Citation: | Gu Wei, Xue Guoyong, Dong Qingyu, Yi Ruowei, Mao Yayun, Zheng Lei, Zhang Haikuo, Fan Xiulin, Shen Yanbin, Chen Liwei. Trimethoxyboroxine as an electrolyte additive to enhance the 4.5 V cycling performance of a Ni-rich layered oxide cathode[J]. eScience, 2022, 2(5): 486-493. doi: 10.1016/j.esci.2022.05.003 |
![]() |
![]() |
[1] |
J. B. Goodenough, Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater. 22 (2010) 587-603. doi: 10.1021/cm901452z
|
[2] |
J. M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414 (2001) 359-367. doi: 10.1038/35104644
|
[3] |
S. J. Lee, J. J. Bae, J. W. Shin, S. J. Kim, T. W. Hong, J. T. Son, Novel composition of Co-free LiNi0.875-xMn0.125AlxO(2) cathode materials, J. Nanosci. Nanotechnol. 20 (2020) 190-196. doi: 10.1166/jnn.2020.17297
|
[4] |
F. Wu, Q. Li, L. Chen, Z. Wang, G. Chen, L. Bao, B. Lu, S. Chen, Y. Su, An optimized synthetic process for the substitution of cobalt in Nickel-rich cathode Materials, Acta Phys. -Chim. Sin. 38 (2022) 2007017.
|
[5] |
H. Y. Li, M. Cormier, N. Zhang, J. Inglis, J. Li, J. R. Dahn, Is cobalt needed in Ni-rich positive electrode materials for lithium ion batteries, J. Electrochem. Soc. 166 (2019) A429-A439. doi: 10.1149/2.1381902jes
|
[6] |
S. -T. Myung, F. Maglia, K. -J. Park, C. S. Yoon, P. Lamp, S. -J. Kim, Y. -K. Sun, Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives, ACS Energy Lett. 2 (2016) 196-223.
|
[7] |
H. -J. Noh, S. Youn, C. S. Yoon, Y. -K. Sun, Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries, J. Power Sources 233 (2013) 121-130. doi: 10.1016/j.jpowsour.2013.01.063
|
[8] |
M. Chen, E. Zhao, D. Chen, M. Wu, S. Han, Q. Huang, L. Yang, X. Xiao, Z. Hu, Decreasing Li/Ni disorder and improving the electrochemical performances of Ni-rich LiNi0.8Co0.1Mn0.1O2 by Ca doping, Inorg. Chem. 56 (2017) 8355-8362. doi: 10.1021/acs.inorgchem.7b01035
|
[9] |
M. Guilmard, L. Croguennec, D. Denux, C. Delmas, Thermal stability of lithium Nickel oxide derivatives. Part I: LixNi1.02O2 and LixNi0.89Al0.16O2(x= 0.50 and 0.30), Chem. Mater. 15 (2003) 4476-4483. doi: 10.1021/cm030059f
|
[10] |
S. -M. Bak, K. -W. Nam, W. Chang, X. Yu, E. Hu, S. Hwang, E. A. Stach, K. -B. Kim, K. Y. Chung, X. -Q. Yang, Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials, Chem. Mater. 25 (2013) 337-351. doi: 10.1021/cm303096e
|
[11] |
S. Hwang, S. M. Kim, S. -M. Bak, K. Y. Chung, W. Chang, Investigating the reversibility of structural modifications of LixNiyMnzCo1–y–zO2 cathode materials during initial charge/discharge, at multiple length scales, Chem. Mater. 27 (2015) 6044-6052. doi: 10.1021/acs.chemmater.5b02457
|
[12] |
Y. Kojima, S. Muto, K. Tatsumi, H. Kondo, H. Oka, K. Horibuchi, Y. Ukyo, Degradation analysis of a Ni-based layered positive-electrode active material cycled at elevated temperatures studied by scanning transmission electron microscopy and electron energy-loss spectroscopy, J. Power Sources 196 (2011) 7721-7727. doi: 10.1016/j.jpowsour.2011.05.017
|
[13] |
S. Muto, Y. Sasano, K. Tatsumi, T. Sasaki, K. Horibuchi, Y. Takeuchi, Y. Ukyo, Capacity-fading mechanisms of LiNiO2-based lithium-ion batteries, J. Electrochem. Soc. 156 (2009) A371-A377. doi: 10.1149/1.3076137
|
[14] |
S. Chen, T. He, Y. Su, Y. Lu, L. Bao, L. Chen, Q. Zhang, J. Wang, R. Chen, F. Wu, Ni-rich LiNi0.8Co0.1Mn0.1O2 oxide coated by dual-conductive layers as high performance cathode material for lithium-ion batteries, ACS Appl. Mater. Interfaces 9 (2017) 29732-29743. doi: 10.1021/acsami.7b08006
|
[15] |
Y. Cho, J. Cho, Significant improvement of LiNi0.8Co0.15Al0.05O2 cathodes at 60℃ by SiO2 dry coating for Li-ion batteries, J. Electrochem. Soc. 157 (2010) A625. doi: 10.1149/1.3363852
|
[16] |
D. -J. Lee, B. Scrosati, Y. -K. Sun, Ni3(PO4)2-coated Li[Ni0.8Co0.15Al0.05]O2 lithium battery electrode with improved cycling performance at 55℃, J. Power Sources 196 (2011) 7742-7746. doi: 10.1039/c1ob05720k
|
[17] |
W. Liu, G. Hu, K. Du, Z. Peng, Y. Cao, Enhanced storage property of LiNi0.8Co0.15Al0.05O2 coated with LiCoO2, J. Power Sources 230 (2013) 201-206. doi: 10.1016/j.jpowsour.2012.12.065
|
[18] |
Y. Su, Q. Zhang, L. Chen, L. Bao, B. Lu, Effects of ZrO2 coating on Ni-rich LiNi0.8Co0.1Mn0.1O2 cathodes with enhanced cycle stabilities, Acta Phys. -Chim. Sin. 37 (2021) 2005062.
