Volume 2 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Chai Simin, Zhang Yangpu, Wang Yijiang, He Qiong, Zhou Shuang, Pan Anqiang. Biodegradable composite polymer as advanced gel electrolyte for quasi-solid-state lithium-metal battery[J]. eScience, 2022, 2(5): 494-508. doi: 10.1016/j.esci.2022.04.007
Citation: Chai Simin, Zhang Yangpu, Wang Yijiang, He Qiong, Zhou Shuang, Pan Anqiang. Biodegradable composite polymer as advanced gel electrolyte for quasi-solid-state lithium-metal battery[J]. eScience, 2022, 2(5): 494-508. doi: 10.1016/j.esci.2022.04.007

Biodegradable composite polymer as advanced gel electrolyte for quasi-solid-state lithium-metal battery

doi: 10.1016/j.esci.2022.04.007
More Information
  • Corresponding author: E-mail address: pananqiang@csu.edu.cn (A. Pan)
  • Received Date: 2021-12-29
  • Revised Date: 2022-03-12
  • Accepted Date: 2022-04-28
  • Available Online: 2022-05-02
  • The development of low-cost and eco-friendly gel polymer electrolytes (GPEs) with a wide window, ideal compatibility, and structural stability is an effective measure to achieve safe high-energy-density lithium-metal batteries. Herein, a biodegradable composite polyacrylonitrile/poly-L-lactic acid nanofiber membrane (PAL) is synthesized and used as a robust skeleton for GPEs. The 3D nanofiber membrane (PAL-3-C12) prepared with an adjusted weight ratio of polyacrylonitrile (PAN)/poly-L-lactic acid (PLLA) and spinning solution concentration delivers decent thermal stability, biodegradability, and liquid electrolyte absorbability. The "passivation effect" of PAN upon lithium metal is effectively alleviated by hydrogen bonds formed in the PAL chains. These advantages enable PAL GPEs to work stably to 5.17 V while maintaining high ionic conductivity as well as excellent corrosion resistance and dielectric properties. The interfacial compatibility of optimized GPEs promotes the stable operation of a Li||PAL-3-C12 GPEs||Li symmetric battery for 1000 h at 0.15 mA cm-2/0.15 mA h cm-2, and the LiFePO4 full cell retains capacity retention of 97.63% after 140 cycles at 1C.
  • ● The "passivation effect" of PAN upon Li metal is effectively alleviated by hydrogen bonds formed between PAN and PLLA chains.
    ● The optimized PAL fiber networks exhibit good thermal stability, biodegradability, and liquid electrolyte absorbability.
    ● A biodegradable PAL composite nanofiber membrane as a robust host for GPEs has been synthesized via electrospinning.
    ● PAL-3-C12 GPEs exhibit superior interfacial compatibility with electrodes.
    Author contributions
    Simin Chai conceived this work, performed the experiments, and wrote the manuscript. Yangpu Zhang conducted the sample tests. Yijiang Wang and Qiong He discussed the results and participated in the preparation of the paper. Shuang Zhou reviewed the manuscript. Anqiang Pan supervised this work and reviewed the manuscript. All authors participated in data analysis and manuscript discussion, and all authors have approved the final version of the manuscript.
    Declaration of interest statement
    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Appendix A. Supplementary data
    Supplementary data to this article can be found online at https://doi.org/10.1016/j.esci.2022.04.007.
