Volume 2 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
Li Shaoxiong, Liang Jie, Wei Peipei, Liu Qian, Xie Lisi, Luo Yonglan, Sun Xuping. ITO@TiO2 nanoarray: An efficient and robust nitrite reduction reaction electrocatalyst toward NH3 production under ambient conditions[J]. eScience, 2022, 2(4): 382-388. doi: 10.1016/j.esci.2022.04.008
Citation: Li Shaoxiong, Liang Jie, Wei Peipei, Liu Qian, Xie Lisi, Luo Yonglan, Sun Xuping. ITO@TiO2 nanoarray: An efficient and robust nitrite reduction reaction electrocatalyst toward NH3 production under ambient conditions[J]. eScience, 2022, 2(4): 382-388. doi: 10.1016/j.esci.2022.04.008

ITO@TiO2 nanoarray: An efficient and robust nitrite reduction reaction electrocatalyst toward NH3 production under ambient conditions

doi: 10.1016/j.esci.2022.04.008
More Information
  • Corresponding author: E-mail address: luoylcwnu@hotmail.com (Y. Luo); xpsun@uestc.edu.cn (X. Sun)
  • Received Date: 2021-12-29
  • Revised Date: 2022-03-04
  • Accepted Date: 2022-04-30
  • Available Online: 2022-05-06
  • Ambient electrochemical nitrite (NO2-) reduction is viewed as an effective and sustainable approach for simultaneously removing NO2- and producing ammonia (NH3). However, the complex multi-electron transfer steps involved in the NO2- reduction reaction (NO2-RR) lead to sluggish kinetics and low product selectivity toward NH3, underscoring the need for NH3 synthesis electrocatalysts with high activity and durability. Herein, we report amorphous indium–tin oxide sputtered on a TiO2 nanobelt array on a Ti plate (ITO@TiO2/TP) as a 3D NH3-producing catalyst for the NO2-. In 0.5 M LiClO4 with 0.1 M NO2-, it shows greatly boosted NO2-RR activity toward NH3 production, with excellent selectivity, achieving a large NH3 yield of 411.3 μmol h-1 cm-2 and a high Faradaic efficiency of 82.6%. It also shows high durability for continuous electrolysis. A Zn-NO2- battery with ITO@TiO2/TP cathode offers an NH3 yield of 23.1 μmol h-1 cm-2 and a peak power density of 1.22 mW cm-2.
  • ● A battery was assembled by using ITO@TiO2/TP as the cathode.
    ● It shows high catalytic activity and stability for NH3 synthesis.
    ● An ITO@TiO2 nanoarray was used for nitrite electroreduction.
  • loading
  • eScience-2-4-382.docx
  • [1]
    V. Smil, Detonator of the population explosion, Nature 400(1999) 415. doi: 10.1038/22672
    [2]
    A. Klerke, C.H. Christensen, J.K. Nørskov, T. Vegge, Ammonia for hydrogen storage: challenges and opportunities, J. Mater. Chem. 18(2008) 2304–2310. doi: 10.1039/b720020j
    [3]
    R. Schlögl, Catalytic synthesis of ammonia-A "never-ending story", Angew. Chem. Int. Ed. 42(2003) 2004–2008. doi: 10.1002/anie.200301553
    [4]
    C. Du, C.L. Qiu, Z.Y. Fang, P. Li, Y.J. Gao, J.G. Wang, W. Chen, Interface hydrophobic tunnel engineering: a general strategy to boost electrochemical conversion of N2 to NH3, Nano Energy 92(2022) 106784. doi: 10.1016/j.nanoen.2021.106784
    [5]