|
[19] |
G. Z. Shang, Y. W. Tang, Y. Q. Lai, J. Wu, X. Yang, H. X. Li, C. Peng, J. F. Zheng, Z. A. Zhang, Enhancing structural stability unto 4.5 V of Ni-rich cathodes by tungsten-doping for lithium storage, J. Power Sources 423 (2019) 246-254. doi: 10.1016/j.jpowsour.2019.03.072
|
[20] |
S. Zhang, Y. Liu, M. Qi, A. Cao, Localized surface doping for improved stability of high energy cathode materials, Acta Phys. -Chim. Sin. 37 (2021) 2011007.
|
[21] |
M. Zhang, H. Zhao, M. Tan, J. Liu, Y. Hu, S. Liu, X. Shu, H. Li, Q. Ran, J. Cai, X. Liu, Yttrium modified Ni-rich LiNi0.8Co0.1Mn0.1O2 with enhanced electrochemical performance as high energy density cathode material at 4.5 V high voltage. J. Alloys Compd. 774 (2019) 82-92. doi: 10.1117/12.2547599
|
[22] |
C. -G. Shi, C. -H. Shen, X. -X. Peng, C. -X. Luo, L. -F. Shen, W. -J. Sheng, J. -J. Fan, Q. Wang, S. -J. Zhang, B. -B. Xu, J. -J. Xian, Y. -M. Wei, L. Huang, J. -T. Li, S. -G. Sun, A special enabler for boosting cyclic life and rate capability of LiNi0.8Co0.1Mn0.1O2: green and simple additive, Nano Energy 65 (2019) 104084. doi: 10.1016/j.nanoen.2019.104084
|
[23] |
Y. Yang, C. Yan, J. Huang, Research progress of solid electrolyte interphase in lithium batteries, Acta Phys. -Chim. Sin. 37 (2021) 2010076.
|
[24] |
T. Yim, S. H. Jang, Y. K. Han, Triphenyl borate as a bi-functional additive to improve surface stability of Ni-rich cathode material, J. Power Sources 372 (2017) 24-30. doi: 10.1016/j.jpowsour.2017.10.044
|
[25] |
Z. Cheng, Y. Mao, Q. Dong, F. Jin, Y. Shen, L. Chen, Fluoroethylene carbonate as an additive for sodium-ion batteries: Effect on the sodium cathode, Acta Phys. -Chim. Sin. 35 (2019) 868-875. doi: 10.3866/pku.whxb201811033
|
[26] |
Q. Yu, Z. Chen, L. Xing, D. Chen, H. Rong, Q. Liu, W. Li, Enhanced high voltage performances of layered lithium nickel cobalt manganese oxide cathode by using trimethylboroxine as electrolyte additive, Electrochim. Acta 176 (2015) 919-925. doi: 10.1016/j.electacta.2015.07.058
|
[27] |
J. Liu, X. Song, L. Zhou, S. Wang, W. Song, W. Liu, H. Long, L. Zhou, H. Wu, C. Feng, Z. Guo, Fluorinated phosphazene derivative - A promising electrolyte additive for high voltage lithium ion batteries: From electrochemical performance to corrosion mechanism, Nano Energy 46 (2018) 404-414. doi: 10.1016/j.nanoen.2018.02.029
|
[28] |
R. Petibon, C. P. Aiken, N. N. Sinha, J. C. Burns, H. Ye, C. M. VanElzen, G. Jain, S. Trussler, J. R. Dahn, Study of electrolyte additives using electrochemical impedance spectroscopy on symmetric cells, J. Electrochem. Soc. 160 (2012) A117-A124.
|
[29] |
G. W. Frisch, H. B. Schlegel, G. E. Scuseria, J. R. Robb, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, et al. Gaussian 09; Gaussian, Inc. : Wallingford, CT. 2009.
