Citation: | Niu Yanli, Gong Shuaiqi, Liu Xuan, Xu Chen, Xu Mingze, Sun Shi-Gang, Chen Zuofeng. Engineering iron-group bimetallic nanotubes as efficient bifunctional oxygen electrocatalysts for flexible Zn–air batteries[J]. eScience, 2022, 2(5): 546-556. doi: 10.1016/j.esci.2022.05.001 |
![]() |
![]() |
[1] |
B. -Q. Li, S. -Y. Zhang, B. Wang, Z. -J. Xia, C. Tang, Q. Zhang, A porphyrin covalent organic framework cathode for flexible Zn–air batteries, Energy Environ. Sci. 11 (2018) 1723–1729. doi: 10.1039/C8EE00977E
|
[2] |
Z. Liang, N. Kong, C. Yang, W. Zhang, H. Zheng, H. Lin, R. Cao, Highly curved nanostructure–coated Co, N–doped carbon materials for oxygen electrocatalysis, Angew. Chem. Int. Ed. 60 (2021) 12759–12764. doi: 10.1002/anie.202101562
|
[3] |
Y. Niu, X. Teng, S. Gong, X. Liu, M. Xu, Z. Chen, Boosting oxygen electrocatalysis for flexible zinc–air batteries by interfacing iron group metals and manganese oxide in porous carbon nanowires, Energy Stor. Mater. 43 (2021) 42–52. doi: 10.1016/j.ensm.2021.08.037
|
[4] |
S. Zhang, S. Li, Y. Lu, Designing safer lithium–based batteries with nonflammable electrolytes: a review, eScience 1 (2021) 163–177. doi: 10.1016/j.esci.2021.12.003
|
[5] |
Y. -P. Deng, R. Liang, G. Jiang, Y. Jiang, A. Yu, Z. Chen, The current state of aqueous Zn–based rechargeable batteries, ACS Energy Lett. 5 (2020) 1665–1675. doi: 10.1021/acsenergylett.0c00502
|
[6] |
F. Pan, Z. Li, Z. Yang, Q. Ma, M. Wang, H. Wang, M. Olszta, G. Wang, Z. Feng, Y. Du, Y. Yang, Porous FeCo glassy alloy as bifunctional support for high–performance Zn–air battery, Adv. Energy Mater. 11 (2020) 2002204.
|
[7] |
Y. Rao, S. Chen, Q. Yue, Y. Kang, Optimizing the spin states of mesoporous Co3O4 nanorods through vanadium doping for long–lasting and flexible rechargeable Zn–air batteries, ACS Catal. 11 (2021) 8097–8103. doi: 10.1021/acscatal.1c01585
|
[8] |
Q. Lu, J. Yu, X. Zou, K. Liao, P. Tan, W. Zhou, M. Ni, Z. Shao, Self–catalyzed growth of Co, N–codoped CNTs on carbon–encased CoSx surface: a noble–metal–free bifunctional oxygen electrocatalyst for flexible solid Zn–air batteries, Adv. Funct. Mater. 29 (2019) 1904481. doi: 10.1002/adfm.201904481
|
[9] |
Z. Zhang, Y.P. Deng, Z. Xing, D. Luo, S. Sy, Z.P. Cano, G. Liu, Y. Jiang, Z. Chen, Ship in a bottle" design of highly efficient bifunctional electrocatalysts for long–lasting rechargeable Zn–air batteries, ACS Nano 13 (2019) 7062–7072. doi: 10.1021/acsnano.9b02315
|
[10] |
M. Xu, Y. Niu, X. Teng, S. Gong, L. Ji, Z. Chen, High–capacity Bi2O3 anode for 2.4 V neutral aqueous sodium–ion battery–supercapacitor hybrid device through phase conversion mechanism, J. Energy Chem. 65 (2022) 605–615. doi: 10.1016/j.jechem.2021.06.028
|
[11] |
Y.P. Deng, Y. Jiang, R. Liang, S.J. Zhang, D. Luo, Y. Hu, X. Wang, J.T. Li, A. Yu, Z. Chen, Dynamic electrocatalyst with current–driven oxyhydroxide shell for rechargeable zinc–air battery, Nat. Commun. 11 (2020) 1952. doi: 10.1038/s41467-020-15853-1
|
[12] |