    B. Talukdar, T.C. Kuo, B.T. Sneed, L.M. Lyu, H.M. Lin, Y.C. Chuang, M.J. Cheng, C.H. Kuo, Enhancement of NH3 production in electrochemical N2 reduction by the Cu-rich inner surfaces of beveled CuAu nanoboxes, ACS Appl. Mater. Interfaces 13(2021) 51839–51848. doi: 10.1021/acsami.1c03454
    [6]
    T. Xu, J. Liang, Y.Y. Wang, S.X. Li, Z.B. Du, T.S. Li, Q. Liu, Y.L. Luo, F. Zhang, X.F. Shi, B. Tang, Q.Q. Kong, A.M. Asiri, C. Yang, D.W. Ma, X.P. Sun, Enhancing electrocatalytic N2-to-NH3 fixation by suppressing hydrogen evolution with alkylthiols modified Fe3P nanoarrays, Nano Res. 15(2022) 1039–1046. doi: 10.1007/s12274-021-3592-8
    [7]
    J.L. Ma, D. Bao, M.M. Shi, J.M. Yan, X.B. Zhang, Reversible nitrogen fixation based on a rechargeable lithium-nitrogen battery for energy storage, Chem 2(2017) 525–532. doi: 10.1016/j.chempr.2017.03.016
    [8]
    H.J. Chen, J. Liang, L. Li, B.Z. Zheng, Z.S. Feng, Z.Q. Xu, Y.L. Luo, Q. Liu, X.F. Shi, Y. Liu, S.Y. Gao, A.M. Asiri, Y. Wang, Q.Q. Kong, X.P. Sun, Ti2O3 nanoparticles with Ti3+ sites toward efficient NH3 electrosynthesis under ambient conditions, ACS Appl. Mater. Interfaces 13(2021) 41715–41722. doi: 10.1021/acsami.1c11872
    [9]
    D.Z. Yao, C. Tang, L.Q. Li, B.Q. Xia, A. Vasileff, H.Y. Jin, Y.Z. Zhang, S.Z. Qiao, In situ fragmented bismuth nanoparticles for electrocatalytic nitrogen reduction, Adv. Energy Mater. 10(2020) 2001289. doi: 10.1002/aenm.202001289
    [10]
    S.X. Li, Y.L. Luo, L.C. Yue, T.S. Li, Y. Wang, Q. Liu, G.W. Cui, F. Zhang, A.M. Asiri, X.P. Sun, An amorphous WC thin film enabled high-efficiency N2 reduction electrocatalysis under ambient conditions, Chem. Commun. 57(2021) 7806–7809. doi: 10.1039/D1CC03139Bry?queryType=xml&restype=unixref&xml=|Tectonophysics||132|4|281|1987|||
    [11]
    V. Kyriakou, I. Garagounis, E. Vasileiou, A. Vourros, M. Stoukides, Progress in the electrochemical synthesis of ammonia, Catal. Today 286(2017) 2–13. doi: 10.1016/j.cattod.2016.06.014
    [12]
    W.H. Guo, K.X. Zhang, Z.B. Liang, R.Q. Zou, Q. Xu, Electrochemical nitrogen fixation and utilization: theories, advanced catalyst materials and system design, Chem. Soc. Rev. 48(2019) 5658–5716. doi: 10.1039/C9CS00159J
    [13]
    S.X. Li, Y.M. Wu, Q. Liu, B.H. Li, T.S. Li, H.T. Zhao, A.A. Alshehri, K.A. Alzahrani, Y.L. Luo, L. Li, X.P. Sun, CuS concave polyhedral superstructures enabled efficient N2 electroreduction to NH3 at ambient conditions, Inorg. Chem. Front. 8(2021) 3105–3110. doi: 10.1039/D1QI00306B
    [14]
    Y. Yao, S.Q. Zhu, H.J. Wang, H. Li, M.H. Shao, A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces, J. Am. Chem. Soc. 140(2018) 1496–1501. doi: 10.1021/jacs.7b12101
    [15]
    Q. Liu, T. Xu, Y.L. Luo, Q.Q. Kong, T.S. Li, S.Y. Lu, A.A. Alshehri, K.A. Alzahrani, X.P. Sun, Recent advances in strategies for highly selective electrocatalytic N2 reduction toward ambient NH3 synthesis, Curr. Opin. Electrochem. 29(2021) 100766. doi: 10.1016/j.coelec.2021.100766
    [16]
