 (1999) 49–58. doi: 10.1006/jcat.1999.2443
|
[38] |
K. Zhu, S.H. Guo, J. Yi, S.Y. Bai, Y.J. Wei, G. Chen, H.S. Zhou, A new layered sodium molybdenum oxide anode for full intercalation-type sodium-ion batteries, J. Mater. Chem. A 3 (2015) 22012–22016.
|
[39] |
W. Kaveevivitchai, A.J. Jacobson, High capacity rechargeable magnesium-ion batteries based on a microporous molybdenum-vanadium oxide cathode, Chem. Mater. 28 (2016) 4593–4601. doi: 10.1021/acs.chemmater.6b01245
|
[40] |
R. Xu, J. Lu, K. Amine, Progress in mechanistic understanding and characterization techniques of Li-S batteries, Adv. Energy Mater. 5 (2015) 1500408. doi: 10.1002/aenm.201500408
|
[41] |
Y.Q. Zhang, L. Tao, C. Xie, D.D. Wang, Y.Q. Zou, R. Chen, Y.Y. Wang, S.Y. Wang, Defect engineering on electrode materials for rechargeable batteries, Adv. Mater. 32 (2020) 1905923. doi: 10.1002/adma.201905923
|
[42] |
H.L. Wang, J.Z. Niu, J. Shi, W.Z. Lv, H.G. Wang, P.A. van Aken, Z.H. Zhang, R.F. Chen, W. Huang, Facile preparation of MoS2 nanocomposites for efficient potassium-ion batteries by grinding-promoted intercalation exfoliation, Small 17 (2021) 2102263. doi: 10.1002/smll.202102263
|
[43] |
J. Jang, H.S. Kim, S. Moon, O.B. Chae, S.J. Ahn, H. Jung, J. Choi, S.M. Oh, J.H. Ryu, T. Yoon, Concentration gradient induced delithiation failure of MoO3 for Li-ion batteries, Nano Lett. 22 (2022) 761–767. doi: 10.1021/acs.nanolett.1c04290
|
[44] |
S. Balendhran, S. Walia, H. Nili, J.Z. Ou, S. Zhuiykov, R.B. Kaner, S. Sriram, M. Bhaskaran, K. Kalantar-zadeh, Two-dimensional molybdenum trioxide and dichalcogenides, Adv. Funct. Mater. 23 (2013) 3952–3970. doi: 10.1002/adfm.201300125
|
[45] |
C. Shu, J. Wang, J. Long, H.K. Liu, S.X. Dou, Understanding the reaction chemistry during charging in aprotic lithium–oxygen batteries: existing problems and solutions, Adv. Mater. 31 (2019) 1804587. doi: 10.1002/adma.201804587
|
[46] |
S. Dou, L. Tao, R.L. Wang, S. El Hankari, R. Chen, S.Y. Wang, Plasma-assisted synthesis and surface modification of electrode materials for renewable energy, Adv. Mater. 30 (2018) 1705850. doi: 10.1002/adma.201705850
|
[47] |
G.B. Zhang, T.F. Xiong, M.Y. Yan, L. He, X.B. Liao, C.Q. He, C.S. Yin, H.N. Zhang, L.Q. Mai, α-MoO3-x by plasma etching with improved capacity and stabilized structure for lithium storage, Nano Energy 49 (2018) 555–563. doi: 10.1016/j.nanoen.2018.04.075
|
[48] |
M.M. Hu, J.F. Zhu, W.Y. Guo, Q.J. Xu, Y.L. Min, J.C. Fan, Facile ball-milling strategy for constructing covalently connected black phosphorus–MoO3–x heterostructures for enhanced photocatalytic hydrogen evolution, ACS Sustain. Chem. Eng. 10 (2022) 1008–1019. doi: 10.1021/acssuschemeng.1c07355
|
[49] |
Y.Z. Xu, L.L. Wang, X. Liu, S.Q. Zhang, C.B. Liu, D.F. Yan, Y.X. Zeng, Y. Pei, Y.T. Liu, S.L. Luo, Monolayer MoS2 with S vacancies from interlayer spacing expanded counterparts for highly efficient electrochemical hydrogen production, J. Mater. Chem. A 4 (2016) 16524–16530. doi: 10.1039/C6TA06534A
|
[50] |
P. Xiao, X.M. Ge, H.B. Wang, Z.L. Liu, A. Fisher, X. Wang, Novel molybdenum carbide–tungsten carbide composite nanowires and their electrochemical activation for efficient and stable hydrogen evolution, Adv. Funct. Mater. 25 (2015) 1520–1526. doi: 10.1002/adfm.201403633
|
[51] |
Z.H. Xiao, C. Xie, Y.Y. Wang, R. Chen, S.Y. Wang, Recent advances in defect electrocatalysts: preparation and characterization, J. Energy Chem. 53 (2021) 208–225. doi: 10.1016/j.jechem.2020.04.063
|
[52] |
L. Li, Z.D. Qin, L. Ries, S. Hong, T. Michel, J. Yang, C. Salameh, M. Bechelany, P. Miele, D. Kaplan, M. Chhowalla, D. Voiry, Role of sulfur vacancies and undercoordinated mo regions in MoS2 nanosheets toward the evolution of hydrogen, ACS Nano 13 (2019) 6824–6834. doi: 10.1021/acsnano.9b01583
|
[53] |
D.O. Özgür, G. Ozkan, O. Atakol, H. Çelikkan, Facile ion-exchange method for Zn intercalated MoS2 as an efficient and stable catalyst toward hydrogen evaluation reaction, ACS Appl. Energy Mater. 4 (2021) 2398–2407.
