Volume 2 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
Zhu Zhaozhao, Li Zhao, Wang Junjie, Li Rong, Chen Haiyuan, Li Yulan, Chen Jun Song, Wu Rui, Wei Zidong. Improving NiNX and pyridinic N active sites with space-confined pyrolysis for effective CO2 electroreduction[J]. eScience, 2022, 2(4): 445-452. doi: 10.1016/j.esci.2022.05.002
Citation: Zhu Zhaozhao, Li Zhao, Wang Junjie, Li Rong, Chen Haiyuan, Li Yulan, Chen Jun Song, Wu Rui, Wei Zidong. Improving NiNX and pyridinic N active sites with space-confined pyrolysis for effective CO2 electroreduction[J]. eScience, 2022, 2(4): 445-452. doi: 10.1016/j.esci.2022.05.002

Improving NiNX and pyridinic N active sites with space-confined pyrolysis for effective CO2 electroreduction

doi: 10.1016/j.esci.2022.05.002
More Information
  • Corresponding author: E-mail address: ruiwu0904@uestc.edu.cn (R. Wu); E-mail address: zdwei@cqu.edu.cn (Z. Wei)
  • Received Date: 2022-02-08
  • Revised Date: 2022-04-17
  • Accepted Date: 2022-05-11
  • Available Online: 2022-05-27
  • Even though various nickel–nitrogen–carbon (Ni-N-C) combinations are prospective low-cost catalysts for the CO2 electroreduction reaction (CO2RR), which is one avenue for attaining carbon neutrality, the detailed role of different N species has hardly been investigated. Here, we report a hollow porous N-doped carbon nanofiber with NiNX-pyridinic N active species (denoted as h-Ni-N-C) developed using a facile electrospinning and SiO2 space-confined pyrolysis strategy. The NiNX-pyridinic N species are facilely generated during the pyrolysis process, giving rise to enhanced activity and selectivity for the CO2RR. The optimized h-Ni-N-C exhibits a high CO Faradaic efficiency of 91.3% and a large current density of −15.1 ​mA ​cm−2 ​at −0.75 ​V versus reversible hydrogen electrode in an H-cell. Density functional theory (DFT) results show that NiN4-pyridinic N species demonstrate a lower free energy for the catalyst's rate-determining step than isolated NiN4 and pyridinic N species, without affecting the desorption of CO* intermediate.
  • ● DFT calculations reveal that NiN4 and pyridinic N active species facilitate the adsorption and desorption of intermediates.
    ● A porous hollow N-doped carbon nanofiber with NiNX-pyridinic N active species (h-N-N-C) catalyst was prepared through a simple electrospinning and SiO2 space-confined pyrolysis strategy.
    ● The h-Ni-N-C catalyst exhibits a high FECO of 91.3% and a large jCO of −15.1 ​mA ​cm−2 toward CO production.
    1 These authors contributed equally to this work.
  • loading
  • eScience-2-4-445.docx
  • [1]
    J. Wang, T. Cheng, A.Q. Fenwick, T.N. Baroud, A. Rosas-Hernández, J.H. Ko, Q. Gan, W.A. Goddard Iii, R.H. Grubbs, Selective CO2 electrochemical reduction enabled by a tricomponent copolymer modifier on a copper surface, J. Am. Chem. Soc. 143 (2021) 2857-2865 doi: 10.1021/jacs.0c12478
    [2]
    Y. Wu, Z. Jiang, X. Lu, Y. Liang, H. Wang, Domino electroreduction of CO2 to methanol on a molecular catalyst, Nature 575 (2019) 639-642 doi: 10.1038/s41586-019-1760-8
    [3]
    H. Song, M. Im, J.T. Song, J.A. Lim, B.S. Kim, Y. Kwon, S. Ryu, J. Oh, Effect of mass transfer and kinetics in ordered Cu-mesostructures for electrochemical CO2 reduction, Appl. Catal. B 232 (2018) 391-396 doi: 10.1016/j.apcatb.2018.03.071
    [4]