  • loading
  • eScience-2-5-494.docx
  • [1]
    X.L. Zhang, S.Y. Zhao, W. Fan, J.N. Wang, C.J. Li, Long cycling, thermal stable, dendrites free gel polymer electrolyte for flexible lithium metal batteries, Electrochim. Acta 301 (2019) 304–311. doi: 10.1016/j.electacta.2019.01.156
    [2]
    M.T. Wan, S.J. Kang, L. Wang, H.W. Lee, G.Y.W. Zheng, Y. Cui, Y.M. Sun, Mechanical rolling formation of interpenetrated lithium metal/lithium tin alloy foil for ultrahigh-rate battery anode, Nat. Commun. 11 (2020) 829. doi: 10.1038/s41467-020-14550-3
    [3]
    Y. Tang, C.X. Liu, H.R. Zhu, X.S. Xie, J.W. Gao, C.B. Deng, M.M. Han, S.Q. Liang, J. Zhou, Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode, Energy Stor. Mater. 27 (2020) 109–116. doi: 10.1016/j.ensm.2020.01.023
    [4]
    Q. Liu, B.Y. Cai, S. Li, Q.P. Yu, F.Z. Lv, F.Y. Kang, Q. Wang, B.H. Li, Long-cycling and safe lithium metal batteries enabled by the synergetic strategy of ex situ anodic pretreatment and an in-built gel polymer electrolyte, J. Mater. Chem. A 8 (2020) 7197–7204. doi: 10.1039/D0TA02148B
    [5]
    H.J. Zhao, N.P. Deng, W.M. Kang, Z.J. Li, G. Wang, B.W. Cheng, Highly multiscale structural Poly(vinylidene fluoridehexafluoropropylene)/poly-mphenyleneisophthalamide separator with enhanced interface compatibility and uniform lithium-ion flux distribution for dendrite-proof lithium-metal batteries, Energy Stor. Mater. 26 (2020) 334–348. doi: 10.1016/j.ensm.2019.11.005
    [6]
    Q. Zhou, J. Ma, S.M. Dong, X.F. Li, G.L. Cui, Intermolecular chemistry in solid polymer electrolytes for high-energy-density lithium batteries, Adv. Mater. 31 (2019) 1902029. doi: 10.1002/adma.201902029
    [7]
    H.J. Zhao, N.P. Deng, G. Wang, H.R. Ren, W.M. Kang, B.W. Cheng, A core@sheath nanofiber separator with combined hardness and softness for lithium-metal batteries, Chem. Eng. J. 404 (2021) 126542. doi: 10.1016/j.cej.2020.126542
    [8]
    G.D. Zhou, X.D. Lin, J.P. Liu, J. Yu, J.X. Wu, H.M. Law, Z. Wang, F. Ciucci, In situ formation of poly(butyl acrylate)-based non-flammable elastic quasi-solid electrolyte for dendrite-free flexible lithium metal batteries with long cycle life for wearable devices, Energy Stor. Mater. 34 (2021) 629–639. doi: 10.1016/j.ensm.2020.10.012
    [9]
    H.J. Zhao, W.M. Kang, N.P. Deng, M. Liu, B.W. Cheng, A fresh hierarchical-structure gel poly-m-phenyleneisophthalamide nanofiber separator assisted by electronegative nanoclay-filler towards high-performance and advanced-safety lithium-ion battery, Chem. Eng. J. 384 (2020) 123312. doi: 10.1016/j.cej.2019.123312
    [10]
    D. Cai, D.H. Wang, Y.J. Chen, S.Z. Zhang, X.L. Wang, X.H. Xia, J.P. Tu, A highly ionconductive three-dimensional LLZAO-PEO/LiTFSI solid electrolyte for highperformance solid-state batteries, Chem. Eng. J. 394 (2020) 124993. doi: 10.1016/j.cej.2020.124993
    [11]
    S. Jamalpour, M. Ghahramani, S.R. Ghaffarian, M. Javanbakht, The effect of poly(hydroxyl ethyl methacrylate) on the performance of PVDF/P(MMA-co-HEMA) hybrid gel polymer electrolytes for lithium ion battery application, Polymer 195 (2020) 122427. doi: 10.1016/j.polymer.2020.122427
