Volume 2 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Gu Wei, Xue Guoyong, Dong Qingyu, Yi Ruowei, Mao Yayun, Zheng Lei, Zhang Haikuo, Fan Xiulin, Shen Yanbin, Chen Liwei. Trimethoxyboroxine as an electrolyte additive to enhance the 4.5 ​V cycling performance of a Ni-rich layered oxide cathode[J]. eScience, 2022, 2(5): 486-493. doi: 10.1016/j.esci.2022.05.003
Citation: Gu Wei, Xue Guoyong, Dong Qingyu, Yi Ruowei, Mao Yayun, Zheng Lei, Zhang Haikuo, Fan Xiulin, Shen Yanbin, Chen Liwei. Trimethoxyboroxine as an electrolyte additive to enhance the 4.5 ​V cycling performance of a Ni-rich layered oxide cathode[J]. eScience, 2022, 2(5): 486-493. doi: 10.1016/j.esci.2022.05.003

Trimethoxyboroxine as an electrolyte additive to enhance the 4.5 ​V cycling performance of a Ni-rich layered oxide cathode

doi: 10.1016/j.esci.2022.05.003
More Information
  • Corresponding author: E-mail address: ybshen2017@sinano.ac.cn (Y. Shen); E-mail address: lwchen2018@sjtu.edu.cn (L. Chen)
  • Received Date: 2021-12-31
  • Revised Date: 2022-04-19
  • Accepted Date: 2022-05-12
  • Available Online: 2022-05-18
  • Ni-rich layered oxides are attractive cathode materials for advanced lithium-ion batteries (LIBs) due to their high energy density. However, their large-scale application is seriously hindered by their interfacial instability, especially at a high cut-off potential. Here, we demonstrate that trimethoxyboroxine (TMOBX) is an effective film-forming additive to address the interfacial instability of LiNi0.8Co0.1Mn0.1O2 (NCM811) material at a high cut-off voltage of 4.5 ​V. We find that TMOBX decomposes before carbonate solvent and forms a thin cathode electrolyte interphase (CEI) layer on the surface of the NCM811 material. This TMOBX-formed CEI significantly suppresses electrolyte decomposition at a high potential and inhibits the dissolution of transition metals from NCM811 during cycling. In addition, electron-deficient borate compounds coordinate with anions (, F, etc.) and H2O in the battery, further improving the battery's stability. As a result, adding 1.0 ​wt% of TMOBX boosts the capacity retention of a Li||NCM811 ​cell from 68.72% to 86.60% after 200 cycles at 0.5C in the range of 2.8–4.5 ​V.
  • ● A trimethoxyboroxine-assisted interphase prevents electrolyte decomposition.
    ● The high-potential stability of a Ni-rich layered oxide cathode is profoundly enhanced.
    ● The trimethoxyboroxine can strongly bind with fluorine ions.
    Author contributions
    Y.B. Shen and L.W. Chen proposed the concept. W. Gu and G.Y. Xue performed the experiments. W. Gu, G.Y. Xue, Q.Y. Dong, Y.Y. Mao, R.W. Yi, L. Zheng, H.K. Zhang, X.L. Fan, Y.B. Shen, and L.W. Chen. co-wrote the manuscript. W. Gu and G.Y. Xue contributed equally to the work. All authors participated in data analysis and manuscript discussion.
    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Declaration of competing interest
    1 The equally contributed authors.
  • loading
  • eScience-2-5-486.docx
  • [1]
    J. B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater. 22 (2010) 587-603. doi: 10.1021/cm901452z
    [2]
    J. M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414 (2001) 359-367. doi: 10.1038/35104644
    [3]
    S. J. Lee, J. J. Bae, J. W. Shin, S. J. Kim, T. W. Hong, J. T. Son, Novel composition of Co-free LiNi0.875-xMn0.125AlxO(2) cathode materials, J. Nanosci. Nanotechnol. 20 (2020) 190-196. doi: 10.1166/jnn.2020.17297
    [4]
    F. Wu, Q. Li, L. Chen, Z. Wang, G. Chen, L. Bao, B. Lu, S. Chen, Y. Su, An optimized synthetic process for the substitution of cobalt in Nickel-rich cathode Materials, Acta Phys. -Chim. Sin. 38 (2022) 2007017.