|
[54] |
P. Gao, Z. Chen, Y.X. Gong, R. Zhang, H. Liu, P. Tang, X.H. Chen, S. Passerini, J.L. Liu, The role of cation vacancies in electrode materials for enhanced electrochemical energy storage: synthesis, advanced characterization, and fundamentals, Adv. Energy Mater. 10 (2020) 1903780. doi: 10.1002/aenm.201903780
|
[55] |
H. Li, C. Tsai, A.L. Koh, L.L. Cai, A.W. Contryman, A.H. Fragapane, J.H. Zhao, H.S. Han, H.C. Manoharan, F. Abild-Pedersen, J.K. Nørskov, X.L. Zheng, Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies, Nat. Mater. 15 (2016) 48–53. doi: 10.1038/nmat4465
|
[56] |
S.W. Li, Y.C. Liu, X.D. Zhao, K.X. Cui, Q.Y. Shen, P. Li, X.H. Qu, L.F. Jiao, Molecular engineering on MoS2 enables large interlayers and unlocked basal planes for high-performance aqueous Zn-ion storage, Angew. Chem. Int. Ed. 60 (2021) 20286–20293. doi: 10.1002/anie.202108317
|
[57] |
Y. Li, R.P. Zhang, W. Zhou, X. Wu, H.B. Zhang, J. Zhang, Hierarchical MoS2 hollow architectures with abundant Mo vacancies for efficient sodium storage, ACS Nano 13 (2019) 5533–5540. doi: 10.1021/acsnano.9b00383
|
[58] |
S.H. Liu, F. Li, D. Wang, C.M. Huang, Y.M. Zhao, J.B. Baek, J.T. Xu, 3D macroporous MoxC@N-C with incorporated Mo vacancies as anodes for highperformance lithium-ion batteries, Small Methods 2 (2018) 1800040.
|
[59] |
J. Lin, J.J. Xu, W. Zhao, W.J. Dong, R.Z. Li, Z.C. Zhang, F.Q. Huang, In situ synthesis of MoC1-x nanodot@ carbon hybrids for capacitive lithium-ion storage, ACS Appl. Mater. Interfaces 11 (2019) 19977–19985. doi: 10.1021/acsami.9b03230
|
[60] |
Y.X. Tao, P. Wang, C.N. Liang, N. Yang, D. Huang, H. Chen, Y.Z. Luo, Tailoring oxygen vacancies in CoMoO4 for superior lithium storage, Chem. Electro. Chem 7 (2020) 4815–4821.