    [12]
    A. Hosseinioun, E. Paillard, In situ crosslinked PMMA gel electrolyte from a low viscosity precursor solution for cost-effective, long lasting and sustainable lithiumion batteries, J. Membr. Sci. 594 (2020) 117456. doi: 10.1016/j.memsci.2019.117456
    [13]
    X. Li, S.L. Chen, Z.L. Xia, L. Li, W.H. Yuan, High performance of boehmite/ polyacrylonitrile composite nanofiber membrane for polymer lithium-ion battery, RSC Adv. 10 (2020) 27492–27501. doi: 10.1039/D0RA02401E
    [14]
    J. Mohanta, O.H. Kwon, J.H. Choi, Y.M. Yun, J.K. Kim, S.M. Jeong, Preparation of highly porous PAN-LATP membranes as separators for lithium ion batteries, Nanomaterials 9 (2019) 1581–1593. doi: 10.3390/nano9111581
    [15]
    B.L. Li, Y. Huang, P. Cheng, B. Liu, Z.L. Yin, Y.H. Lin, X. Li, M.S. Wang, H.J. Cao, Y.P. Wu, Upgrading comprehensive performances of gel polymer electrolyte based on polyacrylonitrile via copolymerizing acrylonitrile with N-vinylpryrrolidone, Electrochim. Acta 320 (2019) 134572. doi: 10.1016/j.electacta.2019.134572
    [16]
    A. Abdul Razzaq, Y.Z. Yao, R. Shah, P.W. Qi, L.X. Miao, M.Z. Chen, X.H. Zhao, Y. Peng, Z. Deng, High-performance lithium sulfur batteries enabled by a synergy between sulfur and carbon nanotubes, Energy Stor. Mater. 16 (2019) 194–202. doi: 10.1016/j.ensm.2018.05.006
    [17]
    X.L. Wang, X.J. Hao, Y. Xia, Y.F. Liang, X.H. Xia, J.P. Tu, A polyacrylonitrile (PAN)- based double-layer multifunctional gel polymer electrolyte for lithium-sulfur batteries, J. Membr. Sci. 582 (2019) 37–47. doi: 10.1016/j.memsci.2019.03.048
    [18]
    J.C. Barbosa, A. Reizabal, D.M. Correia, A. Fidalgo-Marijuan, R. Gonçalves, M.M. Silva, S. Lanceros-Mendez, C.M. Costa, Lithium-ion battery separator membranes based on poly(L-lactic acid) biopolymer, Mater. Today Energy 18 (2020) 100494. doi: 10.1016/j.mtener.2020.100494
    [19]
    M. Zhu, J.L. Lan, C.Y. Tan, G. Sui, X.P. Yang, Degradable cellulose acetate/poly-Llactic acid/halloysite nanotube composite nanofiber membranes with outstanding performance for gel polymer electrolytes, J. Mater. Chem. A 4 (2016) 12136–12143. doi: 10.1039/C6TA05207J
    [20]
    L. Li, M. Yu, F.J. Wang, X.F. Zhang, Z.Q. Shao, Synergistically suppressing lithium dendrite growth by coating poly-L-lactic acid on sustainable gel polymer electrolyte, Energy Technol. 7 (2019) 1800768. doi: 10.1002/ente.201800768
    [21]
    H. Zheng, H.F. Xiang, F.Y. Jiang, Y.C. Liu, Y. Sun, X. Liang, Y.Z. Feng, Y. Yu, Lithium difluorophosphate-based dual-salt low concentration electrolytes for lithium metal batteries, Adv. Energy Mater. 10 (2020) 2001440. doi: 10.1002/aenm.202001440
    [22]
    C.C. Li, B.S. Qin, Y.F. Zhang, A. Varzi, S. Passerini, J.Y. Wang, J.M. Dong, D.L. Zeng, Z.H. Liu, H.S. Cheng, Single-ion conducting electrolyte based on electrospun nanofibers for high-performance lithium batteries, Adv. Energy Mater. 9 (2019) 1803422. doi: 10.1002/aenm.201803422
    [23]
    Q. Yang, N.P. Deng, J.Y. Chen, B.W. Cheng, W.M. Kang, The recent research progress and prospect of gel polymer electrolytes in lithium-sulfur batteries, Chem. Eng. J. 413 (2021) 127427. doi: 10.1016/j.cej.2020.127427