    [5]
    H. Y. Li, M. Cormier, N. Zhang, J. Inglis, J. Li, J. R. Dahn, Is cobalt needed in Ni-rich positive electrode materials for lithium ion batteries, J. Electrochem. Soc. 166 (2019) A429-A439. doi: 10.1149/2.1381902jes
    [6]
    S. -T. Myung, F. Maglia, K. -J. Park, C. S. Yoon, P. Lamp, S. -J. Kim, Y. -K. Sun, Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives, ACS Energy Lett. 2 (2016) 196-223.
    [7]
    H. -J. Noh, S. Youn, C. S. Yoon, Y. -K. Sun, Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries, J. Power Sources 233 (2013) 121-130. doi: 10.1016/j.jpowsour.2013.01.063
    [8]
    M. Chen, E. Zhao, D. Chen, M. Wu, S. Han, Q. Huang, L. Yang, X. Xiao, Z. Hu, Decreasing Li/Ni disorder and improving the electrochemical performances of Ni-rich LiNi0.8Co0.1Mn0.1O2 by Ca doping, Inorg. Chem. 56 (2017) 8355-8362. doi: 10.1021/acs.inorgchem.7b01035
    [9]
    M. Guilmard, L. Croguennec, D. Denux, C. Delmas, Thermal stability of lithium Nickel oxide derivatives. Part I: LixNi1.02O2 and LixNi0.89Al0.16O2(x= 0.50 and 0.30), Chem. Mater. 15 (2003) 4476-4483. doi: 10.1021/cm030059f
    [10]
    S. -M. Bak, K. -W. Nam, W. Chang, X. Yu, E. Hu, S. Hwang, E. A. Stach, K. -B. Kim, K. Y. Chung, X. -Q. Yang, Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials, Chem. Mater. 25 (2013) 337-351. doi: 10.1021/cm303096e
    [11]
    S. Hwang, S. M. Kim, S. -M. Bak, K. Y. Chung, W. Chang, Investigating the reversibility of structural modifications of LixNiyMnzCo1–y–zO2 cathode materials during initial charge/discharge, at multiple length scales, Chem. Mater. 27 (2015) 6044-6052. doi: 10.1021/acs.chemmater.5b02457
    [12]
    Y. Kojima, S. Muto, K. Tatsumi, H. Kondo, H. Oka, K. Horibuchi, Y. Ukyo, Degradation analysis of a Ni-based layered positive-electrode active material cycled at elevated temperatures studied by scanning transmission electron microscopy and electron energy-loss spectroscopy, J. Power Sources 196 (2011) 7721-7727. doi: 10.1016/j.jpowsour.2011.05.017
    [13]
    S. Muto, Y. Sasano, K. Tatsumi, T. Sasaki, K. Horibuchi, Y. Takeuchi, Y. Ukyo, Capacity-fading mechanisms of LiNiO2-based lithium-ion batteries, J. Electrochem. Soc. 156 (2009) A371-A377. doi: 10.1149/1.3076137
    [14]
    S. Chen, T. He, Y. Su, Y. Lu, L. Bao, L. Chen, Q. Zhang, J. Wang, R. Chen, F. Wu, Ni-rich LiNi0.8Co0.1Mn0.1O2 oxide coated by dual-conductive layers as high performance cathode material for lithium-ion batteries, ACS Appl. Mater. Interfaces 9 (2017) 29732-29743. doi: 10.1021/acsami.7b08006
    [15]
    Y. Cho, J. Cho, Significant improvement of LiNi0.8Co0.15Al0.05O2 cathodes at 60℃ by SiO2 dry coating for Li-ion batteries, J. Electrochem. Soc. 157 (2010) A625. doi: 10.1149/1.3363852
    [16]
    D. -J. Lee, B. Scrosati, Y. -K. Sun, Ni3(PO4)2-coated Li[Ni0.8Co0.15Al0.05]O2 lithium battery electrode with improved cycling performance at 55℃, J. Power Sources 196 (2011) 7742-7746. doi: 10.1039/c1ob05720k
    [17]
    W. Liu, G. Hu, K. Du, Z. Peng, Y. Cao, Enhanced storage property of LiNi0.8Co0.15Al0.05O2 coated with LiCoO2, J. Power Sources 230 (2013) 201-206. doi: 10.1016/j.jpowsour.2012.12.065
    [18]
    Y. Su, Q. Zhang, L. Chen, L. Bao, B. Lu, Effects of ZrO2 coating on Ni-rich LiNi0.8Co0.1Mn0.1O2 cathodes with enhanced cycle stabilities, Acta Phys. -Chim. Sin. 37 (2021) 2005062.