|
[61] |
H.N. He, D. Huang, Q.M. Gan, J.N. Hao, S.L. Liu, Z.B. Wu, W.K. Pang, B. Johannessen, Y.G. Tang, J.L. Luo, H.Y. Wang, Z.P. Guo, Anion vacancies regulating endows MoSSe with fast and stable potassium ion storage, ACS Nano 13 (2019) 11843–11852. doi: 10.1021/acsnano.9b05865
|
[62] |
W. Zong, R.Q. Lian, G.J. He, H. Guo, Y. Ouyang, J. Wang, F.L. Lai, Y.E. Miao, D.W. Rao, D. Brett, T.X. Liu, Vacancy engineering of group Ⅵ anions in NiCo2A4 (A = O, S, Se) for efficient hydrogen production by weakening the shackles of hydronium ion, Electrochim. Acta 333 (2020) 135515. doi: 10.1016/j.electacta.2019.135515
|
[63] |
W. Liu, C. Luo, S.W. Zhang, B. Zhang, J.B. Ma, X.L. Wang, W.H. Liu, Z.J. Li, Q.H. Yang, W. Lv, Cobalt-doping of molybdenum disulfide for enhanced catalytic polysulfide conversion in lithium-sulfur batteries, ACS Nano 15 (2021) 7491–7499. doi: 10.1021/acsnano.1c00896
|
[64] |
J. Suh, T.L. Tan, W.J. Zhao, J. Park, D.Y. Lin, T.E. Park, J. Kim, C.H. Jin, N. Saigal, S. Ghosh, Z.M. Wong, Y.B. Chen, F. Wang, W. Walukiewicz, G. Eda, J.Q. Wu, Reconfiguring crystal and electronic structures of MoS2 by substitutional doping, Nat. Commun. 9 (2018) 1–7. doi: 10.1038/s41467-017-02088-w
|
[65] |
S. Liu, C.X. Xu, H. Yang, G.S. Qian, S.G. Hua, J. Liu, X.S. Zheng, X.H. Lu, Atomic modulation triggering improved performance of MoO3 nanobelts for fiber-shaped supercapacitors, Small 16 (2020) 1905778. doi: 10.1002/smll.201905778
|
[66] |
W.X. Ji, R. Shen, R. Yang, G.Y. Yu, X.F. Guo, L.M. Peng, W.P. Ding, Partially nitrided molybdenum trioxide with promoted performance as an anode material for lithium-ion batteries, J. Mater, Chem. A 2 (2014) 699–704. doi: 10.1039/C3TA13708B
|
[67] |
J.T. Incorvati, L.F. Wan, B. Key, D.H. Zhou, C. Liao, L. Fuoco, M. Holland, H. Wang, D. Prendergast, K.R. Poeppelmeier, J.T. Vaughey, Reversible magnesium intercalation into a layered oxyfluoride cathode, Chem. Mater. 28 (2016) 17–20. doi: 10.1021/acs.chemmater.5b02746
|
[68] |
L.F. Wan, J.T. Incorvati, K.R. Poeppelmeier, D. Prendergast, Building a fast lane for Mg diffusion in α-MoO3 by fluorine doping, Chem. Mater. 28 (2016) 6900–6908. doi: 10.1021/acs.chemmater.6b02223
|
[69] |
H.F. Liang, Z. Cao, F.W. Ming, W.L. Zhang, D.H. Anjum, Y. Cui, L.G. Cavallo, H.N. Alshareef, Aqueous zinc-ion storage in MoS2 by tuning the intercalation energy, Nano Lett. 19 (2019) 3199–3206. doi: 10.1021/acs.nanolett.9b00697
|
[70] |
X.J. Wang, R. Nesper, C. Villevieille, P. Novák, Ammonolyzed MoO3 nanobelts as novel cathode material of rechargeable Li-ion batteries, Adv. Energy Mater. 3 (2013) 606–614. doi: 10.1002/aenm.201200692
|
[71] |
H. Ang, H.T. Tan, Z.M. Luo, Y. Zhang, Y.Y. Guo, G. Guo, H. Zhang, Q. Yan, Hydrophilic nitrogen and sulfur Co-doped molybdenum carbide nanosheets for electrochemical hydrogen evolution, Small 11 (2015) 6278–6284. doi: 10.1002/smll.201502106
|
[72] |
W.J. Zhou, D.M. Hou, Y.H. Sang, S.H. Yao, J. Zhou, G.Q. Li, L.G. Li, H. Liu, S.W. Chen, MoO2 nanobelts@nitrogen self-doped MoS2 nanosheets as effective electrocatalysts for hydrogen evolution reaction, J. Mater. Chem. A 2 (2014) 11358–11364. doi: 10.1039/c4ta01898b
|
[73] |
J.Y.C. Qiu, Z.X. Yang, Q. Li, Y. Li, X. Wu, C.Y. Qi, Q.D. Qiao, Formation of N-doped molybdenum carbide confined in hierarchical and hollow carbon nitride microspheres with enhanced sodium storage properties, J. Mater. Chem. A 4 (2016) 13296–13306. doi: 10.1039/C6TA05025E
|
[74] |
G. Ali, M.A.R. Anjum, S. Mehboob, M. Akbar, J.S. Lee, K.Y. Chung, Sulfur-doped molybdenum phosphide as fast dis/charging anode for Li-ion and Na-ion batteries, Int. J. Energy Res. 46 (2022) 8452–8463. doi: 10.1002/er.7647
|