D. Wang, Y. -P. Deng, Y. Zhang, Y. Zhao, G. Zhou, L. Shui, Y. Hu, M. Shakouri, X. Wang, Z. Chen, Defect engineering on three–dimensionally ordered macroporous phosphorus doped Co3O4–δ microspheres as an efficient bifunctional electrocatalyst for Zn–air batteries, Energy Stor. Mater. 41 (2021) 427–435. doi: 10.1016/j.ensm.2021.06.017
|
[13] |
H. Su, M.A. Soldatov, V. Roldugin, Q. Liu, Platinum single–atom catalyst with self–adjustable valence state for large–current–density acidic water oxidation, eScience 2 (2022) 102–109. doi: 10.1016/j.esci.2021.12.007
|
[14] |
H. Luo, W.J. Jiang, S. Niu, X. Zhang, Y. Zhang, L.P. Yuan, C. He, J.S. Hu, Self–catalyzed growth of Co–N–C nanobrushes for efficient rechargeable Zn–air batteries, Small 16 (2020) 2001171. doi: 10.1002/smll.202001171
|
[15] |
L. An, Y. Li, M. Luo, J. Yin, Y.Q. Zhao, C. Xu, F. Cheng, Y. Yang, P. Xi, S. Guo, Atomic–level coupled interfaces and lattice distortion on CuS/NiS2 nanocrystals boost oxygen catalysis for flexible Zn–air batteries, Adv. Funct. Mater. 27 (2017) 1703779. doi: 10.1002/adfm.201703779
|
[16] |
J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang, X. Feng, Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall–water–splitting activity, Angew. Chem. Int. Ed. 128 (2016) 6814–6819. doi: 10.1002/ange.201602237
|
[17] |
J. Chen, C. Fan, X. Hu, C. Wang, Z. Huang, G. Fu, J.M. Lee, Y. Tang, Hierarchically porous Co/CoxMy (M=P, N) as an efficient mott–Schottky electrocatalyst for oxygen evolution in rechargeable Zn–air batteries, Small 15 (2019) 1901518. doi: 10.1002/smll.201901518
|
[18] |
Y. Niu, X. Teng, S. Gong, Z. Chen, A bimetallic alloy anchored on biomass–derived porous N–doped carbon fibers as a self–supporting bifunctional oxygen electrocatalyst for flexible Zn–air batteries, J. Mater. Chem. A 8 (2020) 13725–13734. doi: 10.1039/D0TA03288C
|
[19] |
Y. He, X. Yang, Y. Li, L. Liu, S. Guo, C. Shu, F. Liu, Y. Liu, Q. Tan, G. Wu, Atomically dispersed Fe–Co dual metal sites as bifunctional oxygen electrocatalysts for rechargeable and flexible Zn–air batteries, ACS Catal. 12 (2022) 1216–1227. doi: 10.1021/acscatal.1c04550
|
[20] |
Y. Niu, X. Teng, S. Gong, M. Xu, S.G. Sun, Z. Chen, Engineering two–phase bifunctional oxygen electrocatalysts with tunable and synergetic components for flexible Zn–air batteries, Nano-Micro Lett. 13 (2021) 126–142. doi: 10.1007/s40820-021-00650-2
|
[21] |
X. Sun, P. Wei, S. Gu, J. Zhang, Z. Jiang, J. Wan, Z. Chen, L. Huang, Y. Xu, C. Fang, Q. Li, J. Han, Y. Huang, Atomic–Level Fe–N–C coupled with Fe3C–Fe nanocomposites in carbon matrixes as high–efficiency bifunctional oxygen catalysts, Small 16 (2020) 1906057–1906067. doi: 10.1002/smll.201906057
|
[22] |
M. Kuang, P. Han, Q. Wang, J. Li, G. Zheng, CuCo hybrid oxides as bifunctional electrocatalyst for efficient water splitting, Adv. Funct. Mater. 26 (2016) 8555–8561. doi: 10.1002/adfm.201604804
|
[23] |
D. Liu, H. Ai, J. Li, M. Fang, M. Chen, D. Liu, X. Du, P. Zhou, F. Li, K.H. Lo, Y. Tang, S. Chen, L. Wang, G. Xing, H. Pan, Surface reconstruction and phase transition on vanadium–cobalt–iron trimetal nitrides to form active oxyhydroxide for enhanced electrocatalytic water oxidation, Adv. Energy Mater. 10 (2020) 2002464. doi: 10.1002/aenm.202002464