    [19]
    G. Z. Shang, Y. W. Tang, Y. Q. Lai, J. Wu, X. Yang, H. X. Li, C. Peng, J. F. Zheng, Z. A. Zhang, Enhancing structural stability unto 4.5 V of Ni-rich cathodes by tungsten-doping for lithium storage, J. Power Sources 423 (2019) 246-254. doi: 10.1016/j.jpowsour.2019.03.072
    [20]
    S. Zhang, Y. Liu, M. Qi, A. Cao, Localized surface doping for improved stability of high energy cathode materials, Acta Phys. -Chim. Sin. 37 (2021) 2011007.
    [21]
    M. Zhang, H. Zhao, M. Tan, J. Liu, Y. Hu, S. Liu, X. Shu, H. Li, Q. Ran, J. Cai, X. Liu, Yttrium modified Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced electrochemical performance as high energy density cathode material at 4.5 V high voltage. J. Alloys Compd. 774 (2019) 82-92. doi: 10.1117/12.2547599
    [22]
    C. -G. Shi, C. -H. Shen, X. -X. Peng, C. -X. Luo, L. -F. Shen, W. -J. Sheng, J. -J. Fan, Q. Wang, S. -J. Zhang, B. -B. Xu, J. -J. Xian, Y. -M. Wei, L. Huang, J. -T. Li, S. -G. Sun, A special enabler for boosting cyclic life and rate capability of LiNi0.8Co0.1Mn0.1O2: green and simple additive, Nano Energy 65 (2019) 104084. doi: 10.1016/j.nanoen.2019.104084
    [23]
    Y. Yang, C. Yan, J. Huang, Research progress of solid electrolyte interphase in lithium batteries, Acta Phys. -Chim. Sin. 37 (2021) 2010076.
    [24]
    T. Yim, S. H. Jang, Y. K. Han, Triphenyl borate as a bi-functional additive to improve surface stability of Ni-rich cathode material, J. Power Sources 372 (2017) 24-30. doi: 10.1016/j.jpowsour.2017.10.044
    [25]
    Z. Cheng, Y. Mao, Q. Dong, F. Jin, Y. Shen, L. Chen, Fluoroethylene carbonate as an additive for sodium-ion batteries: Effect on the sodium cathode, Acta Phys. -Chim. Sin. 35 (2019) 868-875. doi: 10.3866/pku.whxb201811033
    [26]
    Q. Yu, Z. Chen, L. Xing, D. Chen, H. Rong, Q. Liu, W. Li, Enhanced high voltage performances of layered lithium nickel cobalt manganese oxide cathode by using trimethylboroxine as electrolyte additive, Electrochim. Acta 176 (2015) 919-925. doi: 10.1016/j.electacta.2015.07.058
    [27]
    J. Liu, X. Song, L. Zhou, S. Wang, W. Song, W. Liu, H. Long, L. Zhou, H. Wu, C. Feng, Z. Guo, Fluorinated phosphazene derivative - A promising electrolyte additive for high voltage lithium ion batteries: From electrochemical performance to corrosion mechanism, Nano Energy 46 (2018) 404-414. doi: 10.1016/j.nanoen.2018.02.029
    [28]
    R. Petibon, C. P. Aiken, N. N. Sinha, J. C. Burns, H. Ye, C. M. VanElzen, G. Jain, S. Trussler, J. R. Dahn, Study of electrolyte additives using electrochemical impedance spectroscopy on symmetric cells, J. Electrochem. Soc. 160 (2012) A117-A124.
    [29]
    G. W. Frisch, H. B. Schlegel, G. E. Scuseria, J. R. Robb, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, et al. Gaussian 09; Gaussian, Inc. : Wallingford, CT. 2009.
