Citation: | Chai Simin, Zhang Yangpu, Wang Yijiang, He Qiong, Zhou Shuang, Pan Anqiang. Biodegradable composite polymer as advanced gel electrolyte for quasi-solid-state lithium-metal battery[J]. eScience, 2022, 2(5): 494-508. doi: 10.1016/j.esci.2022.04.007 |
![]() |
![]() |
[1] |
X.L. Zhang, S.Y. Zhao, W. Fan, J.N. Wang, C.J. Li, Long cycling, thermal stable, dendrites free gel polymer electrolyte for flexible lithium metal batteries, Electrochim. Acta 301 (2019) 304–311. doi: 10.1016/j.electacta.2019.01.156
|
[2] |
M.T. Wan, S.J. Kang, L. Wang, H.W. Lee, G.Y.W. Zheng, Y. Cui, Y.M. Sun, Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode, Nat. Commun. 11 (2020) 829. doi: 10.1038/s41467-020-14550-3
|
[3] |
Y. Tang, C.X. Liu, H.R. Zhu, X.S. Xie, J.W. Gao, C.B. Deng, M.M. Han, S.Q. Liang, J. Zhou, Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode, Energy Stor. Mater. 27 (2020) 109–116. doi: 10.1016/j.ensm.2020.01.023
|
[4] |
Q. Liu, B.Y. Cai, S. Li, Q.P. Yu, F.Z. Lv, F.Y. Kang, Q. Wang, B.H. Li, Long-cycling and safe lithium metal batteries enabled by the synergetic strategy of ex situ anodic pretreatment and an in-built gel polymer electrolyte, J. Mater. Chem. A 8 (2020) 7197–7204. doi: 10.1039/D0TA02148B
|
[5] |
H.J. Zhao, N.P. Deng, W.M. Kang, Z.J. Li, G. Wang, B.W. Cheng, Highly multiscale structural Poly(vinylidene fluoridehexafluoropropylene)/poly-mphenyleneisophthalamide separator with enhanced interface compatibility and uniform lithium-ion flux distribution for dendrite-proof lithium-metal batteries, Energy Stor. Mater. 26 (2020) 334–348. doi: 10.1016/j.ensm.2019.11.005
|
[6] |
Q. Zhou, J. Ma, S.M. Dong, X.F. Li, G.L. Cui, Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries, Adv. Mater. 31 (2019) 1902029. doi: 10.1002/adma.201902029
|
[7] |
H.J. Zhao, N.P. Deng, G. Wang, H.R. Ren, W.M. Kang, B.W. Cheng, A core@sheath nanofiber separator with combined hardness and softness for lithium-metal batteries, Chem. Eng. J. 404 (2021) 126542. doi: 10.1016/j.cej.2020.126542
|
[8] |
G.D. Zhou, X.D. Lin, J.P. Liu, J. Yu, J.X. Wu, H.M. Law, Z. Wang, F. Ciucci, In situ formation of poly(butyl acrylate)-based non-flammable elastic quasi-solid electrolyte for dendrite-free flexible lithium metal batteries with long cycle life for wearable devices, Energy Stor. Mater. 34 (2021) 629–639. doi: 10.1016/j.ensm.2020.10.012
|
[9] |
H.J. Zhao, W.M. Kang, N.P. Deng, M. Liu, B.W. Cheng, A fresh hierarchical-structure gel poly-m-phenyleneisophthalamide nanofiber separator assisted by electronegative nanoclay-filler towards high-performance and advanced-safety lithium-ion battery, Chem. Eng. J. 384 (2020) 123312. doi: 10.1016/j.cej.2019.123312
|
[10] |
D. Cai, D.H. Wang, Y.J. Chen, S.Z. Zhang, X.L. Wang, X.H. Xia, J.P. Tu, A highly ionconductive three-dimensional LLZAO-PEO/LiTFSI solid electrolyte for highperformance solid-state batteries, Chem. Eng. J. 394 (2020) 124993. doi: 10.1016/j.cej.2020.124993
|
[11] |