[75] |
H.B. Lin, S.L. Zhang, T.R. Zhang, H.L. Ye, Q.F. Yao, G.W. Zheng, J.Y. Lee, Simultaneous cobalt and phosphorous doping of MoS2 for improved catalytic performance on polysulfide conversion in lithium-sulfur batteries, Adv. Energy Mater. 9 (2019) 1902096. doi: 10.1002/aenm.201902096
|
[76] |
Y.F. Li, M.F. Chen, H. Liu, P. Zeng, D. Zhang, H. Yu, X. Zhou, C.M. Guo, Z.G. Luo, Y. Wang, B.B. Chang, X.Y. Wang, Catalytic-conversion behavior of MoS2 for polysulfides by nickel introduction and phosphorous-doping in advanced lithiumsulfur batteries, Chem. Eng. J. 425 (2021) 131640. doi: 10.1016/j.cej.2021.131640
|
[77] |
X.H. Yao, Y.L. Zhao, F.A. Castro, L.Q. Mai, Rational design of preintercalated electrodes for rechargeable batteries, ACS Energy Lett. 4 (2019) 771–778. doi: 10.1021/acsenergylett.8b02555
|
[78] |
K. Kang, G. Ceder, Factors that affect Li mobility in layered lithium transition metal oxides, Phys. Rev. B 74 (2006) 094105. doi: 10.1103/PhysRevB.74.094105
|
[79] |
Y.F. Dong, X.M. Xu, S. Li, C.H. Han, K.N. Zhao, L. Zhang, C.J. Niu, Z. Huang, L.Q. Mai, Inhibiting effect of Na+ pre-intercalation in MoO3 nanobelts with enhanced electrochemical performance, Nano Energy 15 (2015) 145–152. doi: 10.1016/j.nanoen.2015.04.015
|
[80] |
M. Baldoni, L. Craco, G. Seifert, S. Leoni, A two-electron mechanism of lithium insertion into layered α-MoO3: a DFT and DFT+ U study, J. Mater. Chem. A 1 (2013) 1778–1784. doi: 10.1039/C2TA00839D
|
[81] |
H.M. Liu, Y.G. Wang, L. Li, K.X. Wang, E. Hosonoa, H.S. Zhou, Facile synthesis of NaV6O15 nanorods and its electrochemical behavior as cathode material in rechargeable lithium batteries, J. Mater. Chem. 19 (2009) 7885–7891. doi: 10.1039/b912906e
|
[82] |
L.Q. Mai, B. Hu, W. Chen, Y.Y. Qi, C.S. Lao, R.S. Yang, Y. Dai, Z.L. Wang, Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries, Adv. Mater. 19 (2007) 3712–3716. doi: 10.1002/adma.200700883
|
[83] |
W.W. Yang, J.W. Xiao, Y. Ma, S.Q. Cui, P. Zhang, P.B. Zhai, L.J. Meng, X.G. Wang, Y. Wei, Z.G. Du, B.X. Li, Z.B. Sun, S.B. Yang, Q.F. Zhang, Y.J. Gong, Tin intercalated ultrathin MoO3 nanoribbons for advanced lithium-sulfur batteries, Adv. Energy Mater. 9 (2019) 1803137. doi: 10.1002/aenm.201803137
|
[84] |
X. Sha, L. Chen, A.C. Cooper, G.P. Pez, H. Cheng, Hydrogen absorption and diffusion in bulk α-MoO3, J. Phys. Chem. C 113 (2009) 11399–11407. doi: 10.1021/jp9017212
|
[85] |
Y. Zhao, L.P. Wang, M.T. Sougrati, Z.X. Feng, Y. Leconte, A. Fisher, M. Srinivasan, Z.C. Xu, A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes, Adv. Energy Mater. 7 (2017) 1601424. doi: 10.1002/aenm.201601424
|
[86] |
J. Park, J.S. Kim, J.W. Park, T.H. Nam, K.W. Kim, J.H. Ahn, G.X. Wang, H.J. Ahn, Discharge mechanism of MoS2 for sodium ion battery: electrochemical measurements and characterization, Electrochim. Acta 92 (2013) 427–432. doi: 10.1016/j.electacta.2013.01.057
|
[87] |
K.D. Rasamani, F. Alimohammadi, Y. Sun, Interlayer-expanded MoS2, Mater. Today 20 (2017) 83–91. doi: 10.1016/j.mattod.2016.10.004
|
[88] |
J.Q. Yang, X.L. Zhou, D.H. Wu, X.D. Zhao, Z. Zhou, S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries, Adv. Mater. 29 (2017) 1604108. doi: 10.1002/adma.201604108
|
[89] |
J. Shuai, H.D. Yoo, Y. Liang, Y. Li, Y. Yao, L.C. Grabow, Density functional theory study of Li, Na, and Mg intercalation and diffusion in MoS2 with controlled interlayer spacing, Mater. Res. Express 3 (2016) 064001. doi: 10.1088/2053-1591/3/6/064001
|
[90] |
D.L. Chao, C.R. Zhu, P.H. Yang, X.H. Xia, J.L. Liu, J. Wang, X.F. Fan, S.V. Savilov, J.Y. Lin, H.J. Fan, Z.X. Shen, Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance, Nat. Commun. 7 (2016) 1–8.