    J. Wang, T. Feng, J.X. Chen, V. Ramalingam, Z.X. Li, D.M. Kabtamu, J.H. He, X.S. Fang, Electrocatalytic nitrate/nitrite reduction to ammonia synthesis using metal nanocatalysts and bio-inspired metalloenzymes, Nano Energy 86(2021) 106088. doi: 10.1016/j.nanoen.2021.106088
    [17]
    D. Hao, Y. Liu, S.Y. Gao, H. Arandiyan, X.J. Bai, Q. Kong, W. Wei, P.K. Shen, B.J. Ni, Emerging artificial nitrogen cycle processes through novel electrochemical and photochemical synthesis, Mater. Today 46(2021) 212–233. doi: 10.1016/j.mattod.2021.01.029
    [18]
    Y.T. Wang, C.H. Wang, M.Y. Li, Y.F. Yu, B. Zhang, Nitrate electroreduction: mechanism insight, in situ characterization, performance evaluation, and challenges, Chem. Soc. Rev. 50(2021) 6720–6733. doi: 10.1039/D1CS00116G
    [19]
    X.B. Zhu, X.C. Zeng, X.M. Chen, W.W. Wu, Y.X. Wang, Inhibitory effect of nitrate/nitrite on the microbial reductive dissolution of arsenic and iron from soils into pore water, Ecotoxicology 28(2019) 528–538. doi: 10.1007/s10646-019-02050-0
    [20]
    W. Lijinsky, S.S. Epstein, Nitrosamines as environmental carcinogens, Nature 225(1970) 21–23. doi: 10.1038/225021a0
    [21]
    P.J. Weyer, J.R. Cerhan, B.C. Kross, G.R. Hallberg, J. Kantamneni, G. Breuer, M.P. Jones, W. Zheng, C.F. Lynch, Municipal drinking water nitrate level and cancer risk in older women: the Iowa women's health study, Epidemiology 12(2001) 327–338. doi: 10.1097/00001648-200105000-00013
    [22]
    V.I. Pye, R. Patrick, Ground water contamination in the United States, Science 221(1983) 713–718. doi: 10.1126/science.6879171
    [23]
    A.A. Elmi, C. Madramootoo, M. Egeh, C. Hamel, Water and fertilizer nitrogen management to minimize nitrate pollution from a cropped soil in southwestern Quebec, Canada, Water Air Soil Pollut. 151(2004) 117–134. doi: 10.1023/B:WATE.0000009910.25539.75
    [24]
    J.N. Galloway, A.R. Townsend, J.W. Erisman, M. Bekunda, Z.C. Cai, J.R. Freney, L.A. Martinelli, S.P. Seitzinger, M.A. Sutton, Transformation of the nitrogen cycle: recent trends, questions, and potential solutions, Science 320(2008) 889–892. doi: 10.1126/science.1136674
    [25]
    R. Daiyan, T. Tran-Phu, P. Kumar, K. Iputera, Z.Z. Tong, J. Leverett, M.H.A. Khan, A.A. Esmailpour, A. Jalili, M. Lim, A. Tricoli, R.S. Liu, X.Y. Lu, E. Lovell, R. Amal, Nitrate reduction to ammonium: from CuO defect engineering to waste NOx-to-NH3 economic feasibility, Energy Environ. Sci. 14(2021) 3588–3598. doi: 10.1039/D1EE00594D
    [26]
    P.H. van Langevelde, I. Katsounaros, M.T.M. Koper, Electrocatalytic nitrate reduction for sustainable ammonia production, Joule 5(2021) 290–294. doi: 10.1016/j.joule.2020.12.025
    [27]
    M. Duca, M.T.M. Koper, Powering denitrification: the perspectives of electrocatalytic nitrate reduction, Energy Environ. Sci. 5(2012) 9726–9742. doi: 10.1039/c2ee23062c
    [28]
    Y.C. Zeng, C. Priest, G.F. Wang, G. Wu, Restoring the nitrogen cycle by electrochemical reduction of nitrate: progress and prospects, Small Methods 4(2020) 2000672. doi: 10.1002/smtd.202000672
