Volume 2 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
Rao Peng, Wu Daoxiong, Wang Tian-Jiao, Li Jing, Deng Peilin, Chen Qi, Shen Yijun, Chen Yu, Tian Xinlong. Single atomic cobalt electrocatalyst for efficient oxygen reduction reaction[J]. eScience, 2022, 2(4): 399-404. doi: 10.1016/j.esci.2022.05.004
Citation: Rao Peng, Wu Daoxiong, Wang Tian-Jiao, Li Jing, Deng Peilin, Chen Qi, Shen Yijun, Chen Yu, Tian Xinlong. Single atomic cobalt electrocatalyst for efficient oxygen reduction reaction[J]. eScience, 2022, 2(4): 399-404. doi: 10.1016/j.esci.2022.05.004

Single atomic cobalt electrocatalyst for efficient oxygen reduction reaction

doi: 10.1016/j.esci.2022.05.004
More Information
  • Corresponding author: E-mail address: ndchenyu@gmail.com (Y. Chen); tianxl@hainanu.edu.cn (X. Tian)
  • Received Date: 2022-01-18
  • Revised Date: 2022-04-20
  • Accepted Date: 2022-05-13
  • Available Online: 2022-05-18
  • Robust oxygen reduction reaction (ORR) catalysts are essential for energy storage and conversion devices, but their development remains challenging. Herein, we design a single-atom catalyst featuring isolated Co anchored on nitrogen-doped carbon (Co-SAC/NC) via a highly efficient "plasma-bombing" strategy. With a high loading (up to 2.5 ​wt%), the well-dispersed single Co atoms in Co-SAC/NC give it robust ORR performance in an alkaline medium. It also demonstrates excellent battery performance when implemented as the air-cathode catalyst in a zinc-air battery (ZAB). Theoretical calculations reveal that the Co–N4 moiety experiences an "extraction/recovery" structural evolution during the ORR process, and the reaction's rate-determining step is the formation of OOH* (reaction intermediate). This work provides a new strategy for designing robust ORR catalysts for high-performance ZABs and other energy-conversion devices.
  • ● A novel and highly efficient "plasma-bombing" strategy is proposed.
    ● DFT calculations reveal a dynamic "extraction/recovery" mechanism.
    ● The catalyst delivers remarkable oxygen reduction reaction activity and stability.
    ● An isolated cobalt single-atom catalyst with tunable cobalt content is synthesized.
  • loading
  • eScience-2-4-399.docx
  • [1]
    X. Tian, X. Lu, B. Xia, X. Lou, Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies, Joule 4(2020) 45–68. doi: 10.1016/j.joule.2019.12.014
    [2]
    H. Nan, Y.-Q. Su, C. Tang, R. Cao, D. Li, J. Yu, Q. Liu, Y. Deng, X. Tian, Engineering the electronic and strained interface for high activity of Pdmcore@Ptmonolayer electrocatalysts for oxygen reduction reaction, Sci. Bull. 65(2020) 1396–1404. doi: 10.1016/j.scib.2020.04.015
    [3]
    Z. Liu, X. Lu, L. Qin, G. Fang, S. Liang, Progress and prospect of low-temperature zinc metal batteries, Adv. Powder Mater. 1(2022) 100011. doi: 10.1016/j.apmate.2021.10.002
    [4]
    P. Rao, D. Wu, Y.-Y. Qin, J. Luo, J. Li, C. Jia, P. Deng, W. Huang, Y. Su, Y. Shen, X. Tian, Facile fabrication of single-atom catalysts by a plasma-etching strategy for oxygen reduction reaction, J. Mater. Chem. A 10(2022) 6531–6537. doi: 10.1039/D1TA09154A
    [5]
    Q. Xue, H.-Y. Sun, Y.-N. Li, M.-J. Zhong, F.-M. Li, X. Tian, P. Chen, S.-B. Yin, Y. Chen, Au@Ir core-shell nanowires towards oxygen reduction reaction, Chem. Eng. J. 421(2021) 129760. doi: 10.1016/j.cej.2021.129760
