Volume 2 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Niu Yanli, Gong Shuaiqi, Liu Xuan, Xu Chen, Xu Mingze, Sun Shi-Gang, Chen Zuofeng. Engineering iron-group bimetallic nanotubes as efficient bifunctional oxygen electrocatalysts for flexible Zn–air batteries[J]. eScience, 2022, 2(5): 546-556. doi: 10.1016/j.esci.2022.05.001
Citation: Niu Yanli, Gong Shuaiqi, Liu Xuan, Xu Chen, Xu Mingze, Sun Shi-Gang, Chen Zuofeng. Engineering iron-group bimetallic nanotubes as efficient bifunctional oxygen electrocatalysts for flexible Zn–air batteries[J]. eScience, 2022, 2(5): 546-556. doi: 10.1016/j.esci.2022.05.001

Engineering iron-group bimetallic nanotubes as efficient bifunctional oxygen electrocatalysts for flexible Zn–air batteries

doi: 10.1016/j.esci.2022.05.001
More Information
  • Corresponding author: E-mail address: zfchen@tongji.edu.cn (Z. Chen)
  • Received Date: 2022-01-22
  • Revised Date: 2022-03-22
  • Accepted Date: 2022-05-06
  • Available Online: 2022-05-11
  • Air cathode performance is essential for rechargeable zinc–air batteries (ZABs). In this study, we develop a self-templated synthesis technique for fabricating bimetallic alloys (FeNi3), bimetallic nitrides (FeNi3N) and heterostructured FeNi3/FeNi3N hollow nanotubes. Owing to its structural and compositional advantages, FeNi3/FeNi3N exhibits remarkable bifunctional oxygen electrocatalytic performance with an extremely small potential gap of 0.68 ​V between the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Theoretical calculations reveal reduced Gibbs free energy for the rate-limiting O–O bond formation during OER due to the self-adaptive surface reconfiguration, which induces a synergistic effect between Fe(Ni)OOH developed in situ on the surface and the inner FeNi3/FeNi3N. ZAB fabricated using the FeNi3/FeNi3N catalyst shows high power density, small charge/discharge voltage gap and excellent cycling stability. In addition to its excellent battery performance, the corresponding quasi-solid-state ZAB shows robust flexibility and integrability. The synthesis method is extended to prepare a CoFe/CoFeN oxygen electrocatalyst, demonstrating its applicability to other iron-group elements.
  • ● DFT results reveal critical roles of heterointerface engineering and surface reconfiguration of FeNi3/FeNi3N on catalysis.
    ● FeNi3/FeNi3N is used as an excellent air cathode in both liquid and flexible quasi-solid-state rechargeable Zn–air batteries.
    ● FeNi3/FeNi3N exhibits high bifunctional activity with an extremely small potential gap of 0.68 ​V between OER and ORR.
    ● Heterostructured FeNi3/FeNi3N and CoFe/CoFeN nanotubes are fabricated using a convenient self-templated synthetic strategy.
    Declaration of competing interest
    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Supplementary data to this article can be found online at https://doi.org/10.1016/j.esci.2022.05.001.