|
[24] |
B. Qiu, L. Cai, Y. Wang, Z. Lin, Y. Zuo, M. Wang, Y. Chai, Fabrication of nickel–cobalt bimetal phosphide nanocages for enhanced oxygen evolution catalysis, Adv. Funct. Mater. 28 (2018) 1706008. doi: 10.1002/adfm.201706008
|
[25] |
A. Saad, H. Shen, Z. Cheng, R. Arbi, B. Guo, L.S. Hui, K. Liang, S. Liu, J.P. Attfield, A. Turak, J. Wang, M. Yang, Mesoporous ternary nitrides of earth–abundant metals as oxygen evolution electrocatalyst, Nano-Micro Lett. 12 (2020) 79–92. doi: 10.1007/s40820-020-0412-8
|
[26] |
M. Fan, Y. Zheng, A. Li, K. Li, H. Liu, Z. -A. Qiao, Janus CoN/Co cocatalyst in porous N–doped carbon: toward enhanced catalytic activity for hydrogen evolution, Catal. Sci. Technol. 8 (2018) 3695–3703. doi: 10.1039/C8CY00571K
|
[27] |
C. Guan, A. Sumboja, W. Zang, Y. Qian, H. Zhang, X. Liu, Z. Liu, D. Zhao, S.J. Pennycook, J. Wang, Decorating Co/CoNx nanoparticles in nitrogen–doped carbon nanoarrays for flexible and rechargeable zinc–air batteries, Energy Stor. Mater. 16 (2019) 243–250. doi: 10.1016/j.ensm.2018.06.001
|
[28] |
J. Diao, Y. Qiu, S. Liu, W. Wang, K. Chen, H. Li, W. Yuan, Y. Qu, X. Guo, Interfacial engineering of W2N/WC heterostructures derived from solid–state synthesis: a highly efficient trifunctional electrocatalyst for ORR, OER, and HER, Adv. Mater. 32 (2020) 1905679. doi: 10.1002/adma.201905679
|
[29] |
X.F. Lu, Y. Chen, S. Wang, S. Gao, X.W.D. Lou, Interfacing manganese oxide and cobalt in porous graphitic carbon polyhedrons boosts oxygen electrocatalysis for Zn–air batteries, Adv. Mater. 31 (2019) 1902339. doi: 10.1002/adma.201902339
|
[30] |
G.A. Man, A. Mx, Q.A. Yuan, A. Ch, A. Py, B. Tti, A. Xy, Electronic/mass transport increased hollow porous Cu3P/MoP nanospheres with strong electronic interaction for promoting oxygen reduction in Zn–air batteries, Appl. Catal. B 297 (2021) 120415–120423. doi: 10.1016/j.apcatb.2021.120415
|
[31] |
X. Zheng, Y. Cao, X. Zheng, M. Cai, J. Zhang, J. Wang, W. Hu, Engineering interface and oxygen vacancies of NixCo1–xSe2 to boost oxygen catalysis for flexible Zn–air batteries, ACS Appl. Mater. Interfaces 11 (2019) 27964–27972. doi: 10.1021/acsami.9b08424
|
[32] |
P. Zhang, X.F. Lu, J. Nai, S.Q. Zang, X.W.D. Lou, Construction of hierarchical Co–Fe oxyphosphide microtubes for electrocatalytic overall water splitting, Adv. Sci. 6 (2019) 1900576. doi: 10.1002/advs.201900576
|
[33] |
P. Zhang, S. Wang, B.Y. Guan, X.W. Lou, Fabrication of CdS hierarchical multi–cavity hollow particles for efficient visible light CO2 reduction, Energy Environ. Sci. 12 (2019) 164–168. doi: 10.1039/C8EE02538J
|
[34] |
S. Chen, L. Zhao, J. Ma, Y. Wang, L. Dai, J. Zhang, Edge-doping modulation of N, P–codoped porous carbon spheres for high–performance rechargeable Zn–air batteries, Nano Energy 60 (2019) 536–544. doi: 10.1016/j.nanoen.2019.03.084
|
[35] |