|
[91] |
L. David, R. Bhandavat, G. Singh, MoS2/graphene composite paper for sodium-ion battery electrodes, ACS Nano 8 (2014) 1759–1770. doi: 10.1021/nn406156b
|
[92] |
X.J. Wang, R. Nesper, C. Villevieille, P. Novák, Ammonolyzed MoO3 nanobelts as novel cathode material of rechargeable Li-ion batteries, Adv. Energy Mater. 3 (2013) 606–614. doi: 10.1002/aenm.201200692
|
[93] |
K. Zhang, P. Li, S.Y. Guo, J.Y. Jeong, B.J. Jin, X.M. Li, S.L. Zhang, H.B. Zeng, J.H. Park, An Ångström-level d-spacing controlling synthetic route for MoS2 towards stable intercalation of sodium ions, J. Mater. Chem. A 6 (2018) 22513–22518. doi: 10.1039/C8TA09066A
|
[94] |
X. Xiao, H. Wang, P. Urbankowski, Y. Gogotsi, Topochemical synthesis of 2D materials, Chem. Soc. Rev. 47 (2018) 8744–8765. doi: 10.1039/C8CS00649K
|
[95] |
K.T. Lee, T.N. Ramesh, F. Nan, G. Botton, L.F. Nazar, Topochemical synthesis of sodium metal phosphate olivines for sodium-ion batteries, Chem. Mater. 23 (2011) 3593–3600. doi: 10.1021/cm200450y
|
[96] |
D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi, Prototype systems for rechargeable magnesium batteries, Nature 407 (2000) 724–727. doi: 10.1038/35037553
|
[97] |
C. Ritter, E. Gocke, C. Fischer, R. Schöllhorn, Neutron diffraction study on the crystal structure of lithium intercalated chevrel phases, Mater. Res. Bull. 27 (1992) 1217–1225. doi: 10.1016/0025-5408(92)90229-S
|
[98] |
M.S. Chae, H.H. Kwak, S.T. Hong, Calcium molybdenum bronze as a stable highcapacity cathode material for calcium-ion batteries, ACS Appl. Energy Mater. 3 (2020) 5107–5112.
|
[99] |
T.S. Arthur, K. Kato, J. Germain, J.H. Guo, P.A. Glans, Y.S. Liu, D. Holmes, X.D. Fan, F. Mizuno, Amorphous V2O5-P2O5 as high-voltage cathodes for magnesium batteries, Chem. Commun. 51 (2015) 15657–15660. doi: 10.1039/C5CC07161E
|
[100] |
S.Q. Wang, X. Cai, Y. Song, X. Sun, X.X. Liu, VOx@MoO3 nanorod composite for high-performance supercapacitors, Adv. Funct. Mater. 28 (2018) 1803901. doi: 10.1002/adfm.201803901
|
[101] |
G. Wang, Y. Ji, L. Zhang, Y. Zhu, P.I. Gouma, M. Dudley, Synthesis of molybdenum oxide nanoplatelets during crystallization of the precursor gel from its hybrid nanocomposites, Chem. Mater. 19 (2007) 979–981. doi: 10.1021/cm062454m
|
[102] |
G.E. Buono-Core, G. Cabello, A.H. Klahn, A. Lucero, M.V. Nuñez, B. Torrejón, C. Castillo, Growth and characterization of molybdenum oxide thin films prepared by photochemical metal-organic deposition (PMOD), Polyhedron 29 (2010) 1551–1554. doi: 10.1016/j.poly.2010.01.036
|
[103] |
C.Y. Yu, H. Xu, Y.J. Gong, R.Y. Chen, Z.Y. Hui, X. Zhao, Y. Sun, Q. Chen, J.Y. Zhou, W.X. Ji, G.Z. Sun, W. Huang, The Jahn-Teller effect for amorphization of molybdenum trioxide towards high-performance fiber supercapacitor, Research 2021 (2021) 6742715.