    Y. Zhang, K. Qi, J. Li, B.A. Karamoko, L. Lajaunie, F. Godiard, E. Oliviero, X. Cui, Y. Wang, Y. Zhang, H. Wu, W. Wang, D. Voiry, 2.6% cm–2 single-pass CO2-to-CO conversion using Ni single atoms supported on ultrathin carbon nanosheets in a flow electrolyzer, ACS Catal. 11 (2021) 12701-12711 doi: 10.1021/acscatal.1c03231
    [5]
    F. Li, A. Thevenon, A. Rosas-Hernández, Z. Wang, Y. Li, C.M. Gabardo, A. Ozden, C.T. Dinh, J. Li, Y. Wang, J.P. Edwards, Y. Xu, C. McCallum, L. Tao, Z.Q. Liang, M. Luo, X. Wang, H. Li, C.P. O'Brien, C.S. Tan, D.H. Nam, R. Quintero-Bermudez, T.T. Zhuang, Y.C. Li, Z. Han, R.D. Britt, D. Sinton, T. Agapie, J.C. Peters, E.H. Sargent, Molecular tuning of CO2-to-ethylene conversion, Nature 577 (2020) 509-513 doi: 10.1038/s41586-019-1782-2
    [6]
    H. Cheng, X. Wu, M. Feng, X. Li, G. Lei, Z. Fan, D. Pan, F. Cui, G. He, Atomically dispersed Ni/Cu dual sites for boosting the CO2 reductio reaction, ACS Catal. 11 (2021) 12673-12681 doi: 10.1021/acscatal.1c02319
    [7]
    J. Leverett, R. Daiyan, L. Gong, K. Iputera, Z. Tong, J. Qu, Z. Ma, Q. Zhang, S. Cheong, J. Cairney, R.S. Liu, X. Lu, Z. Xia, L. Dai, R. Amal, Designing undercoordinated Ni-Nx and Fe-Nx on holey graphene for electrochemical CO2 conversion to syngas, ACS Nano 15 (2021) 12006-12018 doi: 10.1021/acsnano.1c03293
    [8]
    F.P. Garcia de Arquer, C.T. Dinh, A. Ozden, J. Wicks, C. McCallum, A.R. Kirmani, D.H. Nam, C. Gabardo, A. Seifitokaldani, X. Wang, Y.C. Li, F. Li, J. Edwards, L.J. Richter, S.J. Thorpe, D. Sinton, E.H. Sargent, CO2 electrolysis to multicarbon products at activities greater than 1 A cm–2, Science 367 (2020) 661-666 doi: 10.1126/science.aay4217
    [9]
    X. Wang, X. Sang, C.L. Dong, S. Yao, L. Shuai, J. Lu, B. Yang, Z. Li, L. Lei, M. Qiu, L. Dai, Y. Hou, Proton capture strategy for enhancing electrochemical CO2 reduction on atomically dispersed metal-nitrogen active sites, Angew. Chem. Int. Ed. 60 (2021) 11959-11965 doi: 10.1002/anie.202100011
    [10]
    H.W. Liang, W. Wei, Z.S. Wu, X. Feng, K. Mullen, Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction, J. Am. Chem. Soc. 135 (2013) 16002-16005 doi: 10.1021/ja407552k
    [11]
    X. Wei, S. Xiao, R. Wu, Z. Zhu, L. Zhao, Z. Li, J. Wang, J.S. Chen, Z. Wei, Activating COOH* intermediate by Ni/Ni3ZnC0.7 heterostructure in porous N-doped carbon nanofibers for boosting CO2 electroreduction, Appl. Catal. B 302 (2022) 120861 doi: 10.1016/j.apcatb.2021.120861
    [12]
    M. Zhao, X. -Y. Li, X. Chen, B. -Q. Li, S. Kaskel, Q. Zhang, J. -Q. Huang, Promoting the sulfur redox kinetics by mixed organodiselenides in high-energy-density lithium-sulfur batteries, eScience 1 (2021) 44-52 doi: 10.1016/j.esci.2021.08.001
    [13]
    Z. Li, R. Wu, L. Zhao, P. Li, X. Wei, J. Wang, J.S. Chen, T. Zhang, Metal-support interactions in designing noble metal-based catalysts for electrochemical CO2 reduction: recent advances and future perspectives, Nano Res. 14 (2021) 3795-3809 doi: 10.1007/s12274-021-3363-6
    [14]
    Y. Hou, Y. -L. Liang, P. -C. Shi, Y. -B. Huang, R. Cao, Atomically dispersed Ni species on N-doped carbon nanotubes for electroreduction of CO2 with nearly 100% CO selectivity, Appl. Catal. B-Environ. 271 (2020) 118929 doi: 10.1016/j.apcatb.2020.118929
    [15]
    X. Li, W. Bi, M. Chen, Y. Sun, H. Ju, W. Yan, J. Zhu, X. Wu, W. Chu, C. Wu, Y. Xie, Exclusive Ni-N4 sites realize near-unity CO selectivity for electrochemical CO2 reduction, J. Am. Chem. Soc. 139 (2017) 14889-14892 doi: 10.1021/jacs.7b09074