S. Jamalpour, M. Ghahramani, S.R. Ghaffarian, M. Javanbakht, The effect of poly(hydroxyl ethyl methacrylate) on the performance of PVDF/P(MMA-co-HEMA) hybrid gel polymer electrolytes for lithium ion battery application, Polymer 195 (2020) 122427. doi: 10.1016/j.polymer.2020.122427
|
[12] |
A. Hosseinioun, E. Paillard, In situ crosslinked PMMA gel electrolyte from a low viscosity precursor solution for cost-effective, long lasting and sustainable lithiumion batteries, J. Membr. Sci. 594 (2020) 117456. doi: 10.1016/j.memsci.2019.117456
|
[13] |
X. Li, S.L. Chen, Z.L. Xia, L. Li, W.H. Yuan, High performance of boehmite/ polyacrylonitrile composite nanofiber membrane for polymer lithium-ion battery, RSC Adv. 10 (2020) 27492–27501. doi: 10.1039/D0RA02401E
|
[14] |
J. Mohanta, O.H. Kwon, J.H. Choi, Y.M. Yun, J.K. Kim, S.M. Jeong, Preparation of highly porous PAN-LATP membranes as separators for lithium ion batteries, Nanomaterials 9 (2019) 1581–1593. doi: 10.3390/nano9111581
|
[15] |
B.L. Li, Y. Huang, P. Cheng, B. Liu, Z.L. Yin, Y.H. Lin, X. Li, M.S. Wang, H.J. Cao, Y.P. Wu, Upgrading comprehensive performances of gel polymer electrolyte based on polyacrylonitrile via copolymerizing acrylonitrile with N-vinylpryrrolidone, Electrochim. Acta 320 (2019) 134572. doi: 10.1016/j.electacta.2019.134572
|
[16] |
A. Abdul Razzaq, Y.Z. Yao, R. Shah, P.W. Qi, L.X. Miao, M.Z. Chen, X.H. Zhao, Y. Peng, Z. Deng, High-performance lithium sulfur batteries enabled by a synergy between sulfur and carbon nanotubes, Energy Stor. Mater. 16 (2019) 194–202. doi: 10.1016/j.ensm.2018.05.006
|
[17] |
X.L. Wang, X.J. Hao, Y. Xia, Y.F. Liang, X.H. Xia, J.P. Tu, A polyacrylonitrile (PAN)- based double-layer multifunctional gel polymer electrolyte for lithium-sulfur batteries, J. Membr. Sci. 582 (2019) 37–47. doi: 10.1016/j.memsci.2019.03.048
|
[18] |
J.C. Barbosa, A. Reizabal, D.M. Correia, A. Fidalgo-Marijuan, R. Gonçalves, M.M. Silva, S. Lanceros-Mendez, C.M. Costa, Lithium-ion battery separator membranes based on poly(L-lactic acid) biopolymer, Mater. Today Energy 18 (2020) 100494. doi: 10.1016/j.mtener.2020.100494
|
[19] |
M. Zhu, J.L. Lan, C.Y. Tan, G. Sui, X.P. Yang, Degradable cellulose acetate/poly-Llactic acid/halloysite nanotube composite nanofiber membranes with outstanding performance for gel polymer electrolytes, J. Mater. Chem. A 4 (2016) 12136–12143. doi: 10.1039/C6TA05207J
|
[20] |
L. Li, M. Yu, F.J. Wang, X.F. Zhang, Z.Q. Shao, Synergistically suppressing lithium dendrite growth by coating poly-L-lactic acid on sustainable gel polymer electrolyte, Energy Technol. 7 (2019) 1800768. doi: 10.1002/ente.201800768
|
[21] |
H. Zheng, H.F. Xiang, F.Y. Jiang, Y.C. Liu, Y. Sun, X. Liang, Y.Z. Feng, Y. Yu, Lithium difluorophosphate-based dual-salt low concentration electrolytes for lithium metal batteries, Adv. Energy Mater. 10 (2020) 2001440. doi: 10.1002/aenm.202001440
|
[22] |
C.C. Li, B.S. Qin, Y.F. Zhang, A. Varzi, S. Passerini, J.Y. Wang, J.M. Dong, D.L. Zeng, Z.H. Liu, H.S. Cheng, Single-ion conducting electrolyte based on electrospun nanofibers for high-performance lithium batteries, Adv. Energy Mater. 9 (2019) 1803422. doi: 10.1002/aenm.201803422
|
[23] |