    [30]
    G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169-11186. doi: 10.1103/PhysRevB.54.11169
    [31]
    G. Kresse, J. Hafner, Ab initio molecular-dynamics for liquid-metals. Phys. Rev. B 47 (1993) 558-561. doi: 10.1103/PhysRevB.47.558
    [32]
    G. Kresse, J. Hafner, Ab initio molecular dynamics simulation of the liquidmetal amorphous-semiconductor transition in germanium, Phys. Rev. B 49 (1994) 14251-14269. doi: 10.1103/PhysRevB.49.14251
    [33]
    D. Lu, W. Li, X. Zuo, Z. Yuan, Q. Huang, Study on electrode kinetics of Li+ insertion in LixMn2O4 (0 ≤ x ≤ 1) by Electrochemical impedance spectroscopy, J. Phys. Chem. C 111 (2007) 12067-12074. doi: 10.1021/jp0732920
    [34]
    L. Wang, J. Ma, C. Wang, X. Yu, R. Liu, F. Jiang, X. Sun, A. Du, X. Zhou, G. Cui, A novel bifunctional self-stabilized strategy enabling 4.6 V LiCoO2 with excellent long-term cyclability and high-rate capability, Adv. Sci. 6 (2019) 1900355. doi: 10.1002/advs.201900355
    [35]
    H. Zheng, Q. Sun, G. Liu, X. Song, V. S. Battaglia, Correlation between dissolution behavior and electrochemical cycling performance for LiNi1/3Co1/3Mn1/3O2-based cells, J. Power Sources 207 (2012) 134-140. doi: 10.1016/j.jpowsour.2012.01.122
    [36]
    H. M. Zhou, D. M. Xiao, C. J. Yin, Z. H. Yang, K. W. Xiao, J. Li, Enhanced performance of the electrolytes based on sulfolane and lithium difluoro(oxalate)borate with enhanced interfacial stability for LiNi0.5Mn1.5O4 cathode, J. Electroanal. Chem. 808 (2018) 293-302. doi: 10.1016/j.jelechem.2017.12.040
    [37]
    M. Zhou, C. Qin, Z. Liu, L. Feng, X. Su, Y. Chen, L. Xia, Y. Xia, Z. Liu, Enhanced high voltage cyclability of LiCoO2 cathode by adopting poly[bis-(ethoxyethoxyethoxy)phosphazene] with flame-retardant property as an electrolyte additive for lithium-ion batteries, Appl. Surf. Sci. 403 (2017) 260-266. doi: 10.1016/j.apsusc.2017.01.189
    [38]
    T. T. Hagos, B. Thirumalraj, C. J. Huang, L. H. Abrha, T. M. Hagos, G. B. Berhe, H. K. Bezabh, J. Cherng, S. F. Chiu, W. N. Su, B. J. Hwang, Locally concentrated LiPF6 in a carbonate-based electrolyte with fluoroethylene carbonate as a diluent for anode-free lithium metal batteries, ACS Appl. Mater. Interfaces 11 (2019) 9955-9963. doi: 10.1021/acsami.8b21052
    [39]
    H. Bryngelsson, M. Stjerndahl, T. Gustafsson, K. Edstrom, How dynamic is the SEI, J. Power Sources 174 (2007) 970-975. doi: 10.1016/j.jpowsour.2007.06.050
    [40]
    H. Duncan, D. Duguay, Y. Abu-Lebdeh, I. J. Davidson, Study of the LiMn1.5Ni0.5O4/electrolyte interface at room temperature and 60 ℃, J. Electrochem. Soc. 158 (2011) A537-A545. doi: 10.1149/1.3567954
    [41]
    Z. Cai, Y. Liu, J. Zhao, L. Li, Y. Zhang, J. Zhang, Tris(trimethylsilyl) borate as electrolyte additive to improve performance of lithium-ion batteries, J. Power Sources 202 (2012) 341-346. doi: 10.1016/j.jpowsour.2011.10.101
    [42]
    M. Borner, F. Horsthemke, F. Kollmer, S. Haseloff, A. Friesen, P. Niehoff, S. Nowak, M. Winter, F. M. Schappacher, Degradation effects on the surface of commercial LiNi0.5Co0.2Mn0.3O2 electrodes, J. Power Sources 335 (2016) 45-55. doi: 10.1016/j.jpowsour.2016.09.071
    [43]
    W. Zhao, B. Zheng, H. Liu, F. Ren, J. Zhu, G. Zheng, S. Chen, R. Liu, X. Yang, Y. Yang, Toward a durable solid electrolyte film on the electrodes for Li-ion batteries with high performance, Nano Energy 63 (2019) 103815. doi: 10.1016/j.nanoen.2019.06.011
    [44]
    W. Lee, S. Muhammad, T. Kim, H. Kim, E. Lee, M. Jeong, S. Son, J. H. Ryou, W. S. Yoon, New insight into Ni-rich layered structure for next-generation Li rechargeable batteries, Adv. Energy Mater. 8 (2018) 1701788. doi: 10.1002/aenm.201701788
    [45]
    H. Li, D. Liu, L. Zhang, K. Qian, R. Shi, F. Kang, B. Li, Combination effect of bulk structure change and surface rearrangement on the electrochemical kinetics of LiNi0.80Co0.15Al0.05O2 during initial charging processes, ACS Appl. Mater. Interfaces 10 (2018) 41370-41379. doi: 10.1021/acsami.8b15131
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (146) PDF downloads(19) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return