    [16]
    C. -Z. Yuan, H. -B. Li, Y. -F. Jiang, K. Liang, S. -J. Zhao, X. -X. Fang, L. -B. Ma, T. Zhao, C. Lin, A. -W. Xu, Tuning the activity of N-doped carbon for CO2 reduction via in situ encapsulation of nickel nanoparticles into nano-hybrid carbon substrates, J. Mater. Chem. A 7 (2019) 6894-6900 doi: 10.1039/c8ta11500a
    [17]
    X. Wang, S. Ding, T. Yue, Y. Zhu, M. Fang, X. Li, G. Xiao, Y. Zhu, L. Dai, Universal domino reaction strategy for mass production of single-atom metal-nitrogen catalysts for boosting CO2 electroreduction, Nano Energy 82 (2021) 105689 doi: 10.1016/j.nanoen.2020.105689
    [18]
    X. -M. Hu, H.H. Hval, E.T. Bjerglund, K.J. Dalgaard, M.R. Madsen, M. -M. Pohl, E. Welter, P. Lamagni, K.B. Buhl, M. Bremholm, M. Beller, S.U. Pedersen, T. Skrydstrup, K. Daasbjerg, Selective CO2 reduction to CO in water using earth-abundant metal and nitrogen-doped carbon electrocatalysts, ACS Catal. 8 (2018) 6255-6264 doi: 10.1021/acscatal.8b01022
    [19]
    Z. Li, R. Wu, S. Xiao, Y. Yang, L. Lai, J.S. Chen, Y. Chen, Axial chlorine coordinated iron-nitrogen-carbon single-atom catalysts for efficient electrochemical CO2 reduction, Chem. Eng. J. 430 (2022) 132882 doi: 10.1016/j.cej.2021.132882
    [20]
    C. Lu, J. Yang, S. Wei, S. Bi, Y. Xia, M. Chen, Y. Hou, M. Qiu, C. Yuan, Y. Su, F. Zhang, H. Liang, X. Zhuang, Atomic Ni anchored covalent triazine framework as high efficient electrocatalyst for carbondioxide conversion, Adv. Funct. Mater. 29 (2019) 1806884 doi: 10.1002/adfm.201806884
    [21]
    H. Yang, Q. Lin, C. Zhang, X. Yu, Z. Cheng, G. Li, Q. Hu, X. Ren, Q. Zhang, J. Liu, C. He, Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities, Nat. Commun. 11 (2020) 593 doi: 10.1038/s41467-020-14402-0
    [22]
    T. Moller, W. Ju, A. Bagger, X. Wang, F. Luo, T. Ngo Thanh, A.S. Varela, J. Rossmeisl, P. Strasser, Efficient CO2 to CO electrolysis on solid Ni-N-C catalysts at industrial current densities, Energy Environ. Sci. 12 (2019) 640-647 doi: 10.1039/c8ee02662a
    [23]
    M. Jia, C. Choi, T.S. Wu, C. Ma, P. Kang, H. Tao, Q. Fan, S. Hong, S. Liu, Y.L. Soo, Y. Jung, J. Qiu, Z. Sun, Carbon-supported Ni nanoparticles for efficient CO2 electroreduction, Chem. Sci. 9 (2018) 8775-8780 doi: 10.1039/c8sc03732a
    [24]
    R. Daiyan, X. Lu, X. Tan, X. Zhu, R. Chen, S.C. Smith, R. Amal, Antipoisoning nickel-carbon electrocatalyst for practical electrochemical CO2 reduction to CO, ACS Appl. Energ. Mater. 2 (2019) 8002-8009 doi: 10.1021/acsaem.9b01470
    [25]
    Y. He, Y. Li, J. Zhang, S. Wang, D. Huang, G. Yang, X. Yi, H. Lin, X. Han, W. Hu, Y. Deng, J. Ye, Low-temperature strategy toward Ni-NC@Ni core-shell nanostructure with single-Ni sites for efficient CO2 electroreduction, Nano Energy 77 (2020) 105010 doi: 10.1016/j.nanoen.2020.105010
    [26]
    R. Daiyan, X. Zhu, Z. Tong, L. Gong, A. Razmjou, R. -S. Liu, Z. Xia, X. Lu, L. Dai, R. Amal, Transforming active sites in nickel-nitrogen-carbon catalysts for efficient electrochemical CO2 reduction to CO, Nano Energy 78 (2020) 105213 doi: 10.1016/j.nanoen.2020.105213
    [27]
    R. Wu, S. Chen, Y. Zhang, Y. Wang, Y. Nie, W. Ding, X. Qi, Z. Wei, Controlled synthesis of hollow micro/meso-pore nitrogen-doped carbon with tunable wall thickness and specific surface area as efficient electrocatalysts for oxygen reduction reaction, J. Mater. Chem. A 4 (2016) 2433-2437 doi: 10.1039/C5TA09859A