    [6]
    X. Xu, S. Wang, S. Guo, K.S. Hui, J. Ma, D.A. Dinh, K.N. Hui, H. Wang, L. Zhang, G. Zhou, Cobalt phosphosulfide nanoparticles encapsulated into heteroatom-doped carbon as bifunctional electrocatalyst for zn-air battery, Adv. Powder Mater. 1(2022) 100027. doi: 10.1016/j.apmate.2021.12.003
    [7]
    T.-J. Wang, H.-Y. Sun, Q. Xue, M.-J. Zhong, F.-M. Li, X. Tian, P. Chen, S.-B. Yin, Y. Chen, Holey platinum nanotubes for ethanol electrochemical reforming in aqueous solution, Sci. Bull. 66(2021) 2079–2089. doi: 10.1016/j.scib.2021.05.027
    [8]
    L. Yan, L. Xie, X.-L. Wu, M. Qian, J. Chen, Y. Zhong, Y. Hu, Precise regulation of pyrrole-type single-atom Mn-N4 sites for superior ph-universal oxygen reduction, Carbon Energy 3(2021) 856–865. doi: 10.1002/cey2.135
    [9]
    D. Yang, D. Chen, Y. Jiang, E.H. Ang, Y. Feng, X. Rui, Y. Yu, Carbon-based materials for all-solid-state zinc-air batteries, Carbon Energy 3(2021) 50–65. doi: 10.1002/cey2.88
    [10]
    M. Chuai, J. Yang, M. Wang, Y. Yuan, Z. Liu, Y. Xu, Y. Yin, J. Sun, X. Zheng, N. Chen, W. Chen, High-performance zn battery with transition metal ions coregulated electrolytic MnO2, eScience 1(2021) 178–185. doi: 10.1016/j.esci.2021.11.002
    [11]
    T. Wang, X. Cao, L. Jiao, Ni2P/NiMoP heterostructure as a bifunctional electrocatalyst for energy-saving hydrogen production, eScience 1(2021) 69–74. doi: 10.1016/j.esci.2021.09.002
    [12]
    H. Tian, D. Wu, J. Li, J. Luo, C. Jia, Z. Liu, W. Huang, Q. Chen, C.M. Shim, P. Deng, Y. Shen, X. Tian, Rational design ternary platinum based electrocatalysts for effective methanol oxidation reaction, J. Energy Chem. 70(2022) 230–235. doi: 10.1016/j.jechem.2022.02.021
    [13]
    S. Feng, J. Luo, J. Li, Y. Yu, Z. Kang, W. Huang, Q. Chen, P. Deng, Y. Shen, X. Tian, Heterogeneous structured Ni3Se2/MoO2@Ni12P5 catalyst for durable urea oxidation reaction, Mater. Today Phys. 23(2022) 100646. doi: 10.1016/j.mtphys.2022.100646
    [14]
    Y. Deng, J. Luo, B. Chi, H. Tang, J. Li, X. Qiao, Y. Shen, Y. Yang, C. Jia, P. Rao, S. Liao, X. Tian, Advanced atomically dispersed metal-nitrogen-carbon catalysts toward cathodic oxygen reduction in PEM fuel cells, Adv. Energy Mater. 11(2021) 2101222. doi: 10.1002/aenm.202101222
    [15]
    H. Yang, Y. Liu, X. Liu, X. Wang, H. Tian, G.I.N. Waterhouse, P.E. Kruger, S.G. Telfer, S. Ma, Large-scale synthesis of N-doped carbon capsules supporting atomically dispersed iron for efficient oxygen reduction reaction electrocatalysis, eScience 2(2022) 227–234. doi: 10.1016/j.esci.2022.02.005
    [16]
    Z. Wang, M. Zhou, L. Qin, M. Chen, Z. Chen, S. Guo, L. Wang, G. Fang, S. Liang, Simultaneous regulation of cations and anions in an electrolyte for high-capacity, high-stability aqueous zinc-vanadium batteries, eScience 2(2022) 209–218. doi: 10.1016/j.esci.2022.03.002
    [17]
    J. Yu, B.Q. Li, C.X. Zhao, J.N. Liu, Q. Zhang, Asymmetric air cathode design for enhanced interfacial electrocatalytic reactions in high-performance zinc-air batteries, Adv. Mater. 32(2020) 1908488. doi: 10.1002/adma.201908488
    [18]