Q. Yang, N.P. Deng, J.Y. Chen, B.W. Cheng, W.M. Kang, The recent research progress and prospect of gel polymer electrolytes in lithium-sulfur batteries, Chem. Eng. J. 413 (2021) 127427. doi: 10.1016/j.cej.2020.127427
|
[24] |
H. Li, Y.F. Du, X.M. Wu, J.Y. Xie, F. Lian, Developing "polymer-in-salt" high voltage electrolyte based on composite lithium salts for solid-state Li metal batteries, Adv. Funct. Mater. 31 (2021) 2103049. doi: 10.1002/adfm.202103049
|
[25] |
K.Y. Xie, J.Q. Shen, L.J. Ye, Z.Y. Liu, Y.J. Li, Increased gt conformer contents of PLLA molecular chains Induced by Li-TFSI in melt: another route to promote PLLA crystallization, Macromolecules 52 (2019) 7065–7072. doi: 10.1021/acs.macromol.9b01188
|
[26] |
F. Croce, M.L. Focarete, J. Hassoun, I. Meschini, B. Scrosati, A safe, high-rate and high-energy polymer lithium-ion battery based on gelled membranes prepared by electrospinning, Energy Environ. Sci. 4 (2011) 921–927. doi: 10.1039/c0ee00348d
|
[27] |
X.H. Zou, Q. Lu, Y.J. Zhong, K.M. Liao, W. Zhou, Z.P. Shao, Flexible, flame-resistant, and dendrite-impermeable gel-polymer electrolyte for Li-O2/air batteries workable under hurdle conditions, Small 14 (2018) 1801798. doi: 10.1002/smll.201801798
|
[28] |
J.H. Chen, Z. Yang, G.H. Liu, C. Li, J.S. Yi, M. Fan, H.P. Tan, Z.H. Lu, C.L. Yang, Reinforcing concentrated phosphate electrolytes with in-situ polymerized skeletons for robust quasi-solid lithium metal batteries, Energy Stor. Mater. 25 (2020) 305–312. doi: 10.1016/j.ensm.2019.10.008
|
[29] |
F.J. Simon, M. Hanauer, F.H. Richter, J. r. Janek, Interphase formation of PEO20: LiTFSI-Li6PS5Cl composite electrolytes with lithium metal, ACS Appl. Mater. Interfaces 12 (2020) 11713–11723. doi: 10.1021/acsami.9b22968
|
[30] |
T.H. Zhou, Y. Zhao, J.W. Choi, A. Coskun, Lithium-salt mediated synthesis of a covalent triazine framework for highly stable lithium metal batteries, Angew. Chem. Int. Ed. 58 (2019) 16795–16799. doi: 10.1002/anie.201908513
|
[31] |
X. Guan, Q.P. Wu, X.W. Zhang, X.H. Guo, C.L. Li, J. Xu, In-situ crosslinked single ion gel polymer electrolyte with superior performances for lithium metal batteries, Chem. Eng. J. 382 (2020) 117456.
|
[32] |
Y.G. Cho, C. Hwang, D.S. Cheong, Y.S. Kim, H.K. Song, Gel/solid polymer electrolytes characterized by in situ gelation or polymerization for electrochemical energy systems, Adv. Mater. 31 (2019) 1804909. doi: 10.1002/adma.201804909
|
[33] |
B. Yin, X.X. Cao, A.Q. Pan, Z.G. Luo, S. Dinesh, J.D. Lin, Y. Tang, S.Q. Liang, G.Z. Cao, Encapsulation of CoSx nanocrystals into N/S co-doped honeycomb-like 3D porous carbon for high-performance lithium storage, Adv. Sci. 5 (2018) 1800829. doi: 10.1002/advs.201800829
|
[34] |
Y.H. Su, Y.H. Lin, Y.H. Tseng, Y.L. Lee, J.S. Jan, C.C. Chiu, S.S. Hou, H. Teng, Postinjection gelation of an electrolyte with high storage permittivity and low loss permittivity for electrochemical capacitors, J. Power Sources 481 (2021) 228869. doi: 10.1016/j.jpowsour.2020.228869
|
[35] |