    [28]
    Z. Miao, J. Meng, M. Liang, Z. Li, Y. Zhao, F. Wang, L. Xu, J. Mu, S. Zhuo, J. Zhou, In-situ CVD synthesis of Ni@N-CNTs/carbon paper electrode for electro-reduction of CO2, Carbon 172 (2021) 324-333 doi: 10.1016/j.carbon.2020.10.044
    [29]
    Z. Guo, N. Xiao, H. Li, Y. Wang, C. Li, C. Liu, J. Xiao, J. Bai, S. Zhao, J. Qiu, Achieving efficient electroreduction CO2 to CO in a wide potential range over pitch-derived ordered mesoporous carbon with engineered Ni-N sites, J. CO2 Util. 38 (2020) 212-219
    [30]
    R. Wu, J. Wang, K. Chen, S. Chen, J. Li, Q. Wang, Y. Nie, Y. Song, H. Chen, Z. Wei, Space-confined pyrolysis for the fabrication of Fe/N/C nanoparticles as a high performance oxygen reduction reaction electrocatalyst, Electrochim. Acta 244 (2017) 47-53 doi: 10.1016/j.electacta.2017.04.169
    [31]
    C. Liu, X. Huang, J. Wang, H. Song, Y. Yang, Y. Liu, J. Li, L. Wang, C. Yu, Hollow mesoporous carbon nanocubes: rigid-interface-induced outward contraction of metal-organic frameworks, Adv. Funct. Mater. 28 (2017) 1705253
    [32]
    S. Wei, H. Zou, W. Rong, F. Zhang, Y. Ji, L. Duan, Conjugated nickel phthalocyanine polymer selectively catalyzes CO2-to-CO conversion in a wide operating potential window, Appl. Catal. B 284 (2021) 119739 doi: 10.1016/j.apcatb.2020.119739
    [33]
    Q. Lu, C. Chen, Q. Di, W. Liu, X. Sun, Y. Tuo, Y. Zhou, Y. Pan, X. Feng, L. Li, D. Chen, J. Zhang, Dual role of pyridinic-N doping in carbon-coated Ni nanoparticles for highly efficient electrochemical CO2 reduction to CO over a wide potential range, ACS Catal. 12 (2022) 1364-1374 doi: 10.1021/acscatal.1c04825
    [34]
    G. Zhang, Y. Jia, C. Zhang, X. Xiong, K. Sun, R. Chen, W. Chen, Y. Kuang, L. Zheng, H. Tang, W. Liu, J. Liu, X. Sun, W. -F. Lin, H. Dai, A general route via formamide condensation to prepare atomically dispersed metal-nitrogen-carbon electrocatalysts for energy technologies, Energy Environ. Sci. 12 (2019) 1317-1325 doi: 10.1039/c9ee00162j
    [35]
    C.F. Wen, F. Mao, Y. Liu, X.Y. Zhang, H.Q. Fu, L.R. Zheng, P.F. Liu, H.G. Yang, Nitrogen-stabilized low-valent Ni motifs for efficient CO2 electrocatalysis, ACS Catal. 10 (2019) 1086-1093
    [36]
    C. Lei, Y. Wang, Y. Hou, P. Liu, J. Yang, T. Zhang, X. Zhuang, M. Chen, B. Yang, L. Lei, C. Yuan, M. Qiu, X. Feng, Efficient alkaline hydrogen evolution on atomically dispersed Ni-Nx Species anchored porous carbon with embedded Ni nanoparticles by accelerating water dissociation kinetics, Energy Environ. Sci. 12 (2019) 149-156 doi: 10.1039/c8ee01841c
    [37]
    Z. Zhu, Z. Li, X. Wei, J. Wang, S. Xiao, R. Li, R. Wu, J.S. Chen, Achieving efficient electroreduction of CO2 to CO in a wide potential window by encapsulating Ni nanoparticles in N-doped carbon nanotubes, Carbon 185 (2021) 9-16 doi: 10.1016/j.carbon.2021.08.072
    [38]
    W. Zheng, Y. Wang, L. Shuai, X. Wang, F. He, C. Lei, Z. Li, B. Yang, L. Lei, C. Yuan, M. Qiu, Y. Hou, X. Feng, Highly boosted reaction kinetics in carbon dioxide electroreduction by surface-introduced electronegative dopants, Adv. Funct. Mater. 31 (2021) 2008146 doi: 10.1002/adfm.202008146
    [39]