    [24]
    H. Li, Y.F. Du, X.M. Wu, J.Y. Xie, F. Lian, Developing "polymer-in-salt" high voltage electrolyte based on composite lithium salts for solid-state Li metal batteries, Adv. Funct. Mater. 31 (2021) 2103049. doi: 10.1002/adfm.202103049
    [25]
    K.Y. Xie, J.Q. Shen, L.J. Ye, Z.Y. Liu, Y.J. Li, Increased gt conformer contents of PLLA molecular chains Induced by Li-TFSI in melt: another route to promote PLLA crystallization, Macromolecules 52 (2019) 7065–7072. doi: 10.1021/acs.macromol.9b01188
    [26]
    F. Croce, M.L. Focarete, J. Hassoun, I. Meschini, B. Scrosati, A safe, high-rate and high-energy polymer lithium-ion battery based on gelled membranes prepared by electrospinning, Energy Environ. Sci. 4 (2011) 921–927. doi: 10.1039/c0ee00348d
    [27]
    X.H. Zou, Q. Lu, Y.J. Zhong, K.M. Liao, W. Zhou, Z.P. Shao, Flexible, flame-resistant, and dendrite-impermeable gel-polymer electrolyte for Li-O2/air batteries workable under hurdle conditions, Small 14 (2018) 1801798. doi: 10.1002/smll.201801798
    [28]
    J.H. Chen, Z. Yang, G.H. Liu, C. Li, J.S. Yi, M. Fan, H.P. Tan, Z.H. Lu, C.L. Yang, Reinforcing concentrated phosphate electrolytes with in-situ polymerized skeletons for robust quasi-solid lithium metal batteries, Energy Stor. Mater. 25 (2020) 305–312. doi: 10.1016/j.ensm.2019.10.008
    [29]
    F.J. Simon, M. Hanauer, F.H. Richter, J. r. Janek, Interphase formation of PEO20: LiTFSI-Li6PS5Cl composite electrolytes with lithium metal, ACS Appl. Mater. Interfaces 12 (2020) 11713–11723. doi: 10.1021/acsami.9b22968
    [30]
    T.H. Zhou, Y. Zhao, J.W. Choi, A. Coskun, Lithium-salt mediated synthesis of a covalent triazine framework for highly stable lithium metal batteries, Angew. Chem. Int. Ed. 58 (2019) 16795–16799. doi: 10.1002/anie.201908513
    [31]
    X. Guan, Q.P. Wu, X.W. Zhang, X.H. Guo, C.L. Li, J. Xu, In-situ crosslinked single ion gel polymer electrolyte with superior performances for lithium metal batteries, Chem. Eng. J. 382 (2020) 117456.
    [32]
    Y.G. Cho, C. Hwang, D.S. Cheong, Y.S. Kim, H.K. Song, Gel/solid polymer electrolytes characterized by in situ gelation or polymerization for electrochemical energy systems, Adv. Mater. 31 (2019) 1804909. doi: 10.1002/adma.201804909
    [33]
    B. Yin, X.X. Cao, A.Q. Pan, Z.G. Luo, S. Dinesh, J.D. Lin, Y. Tang, S.Q. Liang, G.Z. Cao, Encapsulation of CoSx nanocrystals into N/S co-doped honeycomb-like 3D porous carbon for high-performance lithium storage, Adv. Sci. 5 (2018) 1800829. doi: 10.1002/advs.201800829
    [34]
    Y.H. Su, Y.H. Lin, Y.H. Tseng, Y.L. Lee, J.S. Jan, C.C. Chiu, S.S. Hou, H. Teng, Postinjection gelation of an electrolyte with high storage permittivity and low loss permittivity for electrochemical capacitors, J. Power Sources 481 (2021) 228869. doi: 10.1016/j.jpowsour.2020.228869
    [35]
    A.L. Saroj, R.K. Singh, S. Chandra, Thermal, vibrational, and dielectric studies on [PVP/LiBF4]+ ionic liquid[EMIM][BF4]-based polymer electrolyte films, J. Phys. Chem. Solid. 75 (2014) 849–857. doi: 10.1016/j.jpcs.2014.02.005