A.L. Saroj, R.K. Singh, S. Chandra, Thermal, vibrational, and dielectric studies on [PVP/LiBF4]+ ionic liquid[EMIM][BF4]-based polymer electrolyte films, J. Phys. Chem. Solid. 75 (2014) 849–857. doi: 10.1016/j.jpcs.2014.02.005
|
[36] |
K.J. Sun, F.T. Ran, G.H. Zhao, Y.R. Zhu, Y.P. Zheng, M.G. Ma, X.P. Zheng, G.F. Ma, Z.Q. Lei, High energy density of quasi-solid-state supercapacitor based on redoxmediated gel polymer electrolyte, RSC Adv. 6 (2016) 55225–55232. doi: 10.1039/C6RA06797B
|
[37] |
V. Murugadoss, J. Lin, H. Liu, X.M. Mai, T. Ding, Z.H. Guo, S. Angaiah, Optimizing graphene content in a NiSe/graphene nanohybrid counter electrode to enhance the photovoltaic performance of dye-sensitized solar cells, Nanoscale 11 (2019) 17579–17589. doi: 10.1039/C9NR07060E
|
[38] |
A. Bora, K. Mohan, P. Phukan, S.K. Dolui, A low cost carbon black/polyaniline nanotube composite as efficient electro-catalyst for triiodide reduction in dye sensitized solar cells, Electrochim. Acta 259 (2018) 233–244. doi: 10.1016/j.electacta.2017.10.156
|
[39] |
X.T. Li, X.Q. Han, H.R. Zhang, R.X. Hu, X.F. Du, P. Wang, B.T. Zhang, G.L. Cui, Frontier orbital energy-customized ionomer-based polymer electrolyte for highvoltage lithium metal batteries, ACS Appl. Mater. Interfaces 12 (2020) 51374–51386. doi: 10.1021/acsami.0c13520
|
[40] |
C. Yan, R. Xu, J.L. Qin, H. Yuan, Y. Xiao, L. Xu, J.Q. Huang, 4.5 V High-voltage rechargeable batteries enabled by the reduction of polarization on the lithium metal anode, Angew. Chem. Int. Ed. 58 (2019) 15235–15238. doi: 10.1002/anie.201908874
|
[41] |
B.H. Wen, Z. Deng, P.C. Tsai, Z.W. Lebens-Higgins, L.F.J. Piper, S.P. Ong, Y.M. Chiang, Ultrafast ion transport at a cathode-electrolyte interface and its strong dependence on salt solvation, Nat. Energy 5 (2020) 578–586. doi: 10.1038/s41560-020-0647-0
|
[42] |
Antonia Kotronia, Habtom D. Asfaw, Cheuk-Wai Tai, Maria Hahlin, Daniel Brandell, K. Edström, Nature of the cathode-electrolyte interface in highly concentrated electrolytes used in graphite dual-ion batteries, ACS Appl. Mater. Interfaces 13 (2021) 3867–3880. doi: 10.1021/acsami.0c18586
|
[43] |
B. Tang, H. Wu, X.F. Du, X.Y. Cheng, X. Liu, Z. Yu, J.F. Yang, M. Zhang, J.J. Zhang, G.L. Cui, Highly safe electrolyte enabled via controllable polysulfide release and efficient conversion for advanced lithium-sulfur batteries, Small 16 (2020) 1905737. doi: 10.1002/smll.201905737
|
[44] |
Y.Q. Tang, Y.C. Lu, A comparative electrochemical investigation and an effective promotion towards electrochemical performance of MnCO3 aggregates, Chem. Eng. J. 360 (2019) 553. doi: 10.1016/j.cej.2018.12.043
|
[45] |
M. Liu, D. Zhou, Y.B. He, Y.Z. Fu, X.Y. Qin, C. Miao, H.D. Du, B.H. Li, Q.H. Yang, Z.Q. Lin, T.S. Zhao, F.Y. Kang, Novel gel polymer electrolyte for high-performance lithium-sulfur batteries, Nano Energy 22 (2016) 278–289. doi: 10.1016/j.nanoen.2016.02.008
|
[46] |
Q. Wang, D.C. Peng, Y.X. Chen, X.H. Xia, H.B. Liu, Y.D. He, Q. Ma, A facile surfactant-assisted self-assembly of LiFePO4/graphene composites with improved rate performance for lithium ion batteries, J. Electroanal. Chem. 818 (2018) 68–75. doi: 10.1016/j.jelechem.2018.04.030
|