    H. Guo, D. -H. Si, H. -J. Zhu, Q. -X. Li, Y. -B. Huang, R. Cao, Ni single-atom sites supported on carbon aerogel for highly efficient electroreduction of carbon dioxide with industrial current densities, eScience (2022). https://doi.org/10.1016/j.esci.2022.03.007 doi: 10.1016/j.esci.2022.03.007
    [40]
    C. Zhao, Y. Wang, Z. Li, W. Chen, Q. Xu, D. He, D. Xi, Q. Zhang, T. Yuan, Y. Qu, J. Yang, F. Zhou, Z. Yang, X. Wang, J. Wang, J. Luo, Y. Li, H. Duan, Y. Wu, Y. Li, Solid-diffusion synthesis of single-atom catalysts directly from bulk metal for efficient CO2 reduction, Joule 3 (2019) 584-594 doi: 10.1016/j.joule.2018.11.008
    [41]
    C. Lu, J. Yang, S. Wei, S. Bi, Y. Xia, M. Chen, Y. Hou, M. Qiu, C. Yuan, Y. Su, F. Zhang, H. Liang, X. Zhuang, Atomic Ni anchored covalent triazine framework as high efficient electrocatalyst for carbon dioxide conversion, Adv. Funct. Mater. 29 (2019) 1806884 doi: 10.1002/adfm.201806884
    [42]
    H.B. Yang, S. -F. Hung, S. Liu, K. Yuan, S. Miao, L. Zhang, X. Huang, H. -Y. Wang, W. Cai, R. Chen, J. Gao, X. Yang, W. Chen, Y. Huang, H.M. Chen, C.M. Li, T. Zhang, B. Liu, Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction, Nat. Energy 3 (2018) 140-147 doi: 10.1038/s41560-017-0078-8
    [43]
    H. Yang, L. Shang, Q. Zhang, R. Shi, G.I.N. Waterhouse, L. Gu, T. Zhang, A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts, Nat. Commun. 10 (2019) 4585 doi: 10.1038/s41467-019-12510-0
    [44]
    Q. Fan, P. Hou, C. Choi, T.S. Wu, S. Hong, F. Li, Y.L. Soo, P. Kang, Y. Jung, Z. Sun, Activation of Ni particles into single Ni-N atoms for efficient electrochemical reduction of CO2, Adv. Energy Mater. 10 (2019) 1903068
    [45]
    W. Ren, X. Tan, W. Yang, C. Jia, S. Xu, K. Wang, S.C. Smith, C. Zhao, Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2, Angew. Chem. Int. Ed. 58 (2019) 6972-6976 doi: 10.1002/anie.201901575
    [46]
    T. Zheng, K. Jiang, N. Ta, Y. Hu, J. Zeng, J. Liu, H. Wang, Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst, Joule 3 (2019) 265-278 doi: 10.1016/j.joule.2018.10.015
    [47]
    H. Zhang, Y. Liu, T. Chen, J. Zhang, J. Zhang, X.W. Lou, Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N-doped carbon matrix, Adv. Mater. 31 (2019) 1904548 doi: 10.1002/adma.201904548
    [48]
    Y. Cheng, S. Zhao, H. Li, S. He, J. -P. Veder, B. Johannessen, J. Xiao, S. Lu, J. Pan, M.F. Chisholm, S. -Z. Yang, C. Liu, J.G. Chen, S.P. Jiang, Unsaturated edge-anchored Ni single atoms on porous microwave exfoliated graphene oxide for electrochemical CO2, Appl. Catal. B 243 (2019) 294-303 doi: 10.1016/j.apcatb.2018.10.046
    [49]
    S. Liu, H. Yang, X. Huang, L. Liu, W. Cai, J. Gao, X. Li, T. Zhang, Y. Huang, B. Liu, Identifying active sites of nitrogen-doped carbon materials for the CO2 reduction reaction, Adv. Funct. Mater. 28 (2018) 1800499 doi: 10.1002/adfm.201800499
    [50]
    X. Wang, X. Li, S. Ding, Y. Chen, Y. Liu, M. Fang, G. Xiao, Y. Zhu, Constructing ample active sites in nitrogen-doped carbon materials for efficient electrocatalytic carbon dioxide reduction, Nano Energy 90 (2021) 106541 doi: 10.1016/j.nanoen.2021.106541
    [51]
    Z. Chen, X. Zhang, W. Liu, M. Jiao, K. Mou, X. Zhang, L. Liu, Amination strategy to boost the CO2 electroreduction current density of M-N/C single-atom catalysts to the industrial application level, Energy Environ. Sci. 14 (2021) 2349-2356 doi: 10.1039/d0ee04052e
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (150) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return