|
[30] |
G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169-11186. doi: 10.1103/PhysRevB.54.11169
|
[31] |
G. Kresse, J. Hafner, Ab initio molecular-dynamics for liquid-metals. Phys. Rev. B 47 (1993) 558-561. doi: 10.1103/PhysRevB.47.558
|
[32] |
G. Kresse, J. Hafner, Ab initio molecular dynamics simulation of the liquidmetal amorphous-semiconductor transition in germanium, Phys. Rev. B 49 (1994) 14251-14269. doi: 10.1103/PhysRevB.49.14251
|
[33] |
D. Lu, W. Li, X. Zuo, Z. Yuan, Q. Huang, Study on electrode kinetics of Li+ insertion in LixMn2O4 (0 ≤ x ≤ 1) by Electrochemical impedance spectroscopy, J. Phys. Chem. C 111 (2007) 12067-12074. doi: 10.1021/jp0732920
|
[34] |
L. Wang, J. Ma, C. Wang, X. Yu, R. Liu, F. Jiang, X. Sun, A. Du, X. Zhou, G. Cui, A novel bifunctional self-stabilized strategy enabling 4.6 V LiCoO2 with excellent long-term cyclability and high-rate capability, Adv. Sci. 6 (2019) 1900355. doi: 10.1002/advs.201900355
|
[35] |
H. Zheng, Q. Sun, G. Liu, X. Song, V. S. Battaglia, Correlation between dissolution behavior and electrochemical cycling performance for LiNi1/3Co1/3Mn1/3O2-based cells, J. Power Sources 207 (2012) 134-140. doi: 10.1016/j.jpowsour.2012.01.122
|
[36] |
H. M. Zhou, D. M. Xiao, C. J. Yin, Z. H. Yang, K. W. Xiao, J. Li, Enhanced performance of the electrolytes based on sulfolane and lithium difluoro(oxalate)borate with enhanced interfacial stability for LiNi0.5Mn1.5O4 cathode, J. Electroanal. Chem. 808 (2018) 293-302. doi: 10.1016/j.jelechem.2017.12.040
|
[37] |
M. Zhou, C. Qin, Z. Liu, L. Feng, X. Su, Y. Chen, L. Xia, Y. Xia, Z. Liu, Enhanced high voltage cyclability of LiCoO2 cathode by adopting poly[bis-(ethoxyethoxyethoxy)phosphazene] with flame-retardant property as an electrolyte additive for lithium-ion batteries, Appl. Surf. Sci. 403 (2017) 260-266. doi: 10.1016/j.apsusc.2017.01.189
|
[38] |
T. T. Hagos, B. Thirumalraj, C. J. Huang, L. H. Abrha, T. M. Hagos, G. B. Berhe, H. K. Bezabh, J. Cherng, S. F. Chiu, W. N. Su, B. J. Hwang, Locally concentrated LiPF6 in a carbonate-based electrolyte with fluoroethylene carbonate as a diluent for anode-free lithium metal batteries, ACS Appl. Mater. Interfaces 11 (2019) 9955-9963. doi: 10.1021/acsami.8b21052
|
[39] |
H. Bryngelsson, M. Stjerndahl, T. Gustafsson, K. Edstrom, How dynamic is the SEI, J. Power Sources 174 (2007) 970-975. doi: 10.1016/j.jpowsour.2007.06.050
|
[40] |
H. Duncan, D. Duguay, Y. Abu-Lebdeh, I. J. Davidson, Study of the LiMn1.5Ni0.5O4/electrolyte interface at room temperature and 60 ℃, J. Electrochem. Soc. 158 (2011) A537-A545. doi: 10.1149/1.3567954
|
[41] |
Z. Cai, Y. Liu, J. Zhao, L. Li, Y. Zhang, J. Zhang, Tris(trimethylsilyl) borate as electrolyte additive to improve performance of lithium-ion batteries, J. Power Sources 202 (2012) 341-346. doi: 10.1016/j.jpowsour.2011.10.101
|
[42] |
M. Borner, F. Horsthemke, F. Kollmer, S. Haseloff, A. Friesen, P. Niehoff, S. Nowak, M. Winter, F. M. Schappacher, Degradation effects on the surface of commercial LiNi0.5Co0.2Mn0.3O2 electrodes, J. Power Sources 335 (2016) 45-55. doi: 10.1016/j.jpowsour.2016.09.071
|
[43] |
W. Zhao, B. Zheng, H. Liu, F. Ren, J. Zhu, G. Zheng, S. Chen, R. Liu, X. Yang, Y. Yang, Toward a durable solid electrolyte film on the electrodes for Li-ion batteries with high performance, Nano Energy 63 (2019) 103815. doi: 10.1016/j.nanoen.2019.06.011
|
[44] |
W. Lee, S. Muhammad, T. Kim, H. Kim, E. Lee, M. Jeong, S. Son, J. H. Ryou, W. S. Yoon, New insight into Ni-rich layered structure for next-generation Li rechargeable batteries, Adv. Energy Mater. 8 (2018) 1701788. doi: 10.1002/aenm.201701788
|
[45] |
H. Li, D. Liu, L. Zhang, K. Qian, R. Shi, F. Kang, B. Li, Combination effect of bulk structure change and surface rearrangement on the electrochemical kinetics of LiNi0.80Co0.15Al0.05O2 during initial charging processes, ACS Appl. Mater. Interfaces 10 (2018) 41370-41379. doi: 10.1021/acsami.8b15131
|