    [29]
    M. Duca, M.C. Figueiredo, V. Climent, P. Rodriguez, J.M. Feliu, M.T.M. Koper, Selective catalytic reduction at quasi-perfect Pt (100) domains: a universal lowtemperature pathway from nitrite to N2, J. Am. Chem. Soc. 133(2011) 10928–10939. doi: 10.1021/ja203234v
    [30]
    J.Q. Wang, J. Liang, P.Y. Liu, Z. Yan, L.X. Cui, L.C. Yue, L.C. Zhang, Y.C. Ren, T.S. Li, Y.L. Luo, Q. Liu, X.E. Zhao, N. Li, B. Tang, Y. Liu, S.Y. Gao, A.M. Asiri, H.G. Hao, R. Gao, X.P. Sun, Biomass juncus derived carbon decorated with cobalt nanoparticles enables high-efficiency ammonia electrosynthesis by nitrite reduction, J. Mater. Chem. A 10(2022) 2842–2848. doi: 10.1039/D1TA09013E
    [31]
    A. Stirling, I. Pápai, J. Mink, D.R. Salahub, Density functional study of nitrogen oxides, J. Chem. Phys. 100(1994) 2910–2923. doi: 10.1063/1.466433
    [32]
    C.H. Wang, W. Zhou, Z.J. Sun, Y.T. Wang, B. Zhang, Y.F. Yu, Integrated selective nitrite reduction to ammonia with tetrahydroisoquinoline semi-dehydrogenation over a vacancy-rich Ni bifunctional electrode, J. Mater. Chem. A 9(2021) 239–243. doi: 10.1039/D0TA09590G
    [33]
    L. Mattarozzi, S. Cattarin, N. Comisso, P. Guerriero, M. Musiani, L. Vázquez-Gómez, E. Verlato, Electrochemical reduction of nitrate and nitrite in alkaline media at CuNi alloy electrodes, Electrochim. Acta 89(2013) 488–496. doi: 10.1016/j.electacta.2012.11.074
    [34]
    P. Gao, Z.H. Xue, S.N. Zhang, D. Xu, G.Y. Zhai, Q.Y. Li, J.S. Chen, X.H. Li, Schottky barrier-induced surface electric field boosts universal reduction of NOx- in water to ammonia, Angew. Chem. Int. Ed. 60(2021) 20711–20716. doi: 10.1002/anie.202107858
    [35]
    G.L. Wen, J. Liang, L.C. Zhang, T.S. Li, Q. Liu, X.G. An, X.F. Shi, Y. Liu, S.Y. Gao, A.M. Asiri, Y.L. Luo, Q.Q. Kong, X.P. Sun, Ni2P nanosheet array for high-efficiency electrohydrogenation of nitrite to ammonia at ambient conditions, J. Colloid Interface Sci. 606(2022) 1055–1063. doi: 10.1016/j.jcis.2021.08.050
    [36]
    C.A. Clark, C.P. Reddy, H. Xu, K.N. Heck, G.H. Luo, T.P. Senftle, M.S. Wong, Mechanistic insights into pH-controlled nitrite reduction to ammonia and hydrazine over rhodium, ACS Catal. 10(2020) 494–509. doi: 10.1021/acscatal.9b03239
    [37]
    K.H. Wu, J. Cao, T. Pal, H.P. Yang, H. Nishihara, Electrochemically synthesized bis(diimino)metal coordination nanosheets as ultrastable electrocatalysts for hydrogen evolution reaction, ACS Appl. Energy Mater. 4(2021) 5403–5407. doi: 10.1021/acsaem.1c01265
    [38]
    J. Odrobina, J. Scholz, M. Risch, S. Dechert, C. Jooss, F. Meyer, Chasing the achilles' heel in hybrid systems of diruthenium water oxidation catalysts anchored on indium thin oxide: the stability of the anchor, ACS Catal. 7(2017) 6235–6244. doi: 10.1021/acscatal.7b01883
    [39]
    K.P. Sokol, W.E. Robinson, A.R. Oliveira, S. Zacarias, C. Lee, C. Madden, A. Bassegoda, J. Hirst, I.A.C. Pereira, E. Reisner, Reversible and selective interconversion of hydrogen and carbon dioxide into formate by a semiartificial formate hydrogenlyase mimic, J. Am. Chem. Soc. 141(2019) 17498–17502. doi: 10.1021/jacs.9b09575