    Appendix A. Supplementary data
  • loading
  • eScience-2-5-546.docx
  • [1]
    B. -Q. Li, S. -Y. Zhang, B. Wang, Z. -J. Xia, C. Tang, Q. Zhang, A porphyrin covalent organic framework cathode for flexible Zn–air batteries, Energy Environ. Sci. 11 (2018) 1723–1729. doi: 10.1039/C8EE00977E
    [2]
    Z. Liang, N. Kong, C. Yang, W. Zhang, H. Zheng, H. Lin, R. Cao, Highly curved nanostructure–coated Co, N–doped carbon materials for oxygen electrocatalysis, Angew. Chem. Int. Ed. 60 (2021) 12759–12764. doi: 10.1002/anie.202101562
    [3]
    Y. Niu, X. Teng, S. Gong, X. Liu, M. Xu, Z. Chen, Boosting oxygen electrocatalysis for flexible zinc–air batteries by interfacing iron group metals and manganese oxide in porous carbon nanowires, Energy Stor. Mater. 43 (2021) 42–52. doi: 10.1016/j.ensm.2021.08.037
    [4]
    S. Zhang, S. Li, Y. Lu, Designing safer lithium–based batteries with nonflammable electrolytes: a review, eScience 1 (2021) 163–177. doi: 10.1016/j.esci.2021.12.003
    [5]
    Y. -P. Deng, R. Liang, G. Jiang, Y. Jiang, A. Yu, Z. Chen, The current state of aqueous Zn–based rechargeable batteries, ACS Energy Lett. 5 (2020) 1665–1675. doi: 10.1021/acsenergylett.0c00502
    [6]
    F. Pan, Z. Li, Z. Yang, Q. Ma, M. Wang, H. Wang, M. Olszta, G. Wang, Z. Feng, Y. Du, Y. Yang, Porous FeCo glassy alloy as bifunctional support for high–performance Zn–air battery, Adv. Energy Mater. 11 (2020) 2002204.
    [7]
    Y. Rao, S. Chen, Q. Yue, Y. Kang, Optimizing the spin states of mesoporous Co3O4 nanorods through vanadium doping for long–lasting and flexible rechargeable Zn–air batteries, ACS Catal. 11 (2021) 8097–8103. doi: 10.1021/acscatal.1c01585
    [8]
    Q. Lu, J. Yu, X. Zou, K. Liao, P. Tan, W. Zhou, M. Ni, Z. Shao, Self–catalyzed growth of Co, N–codoped CNTs on carbon–encased CoSx surface: a noble–metal–free bifunctional oxygen electrocatalyst for flexible solid Zn–air batteries, Adv. Funct. Mater. 29 (2019) 1904481. doi: 10.1002/adfm.201904481
    [9]
    Z. Zhang, Y.P. Deng, Z. Xing, D. Luo, S. Sy, Z.P. Cano, G. Liu, Y. Jiang, Z. Chen, Ship in a bottle" design of highly efficient bifunctional electrocatalysts for long–lasting rechargeable Zn–air batteries, ACS Nano 13 (2019) 7062–7072. doi: 10.1021/acsnano.9b02315
    [10]
    M. Xu, Y. Niu, X. Teng, S. Gong, L. Ji, Z. Chen, High–capacity Bi2O3 anode for 2.4 V neutral aqueous sodium–ion battery–supercapacitor hybrid device through phase conversion mechanism, J. Energy Chem. 65 (2022) 605–615. doi: 10.1016/j.jechem.2021.06.028
    [11]
    Y.P. Deng, Y. Jiang, R. Liang, S.J. Zhang, D. Luo, Y. Hu, X. Wang, J.T. Li, A. Yu, Z. Chen, Dynamic electrocatalyst with current–driven oxyhydroxide shell for rechargeable zinc–air battery, Nat. Commun. 11 (2020) 1952. doi: 10.1038/s41467-020-15853-1
    [12]
    D. Wang, Y. -P. Deng, Y. Zhang, Y. Zhao, G. Zhou, L. Shui, Y. Hu, M. Shakouri, X. Wang, Z. Chen, Defect engineering on three–dimensionally ordered macroporous phosphorus doped Co3O4–δ microspheres as an efficient bifunctional electrocatalyst for Zn–air batteries, Energy Stor. Mater. 41 (2021) 427–435. doi: 10.1016/j.ensm.2021.06.017