L. Yu, J.F. Yang, B.Y. Guan, Y. Lu, X.W.D. Lou, Hierarchical hollow nanoprisms based on ultrathin Ni–Fe layered double hydroxide nanosheets with enhanced electrocatalytic activity towards oxygen evolution, Angew. Chem. Int. Ed. 57 (2018) 172–176. doi: 10.1002/anie.201710877
|
[36] |
D. Wang, H. Xu, P. Yang, L. Xiao, L. Du, X. Lu, R. Li, J. Zhang, M. An, A dualtemplate strategy to engineer hierarchically porous Fe–N–C electrocatalysts for the high–performance cathodes of Zn–air batteries, J. Mater. Chem. A 9 (2021) 9761–9770. doi: 10.1039/D1TA00585E
|
[37] |
F. Wang, T. Hou, X. Zhao, W. Yao, R. Fang, K. Shen, Y. Li, Ordered macroporous carbonous frameworks implanted with CdS quantum dots for efficient photocatalytic CO2 reduction, Adv. Mater. 33 (2021) 2102690. doi: 10.1002/adma.202102690
|
[38] |
X. Li, B.Y. Guan, S. Gao, X.W. Lou, A general dual–templating approach to biomass–derived hierarchically porous heteroatom–doped carbon materials for enhanced electrocatalytic oxygen reduction, Energy Environ. Sci. 12 (2019) 648–655. doi: 10.1039/C8EE02779J
|
[39] |
X. Gao, X. Liu, W. Zang, H. Dong, Y. Pang, Z. Kou, P. Wang, Z. Pan, S. Wei, S. Mu, J. Wang, Synergizing in–grown Ni3N/Ni heterostructured core and ultrathin Ni3N surface shell enables self–adaptive surface reconfiguration and efficient oxygen evolution reaction, Nano Energy 78 (2020) 105355–105365. doi: 10.1016/j.nanoen.2020.105355
|
[40] |
J. Huang, Y. Li, Y. Zhang, G. Rao, C. Wu, Y. Hu, X. Wang, R. Lu, Y. Li, J. Xiong, Identification of key reversible intermediates in self–reconstructed nickel–based hybrid electrocatalysts for oxygen evolution, Angew. Chem. Int. Ed. 58 (2019) 17458–17464. doi: 10.1002/anie.201910716
|
[41] |
M. Kim, B. Lee, H. Ju, S.W. Lee, J. Kim, Reducing the barrier energy of self–reconstruction for anchored cobalt nanoparticles as highly active oxygen evolution electrocatalyst, Adv. Mater. 31 (2019) 1901977.
|
[42] |
Q. Zhang, X.L. Li, B.X. Tao, X.H. Wang, Y.H. Deng, X.Y. Gu, L.J. Li, W. Xiao, N.B. Li, H.Q. Luo, CoNi based alloy/oxides@ N–doped carbon core–shell dendrites as complementary water splitting electrocatalysts with significantly enhanced catalytic efficiency, Appl. Catal. B 254 (2019) 634–646. doi: 10.1016/j.apcatb.2019.05.035
|
[43] |
Y. Zhang, B. Ouyang, J. Xu, S. Chen, R.S. Rawat, H.J. Fan, 3D porous hierarchical nickel–molybdenum nitrides synthesized by RF plasma as highly active and stable hydrogen–evolution–reaction electrocatalysts, Adv. Energy Mater. 6 (2016) 1600221. doi: 10.1002/aenm.201600221
|
[44] |
X. Han, X. Ling, Y. Wang, T. Ma, C. Zhong, W. Hu, Y. Deng, Generation of nanoparticle, atomic–cluster, and single–atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc–air batteries, Angew. Chem. Int. Ed. 58 (2019) 5359–5364. doi: 10.1002/anie.201901109
|
[45] |
S. Peng, X. Han, L. Li, S. Chou, D. Ji, H. Huang, Y. Du, J. Liu, S. Ramakrishna, Electronic and defective engineering of electrospun CaMnO3 nanotubes for enhanced oxygen electrocatalysis in rechargeable zinc–air batteries, Adv. Energy Mater. 8 (2018) 1800612. doi: 10.1002/aenm.201800612
|