    [40]
    M. García, J. Honores, D. Quezada, C. Díaz, P. Dreyse, F. Celis, C.P. Kubiak, G. Canzi, F. Guzmán, M.J. Aguirre, M. Isaacs, Nitrite reduction on a multimetallic porphyrin/polyoxotungstate layer-by-layer modified electrodes, Electrochim. Acta 192(2016) 61–71. doi: 10.1016/j.electacta.2016.01.132
    [41]
    S. Zhao, A.E. Wangstrom, Y. Liu, W.A. Rigdon, W.E. Mustain, Stability and activity of Pt/ITO electrocatalyst for oxygen reduction reaction in alkaline media, Electrochim. Acta 157(2015) 175–182. doi: 10.1016/j.electacta.2015.01.030
    [42]
    H. Jhong, U.O. Nwabara, S. Shubert-Zuleta, N.S. Grundish, B. Tandon, L.C. Reimnitz, C.M. Staller, G.K. Ong, C.A.S. Cabezas, J.B. Goodenough, P.J.A. Kenis, D.J. Milliron, Efficient aqueous electroreduction of CO2 to formate at low overpotential on indium tin oxide nanocrystals, Chem. Mater. 33(2021) 7675–7685. doi: 10.1021/acs.chemmater.1c01649
    [43]
    R. Hao, Y.S. Fan, M.D. Howard, J.C. Vaughan, B. Zhang, Imaging nanobubble nucleation and hydrogen spillover during electrocatalytic water splitting, Proc. Natl. Acad. Sci. USA 115(2018) 5878–5883. doi: 10.1073/pnas.1800945115
    [44]
    T. Wang, S.X. Li, B.L. He, X.J. Zhu, Y.L. Luo, Q. Liu, T.S. Li, S.Y. Lu, C. Ye, A.M. Asiri, X.P. Sun, Commercial indium-tin oxide glass: a catalyst electrode for efficient N2 reduction at ambient conditions, Chin. J. Catal. 42(2021) 1024–1029. doi: 10.1016/S1872-2067(20)63704-4
    [45]
    J. Liang, B. Deng, Q. Liu, G.L. Wen, Q. Liu, T.S. Li, Y.L. Luo, A.A. Alshehri, K.A. Alzahrani, D.W. Ma, X.P. Sun, High-efficiency electrochemical nitrite reduction to ammonium using a Cu3P nanowire array under ambient conditions, Green Chem. 23(2021) 5487–5493. doi: 10.1039/D1GC01614H
    [46]
    J.L. Liu, D.D. Zhu, Y. Zheng, A. Vasileff, S.Z. Qiao, Self-supported earth-abundant nanoarrays as efficient and robust electrocatalysts for energy-related reactions, ACS Catal. 8(2018) 6707–6732. doi: 10.1021/acscatal.8b01715
    [47]
    G.L. Wen, J. Liang, Q. Liu, T.S. Li, X.G. An, F. Zhang, A.A. Alshehri, K.A. Alzahrani, Y.L. Luo, Q.Q. Kong, X.P. Sun, Ambient ammonia production via electrocatalytic nitrite reduction catalyzed by a CoP nanoarray, Nano Res. 15(2022) 972–977. doi: 10.1007/s12274-021-3583-9
    [48]
    K. Dong, J. Liang, Y.Y. Wang, Y.C. Ren, Z.Q. Xu, H.P. Zhou, L. Li, Q. Liu, Y.L. Luo, T.S. Li, A.M. Asiri, Q. Li, D.W. Ma, X.P. Sun, Plasma-induced defective TiO2-x with oxygen vacancies: a high-active and robust bifunctional catalyst toward H2O2 electrosynthesis, Chem Catal. 1(2021) 1437–1448. doi: 10.1016/j.checat.2021.10.011
    [49]
    U. Saeed, M.S. Abdel-Wahab, V.K. Sajith, M.S. Ansari, A.M. Ali, H.A. Al-Turaif, Characterization of an amorphous indium tin oxide (ITO) film on a polylactic acid (PLA) substrate, Bull. Mater. Sci. 42(2019) 175. doi: 10.1007/s12034-019-1840-2
    [50]