    [36]
    K.J. Sun, F.T. Ran, G.H. Zhao, Y.R. Zhu, Y.P. Zheng, M.G. Ma, X.P. Zheng, G.F. Ma, Z.Q. Lei, High energy density of quasi-solid-state supercapacitor based on redoxmediated gel polymer electrolyte, RSC Adv. 6 (2016) 55225–55232. doi: 10.1039/C6RA06797B
    [37]
    V. Murugadoss, J. Lin, H. Liu, X.M. Mai, T. Ding, Z.H. Guo, S. Angaiah, Optimizing graphene content in a NiSe/graphene nanohybrid counter electrode to enhance the photovoltaic performance of dye-sensitized solar cells, Nanoscale 11 (2019) 17579–17589. doi: 10.1039/C9NR07060E
    [38]
    A. Bora, K. Mohan, P. Phukan, S.K. Dolui, A low cost carbon black/polyaniline nanotube composite as efficient electro-catalyst for triiodide reduction in dye sensitized solar cells, Electrochim. Acta 259 (2018) 233–244. doi: 10.1016/j.electacta.2017.10.156
    [39]
    X.T. Li, X.Q. Han, H.R. Zhang, R.X. Hu, X.F. Du, P. Wang, B.T. Zhang, G.L. Cui, Frontier orbital energy-customized ionomer-based polymer electrolyte for highvoltage lithium metal batteries, ACS Appl. Mater. Interfaces 12 (2020) 51374–51386. doi: 10.1021/acsami.0c13520
    [40]
    C. Yan, R. Xu, J.L. Qin, H. Yuan, Y. Xiao, L. Xu, J.Q. Huang, 4.5 V High-voltage rechargeable batteries enabled by the reduction of polarization on the lithium metal anode, Angew. Chem. Int. Ed. 58 (2019) 15235–15238. doi: 10.1002/anie.201908874
    [41]
    B.H. Wen, Z. Deng, P.C. Tsai, Z.W. Lebens-Higgins, L.F.J. Piper, S.P. Ong, Y.M. Chiang, Ultrafast ion transport at a cathode-electrolyte interface and its strong dependence on salt solvation, Nat. Energy 5 (2020) 578–586. doi: 10.1038/s41560-020-0647-0
    [42]
    Antonia Kotronia, Habtom D. Asfaw, Cheuk-Wai Tai, Maria Hahlin, Daniel Brandell, K. Edström, Nature of the cathode-electrolyte interface in highly concentrated electrolytes used in graphite dual-ion batteries, ACS Appl. Mater. Interfaces 13 (2021) 3867–3880. doi: 10.1021/acsami.0c18586
    [43]
    B. Tang, H. Wu, X.F. Du, X.Y. Cheng, X. Liu, Z. Yu, J.F. Yang, M. Zhang, J.J. Zhang, G.L. Cui, Highly safe electrolyte enabled via controllable polysulfide release and efficient conversion for advanced lithium-sulfur batteries, Small 16 (2020) 1905737. doi: 10.1002/smll.201905737
    [44]
    Y.Q. Tang, Y.C. Lu, A comparative electrochemical investigation and an effective promotion towards electrochemical performance of MnCO3 aggregates, Chem. Eng. J. 360 (2019) 553. doi: 10.1016/j.cej.2018.12.043
    [45]
    M. Liu, D. Zhou, Y.B. He, Y.Z. Fu, X.Y. Qin, C. Miao, H.D. Du, B.H. Li, Q.H. Yang, Z.Q. Lin, T.S. Zhao, F.Y. Kang, Novel gel polymer electrolyte for high-performance lithium-sulfur batteries, Nano Energy 22 (2016) 278–289. doi: 10.1016/j.nanoen.2016.02.008
    [46]
    Q. Wang, D.C. Peng, Y.X. Chen, X.H. Xia, H.B. Liu, Y.D. He, Q. Ma, A facile surfactant-assisted self-assembly of LiFePO4/graphene composites with improved rate performance for lithium ion batteries, J. Electroanal. Chem. 818 (2018) 68–75. doi: 10.1016/j.jelechem.2018.04.030
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (116) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return