    [13]
    H. Su, M.A. Soldatov, V. Roldugin, Q. Liu, Platinum single–atom catalyst with self–adjustable valence state for large–current–density acidic water oxidation, eScience 2 (2022) 102–109. doi: 10.1016/j.esci.2021.12.007
    [14]
    H. Luo, W.J. Jiang, S. Niu, X. Zhang, Y. Zhang, L.P. Yuan, C. He, J.S. Hu, Self–catalyzed growth of Co–N–C nanobrushes for efficient rechargeable Zn–air batteries, Small 16 (2020) 2001171. doi: 10.1002/smll.202001171
    [15]
    L. An, Y. Li, M. Luo, J. Yin, Y.Q. Zhao, C. Xu, F. Cheng, Y. Yang, P. Xi, S. Guo, Atomic–level coupled interfaces and lattice distortion on CuS/NiS2 nanocrystals boost oxygen catalysis for flexible Zn–air batteries, Adv. Funct. Mater. 27 (2017) 1703779. doi: 10.1002/adfm.201703779
    [16]
    J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. Dong, S. Liu, X. Zhuang, X. Feng, Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall–water–splitting activity, Angew. Chem. Int. Ed. 128 (2016) 6814–6819. doi: 10.1002/ange.201602237
    [17]
    J. Chen, C. Fan, X. Hu, C. Wang, Z. Huang, G. Fu, J.M. Lee, Y. Tang, Hierarchically porous Co/CoxMy (M=P, N) as an efficient mott–Schottky electrocatalyst for oxygen evolution in rechargeable Zn–air batteries, Small 15 (2019) 1901518. doi: 10.1002/smll.201901518
    [18]
    Y. Niu, X. Teng, S. Gong, Z. Chen, A bimetallic alloy anchored on biomass–derived porous N–doped carbon fibers as a self–supporting bifunctional oxygen electrocatalyst for flexible Zn–air batteries, J. Mater. Chem. A 8 (2020) 13725–13734. doi: 10.1039/D0TA03288C
    [19]
    Y. He, X. Yang, Y. Li, L. Liu, S. Guo, C. Shu, F. Liu, Y. Liu, Q. Tan, G. Wu, Atomically dispersed Fe–Co dual metal sites as bifunctional oxygen electrocatalysts for rechargeable and flexible Zn–air batteries, ACS Catal. 12 (2022) 1216–1227. doi: 10.1021/acscatal.1c04550
    [20]
    Y. Niu, X. Teng, S. Gong, M. Xu, S.G. Sun, Z. Chen, Engineering two–phase bifunctional oxygen electrocatalysts with tunable and synergetic components for flexible Zn–air batteries, Nano-Micro Lett. 13 (2021) 126–142. doi: 10.1007/s40820-021-00650-2
    [21]
    X. Sun, P. Wei, S. Gu, J. Zhang, Z. Jiang, J. Wan, Z. Chen, L. Huang, Y. Xu, C. Fang, Q. Li, J. Han, Y. Huang, Atomic–Level Fe–N–C coupled with Fe3C–Fe nanocomposites in carbon matrixes as high–efficiency bifunctional oxygen catalysts, Small 16 (2020) 1906057–1906067. doi: 10.1002/smll.201906057
    [22]
    M. Kuang, P. Han, Q. Wang, J. Li, G. Zheng, CuCo hybrid oxides as bifunctional electrocatalyst for efficient water splitting, Adv. Funct. Mater. 26 (2016) 8555–8561. doi: 10.1002/adfm.201604804
    [23]
    D. Liu, H. Ai, J. Li, M. Fang, M. Chen, D. Liu, X. Du, P. Zhou, F. Li, K.H. Lo, Y. Tang, S. Chen, L. Wang, G. Xing, H. Pan, Surface reconstruction and phase transition on vanadium–cobalt–iron trimetal nitrides to form active oxyhydroxide for enhanced electrocatalytic water oxidation, Adv. Energy Mater. 10 (2020) 2002464. doi: 10.1002/aenm.202002464
    [24]