    K.L. Purvis, G. Lu, J. Schwartz, S.L. Bernasek, Surface characterization and modification of indium tin oxide in ultrahigh vacuum, J. Am. Chem. Soc. 122(2000) 1808–1809. doi: 10.1021/ja992910q
    [51]
    D. Zhu, L.H. Zhang, R.E. Ruther, R.J. Hamers, Photo-illuminated diamond as a solidstate source of solvated electrons in water for nitrogen reduction, Nat. Mater. 12(2013) 836–841. doi: 10.1038/nmat3696
    [52]
    G.W. Watt, J.D. Chrisp, Spectrophotometric method for determination of hydrazine, Anal. Chem. 24(1952) 2006–2008. doi: 10.1021/ac60072a044
    [53]
    W.B. Qiu, X.Y. Xie, J.D. Qiu, W.H. Fang, R.P. Liang, X. Ren, X.Q. Ji, G.W. Cui, A.M. Asiri, G.L. Cui, B. Tang, X.P. Sun, High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst, Nat. Commun. 9(2018) 3485. doi: 10.1038/s41467-018-05758-5
    [54]
    P. Jiang, Q. Liu, Y.H. Liang, J.Q. Tian, A.M. Asiri, X.P. Sun, A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase, Angew. Chem. Int. Ed. 53(2014) 12855–12859. doi: 10.1002/anie.201406848
    [55]
    Q. Liu, L.S. Xie, J. Liang, Y.C. Ren, Y.Y. Wang, L.C. Zhang, L.C. Yue, T.S. Li, Y.S. Luo, N. Li, B. Tang, Y. Liu, S. Gao, A.A. Alshehri, I. Shakir, P.O. Agboola, Q.Q. Kong, Q.Y. Wang, D.W. Ma, X.P. Sun, Ambient ammonia synthesis via electrochemical reduction of nitrate enabled by NiCo2O4 nanowire array, Small 18(2022) 2106961. doi: 10.1002/smll.202106961
    [56]
    Z.Y. Wu, M. Karamad, X. Yong, Q.Z. Huang, D.A. Cullen, P. Zhu, C. Xia, Q.F. Xiao, M. Shakouri, F.Y. Chen, J.Y. Kim, Y. Xia, K. Heck, Y.F. Hu, M.S. Wong, Q.L. Li, I. Gates, S. Siahrostami, H.T. Wang, Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst, Nat. Commun. 12(2021) 2870. doi: 10.1038/s41467-021-23115-x
    [57]
    X. Zhang, Y.T. Wang, C.B. Liu, Y.F. Yu, S.Y. Lu, B. Zhang, Recent advances in nonnoble metal electrocatalysts for nitrate reduction, Chem. Eng. J. 403(2021) 126269. doi: 10.1016/j.cej.2020.126269
    [58]
    L.C. Zhang, J. Liang, Y.Y. Wang, T. Mou, Y.T. Lin, L.C. Yue, T.S. Li, Q. Liu, Y.L. Luo, N. Li, B. Tang, Y. Liu, S.Y. Gao, A.A. Alshehri, X.D. Guo, D.W. Ma, X.P. Sun, Highperformance electrochemical NO reduction into NH3 by MoS2 nanosheet, Angew. Chem. Int. Ed. 60(2021) 25263–25268. doi: 10.1002/anie.202110879
    [59]
    Z.R. Li, Z.Y. Ma, J. Liang, Y.C. Ren, T.S. Li, S.R. Xu, Q. Liu, N. Li, B. Tang, Y. Liu, S.Y. Gao, A.A. Alshehri, D.W. Ma, Y.L. Luo, Q. Wu, X.P. Sun, MnO2 nanoarray with oxygen vacancies: an efficient catalyst for NO electroreduction to NH3 at ambient conditions, Mater. Today Phys. 22(2022) 100586. doi: 10.1016/j.mtphys.2021.100586
    [60]
    J. Liang, P.Y. Liu, Q.Y. Li, T.S. Li, L.C. Yue, Y.S. Luo, Q. Liu, N. Li, B. Tang, A.A. Alshehri, I. Shakir, P.O. Agboola, C.H. Sun, X.P. Sun, Amorphous boron carbide on titanium dioxide nanobelt arrays for high-efficiency electrocatalytic NO reduction to NH3, Angew. Chem. Int. Ed. 61(2022) e20202202087.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (88) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return