|
[104] |
L.Q. Bai, Y.H. Zhang, L.K. Zhang, Y.X. Zhang, L. Sun, N. Ji, X.W. Li, H.C. Si, Y. Zhang, H.W. Huang, Jahn-Teller distortions in molybdenum oxides: an achievement in exploring high rate supercapacitor applications and robust photocatalytic potential, Nano Energy 53 (2018) 982–992. doi: 10.1016/j.nanoen.2018.09.028
|
[105] |
J. Jiang, Y.L. Hu, X.R. He, Z.P. Li, F. Li, X. Chen, Y. Niu, J. Song, P. Huang, G.Y. Tian, C. Wang, An amorphous-crystalline nanosheet arrays structure for ultrahigh electrochemical performance supercapattery, Small 17 (2021), 2102565. doi: 10.1002/smll.202102565
|
[106] |
M. Song, H. Tan, X. Li, A.I.Y. Tok, P. Liang, D. Chao, H.J. Fan, Atomic-layerdeposited amorphous MoS2 for durable and flexible Li-O2 batteries, Small Methods 4 (2020) 1900274. doi: 10.1002/smtd.201900274
|
[107] |
K.J. Zhu, X.F. Wang, J. Liu, S. Li, H. Wang, L.Y. Yang, S.L. Liu, T. Xie, Novel amorphous MoS2/MoO3/nitrogen-doped carbon composite with excellent electrochemical performance for lithium ion batteries and sodium ion batteries, ACS Sustain. Chem. Eng. 5 (2017) 8025–8034. doi: 10.1021/acssuschemeng.7b01595
|
[108] |
X.D. Yan, L.H. Tian, J. Murowchick, X.B. Chen, Partially amorphized MnMoO4 for highly efficient energy storage and the hydrogen evolution reaction, J. Mater. Chem. A 4 (2016) 3683–3688. doi: 10.1039/C6TA00744A
|
[109] |
J.S. Meng, H.C. Guo, C.J. Niu, Y.L. Zhao, L. Xu, Q. Li, L.Q. Mai, Advances in structure and property optimizations of battery electrode materials, Joule 1 (2017) 522–547. doi: 10.1016/j.joule.2017.08.001
|
[110] |
K. Toyoura, Y. Koyama, A. Kuwabara, F. Oba, I. Tanaka, First-principles approach to chemical diffusion of lithium atoms in a graphite intercalation compound, Phys. Rev. B 78 (2008) 214303. doi: 10.1103/PhysRevB.78.214303
|
[111] |
D. Morgan, A. Van der Ven, G. Ceder, Li conductivity in LixMPO4 (M= Mn, Fe, Co, Ni) olivine materials, Electrochem. Solid-State Lett. 7 (2003) 30.
|
[112] |
B.C. Melot, J.M. Tarascon, Design and preparation of materials for advanced electrochemical storage, Acc. Chem. Res. 46 (2013) 1226–1238. doi: 10.1021/ar300088q
|
[113] |
J. Gao, S.Q. Shi, H. Li, Brief overview of electrochemical potential in lithium ion batteries, Chin. Phys. B 25 (2015) 018210.
|
[114] |
K. Tang, S.A. Farooqi, X.F. Wang, C.L. Yan, Recent progress on molybdenum oxides for rechargeable batteries, ChemSusChem 12 (2019) 755–771. doi: 10.1002/cssc.201801860
|
[115] |
X.Z. Yu, B. Wang, D.C. Gong, Z. Xu, B.G. Lu, Graphene nanoribbons on highly porous 3D graphene for high-capacity and ultrastable Al-ion batteries, Adv. Mater. 29 (2017) 1604118. doi: 10.1002/adma.201604118
|
[116] |
G.H. Lee, S. Lee, J.C. Kim, D.W. Kim, Y.K. Kang, D.W. Kim, MnMoO4 electrocatalysts for superior long-life and high-rate lithium-oxygen batteries, Adv. Mater. 7 (2017) 1601741.
|