    B. Qiu, L. Cai, Y. Wang, Z. Lin, Y. Zuo, M. Wang, Y. Chai, Fabrication of nickel–cobalt bimetal phosphide nanocages for enhanced oxygen evolution catalysis, Adv. Funct. Mater. 28 (2018) 1706008. doi: 10.1002/adfm.201706008
    [25]
    A. Saad, H. Shen, Z. Cheng, R. Arbi, B. Guo, L.S. Hui, K. Liang, S. Liu, J.P. Attfield, A. Turak, J. Wang, M. Yang, Mesoporous ternary nitrides of earth–abundant metals as oxygen evolution electrocatalyst, Nano-Micro Lett. 12 (2020) 79–92. doi: 10.1007/s40820-020-0412-8
    [26]
    M. Fan, Y. Zheng, A. Li, K. Li, H. Liu, Z. -A. Qiao, Janus CoN/Co cocatalyst in porous N–doped carbon: toward enhanced catalytic activity for hydrogen evolution, Catal. Sci. Technol. 8 (2018) 3695–3703. doi: 10.1039/C8CY00571K
    [27]
    C. Guan, A. Sumboja, W. Zang, Y. Qian, H. Zhang, X. Liu, Z. Liu, D. Zhao, S.J. Pennycook, J. Wang, Decorating Co/CoNx nanoparticles in nitrogen–doped carbon nanoarrays for flexible and rechargeable zinc–air batteries, Energy Stor. Mater. 16 (2019) 243–250. doi: 10.1016/j.ensm.2018.06.001
    [28]
    J. Diao, Y. Qiu, S. Liu, W. Wang, K. Chen, H. Li, W. Yuan, Y. Qu, X. Guo, Interfacial engineering of W2N/WC heterostructures derived from solid–state synthesis: a highly efficient trifunctional electrocatalyst for ORR, OER, and HER, Adv. Mater. 32 (2020) 1905679. doi: 10.1002/adma.201905679
    [29]
    X.F. Lu, Y. Chen, S. Wang, S. Gao, X.W.D. Lou, Interfacing manganese oxide and cobalt in porous graphitic carbon polyhedrons boosts oxygen electrocatalysis for Zn–air batteries, Adv. Mater. 31 (2019) 1902339. doi: 10.1002/adma.201902339
    [30]
    G.A. Man, A. Mx, Q.A. Yuan, A. Ch, A. Py, B. Tti, A. Xy, Electronic/mass transport increased hollow porous Cu3P/MoP nanospheres with strong electronic interaction for promoting oxygen reduction in Zn–air batteries, Appl. Catal. B 297 (2021) 120415–120423. doi: 10.1016/j.apcatb.2021.120415
    [31]
    X. Zheng, Y. Cao, X. Zheng, M. Cai, J. Zhang, J. Wang, W. Hu, Engineering interface and oxygen vacancies of NixCo1xSe2 to boost oxygen catalysis for flexible Zn–air batteries, ACS Appl. Mater. Interfaces 11 (2019) 27964–27972. doi: 10.1021/acsami.9b08424
    [32]
    P. Zhang, X.F. Lu, J. Nai, S.Q. Zang, X.W.D. Lou, Construction of hierarchical Co–Fe oxyphosphide microtubes for electrocatalytic overall water splitting, Adv. Sci. 6 (2019) 1900576. doi: 10.1002/advs.201900576
    [33]
    P. Zhang, S. Wang, B.Y. Guan, X.W. Lou, Fabrication of CdS hierarchical multi–cavity hollow particles for efficient visible light CO2 reduction, Energy Environ. Sci. 12 (2019) 164–168. doi: 10.1039/C8EE02538J
    [34]
    S. Chen, L. Zhao, J. Ma, Y. Wang, L. Dai, J. Zhang, Edge-doping modulation of N, P–codoped porous carbon spheres for high–performance rechargeable Zn–air batteries, Nano Energy 60 (2019) 536–544. doi: 10.1016/j.nanoen.2019.03.084
    [35]
    L. Yu, J.F. Yang, B.Y. Guan, Y. Lu, X.W.D. Lou, Hierarchical hollow nanoprisms based on ultrathin Ni–Fe layered double hydroxide nanosheets with enhanced electrocatalytic activity towards oxygen evolution, Angew. Chem. Int. Ed. 57 (2018) 172–176. doi: 10.1002/anie.201710877
    [36]
    D. Wang, H. Xu, P. Yang, L. Xiao, L. Du, X. Lu, R. Li, J. Zhang, M. An, A dualtemplate strategy to engineer hierarchically porous Fe–N–C electrocatalysts for the high–performance cathodes of Zn–air batteries, J. Mater. Chem. A 9 (2021) 9761–9770. doi: 10.1039/D1TA00585E
    [37]
    F. Wang, T. Hou, X. Zhao, W. Yao, R. Fang, K. Shen, Y. Li, Ordered macroporous carbonous frameworks implanted with CdS quantum dots for efficient photocatalytic CO2 reduction, Adv. Mater. 33 (2021) 2102690. doi: 10.1002/adma.202102690
    [38]
    X. Li, B.Y. Guan, S. Gao, X.W. Lou, A general dual–templating approach to biomass–derived hierarchically porous heteroatom–doped carbon materials for enhanced electrocatalytic oxygen reduction, Energy Environ. Sci. 12 (2019) 648–655. doi: 10.1039/C8EE02779J
    [39]
    X. Gao, X. Liu, W. Zang, H. Dong, Y. Pang, Z. Kou, P. Wang, Z. Pan, S. Wei, S. Mu, J. Wang, Synergizing in–grown Ni3N/Ni heterostructured core and ultrathin Ni3N surface shell enables self–adaptive surface reconfiguration and efficient oxygen evolution reaction, Nano Energy 78 (2020) 105355–105365. doi: 10.1016/j.nanoen.2020.105355
    [40]
    J. Huang, Y. Li, Y. Zhang, G. Rao, C. Wu, Y. Hu, X. Wang, R. Lu, Y. Li, J. Xiong, Identification of key reversible intermediates in self–reconstructed nickel–based hybrid electrocatalysts for oxygen evolution, Angew. Chem. Int. Ed. 58 (2019) 17458–17464. doi: 10.1002/anie.201910716
    [41]
    M. Kim, B. Lee, H. Ju, S.W. Lee, J. Kim, Reducing the barrier energy of self–reconstruction for anchored cobalt nanoparticles as highly active oxygen evolution electrocatalyst, Adv. Mater. 31 (2019) 1901977.
    [42]
    Q. Zhang, X.L. Li, B.X. Tao, X.H. Wang, Y.H. Deng, X.Y. Gu, L.J. Li, W. Xiao, N.B. Li, H.Q. Luo, CoNi based alloy/oxides@ N–doped carbon core–shell dendrites as complementary water splitting electrocatalysts with significantly enhanced catalytic efficiency, Appl. Catal. B 254 (2019) 634–646. doi: 10.1016/j.apcatb.2019.05.035
    [43]
    Y. Zhang, B. Ouyang, J. Xu, S. Chen, R.S. Rawat, H.J. Fan, 3D porous hierarchical nickel–molybdenum nitrides synthesized by RF plasma as highly active and stable hydrogen–evolution–reaction electrocatalysts, Adv. Energy Mater. 6 (2016) 1600221. doi: 10.1002/aenm.201600221
    [44]
    X. Han, X. Ling, Y. Wang, T. Ma, C. Zhong, W. Hu, Y. Deng, Generation of nanoparticle, atomic–cluster, and single–atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc–air batteries, Angew. Chem. Int. Ed. 58 (2019) 5359–5364. doi: 10.1002/anie.201901109
    [45]
    S. Peng, X. Han, L. Li, S. Chou, D. Ji, H. Huang, Y. Du, J. Liu, S. Ramakrishna, Electronic and defective engineering of electrospun CaMnO3 nanotubes for enhanced oxygen electrocatalysis in rechargeable zinc–air batteries, Adv. Energy Mater. 8 (2018) 1800612. doi: 10.1002/aenm.201800612
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (144) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return