    X.L. Tian, L. Wang, B. Chi, Y. Xu, S. Zaman, K. Qi, H. Liu, S. Liao, B.Y. Xia, Formation of a tubular assembly by ultrathin Ti0.8Co0.2N nanosheets as efficient oxygen reduction electrocatalysts for hydrogen-/metal-air fuel cells, ACS Catal. 8(2018) 8970–8975. doi: 10.1021/acscatal.8b02710
    [19]
    Y. Yang, D. Wu, Y. Yu, J. Li, P. Rao, C. Jia, Z. Liu, Q. Chen, W. Huang, J. Luo, P. Deng, Y. Shen, X. Tian, Bridge the activity and durability of ruthenium for hydrogen evolution reaction with the Ru-O-C link, Chem. Eng. J. 433(2022) 134421. doi: 10.1016/j.cej.2021.134421
    [20]
    S. Cao, H. Zhang, Y. Zhao, Y. Zhao, Pillararene/calixarene-based systems for battery and supercapacitor applications, eScience 1(2021) 28–43. doi: 10.1016/j.esci.2021.10.001
    [21]
    H. Tan, Y. Li, J. Kim, T. Takei, Z. Wang, X. Xu, J. Wang, Y. Bando, Y.-M. Kang, J. Tang, Y. Yamauchi, Sub-50 nm iron-nitrogen-doped hollow carbon sphere encapsulated iron carbide nanoparticles as efficient oxygen reduction catalysts, Adv. Sci. 5(2018) 1800120. doi: 10.1002/advs.201800120
    [22]
    X. Zheng, D. Wu, Y. Liu, J. Li, Y. Yang, W. Huang, W. Liu, Y. Shen, X. Tian, Photocatalytic reduction of water to hydrogen by CuPbSbS3 nanoflakes, Mater. Today Energy 25(2022) 100956. doi: 10.1016/j.mtener.2022.100956
    [23]
    P. Rao, J. Luo, D. Wu, J. Li, Q. Chen, P. Deng, Y. Shen, X. Tian, Isolated Co atoms anchored on defective nitrogen-doped carbon graphene as efficient oxygen reduction reaction electrocatalysts, Energy Environ. Mater. (2022), https://doi.org/10.1002/eem2.12371.
    [24]
    P. Rao, D. Wu, J. Luo, J. Li, P. Deng, Y. Shen, X. Tian, A plasma bombing strategy to synthesize high-loading single-atom catalysts for oxygen reduction reaction, Cell Rep. Phys. Sci. 3(2022) 100880. doi: 10.1016/j.xcrp.2022.100880
    [25]
    Y. Wang, Z. Li, P. Zhang, Y. Pan, Y. Zhang, Q. Cai, S.R.P. Silva, J. Liu, G. Zhang, X. Sun, Z. Yan, Flexible carbon nanofiber film with diatomic Fe-Co sites for efficient oxygen reduction and evolution reactions in wearable zinc-air batteries, Nano Energy 87(2021) 106147. doi: 10.1016/j.nanoen.2021.106147
    [26]
    B. Huang, M. Wang, C. Wu, L. Guan, Highly dispersive metal atoms anchored on carbon matrix obtained by direct rapid pyrolysis of metal complexes, CCS Chem. 3(2021) 3473–3484.
    [27]
    J. Gao, Y. Hu, Y. Wang, X. Lin, K. Hu, X. Lin, G. Xie, X. Liu, K.M. Reddy, Q. Yuan, H.-J. Qiu, MOF structure engineering to synthesize Co-N-C catalyst with richer accessible active sites for enhanced oxygen reduction, Small 17(2021) 2104684. doi: 10.1002/smll.202104684
    [28]
    J. Fan, M. Chen, Z. Zhao, Z. Zhang, S. Ye, S. Xu, H. Wang, H. Li, Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells, Nat. Energy 6(2021) 475–486. doi: 10.1038/s41560-021-00824-7
    [29]
    S. Ma, Z. Han, K. Leng, X. Liu, Y. Wang, Y. Qu, J. Bai, Ionic exchange of metalorganic frameworks for constructing unsaturated copper single-atom catalysts for boosting oxygen reduction reaction, Small 16(2020) e2001384. doi: 10.1002/smll.202001384
    [30]
    D.N. Li, Y.K. Fan, H.R. Yuan, L.F. Deng, J.Z. Yang, Y. Chen, B. Luo, Renewable and metal-free carbon derived from aquatic scindapsus affording meso-microporosity, large interface, and enriched pyridinic-N for efficient oxygen reduction reaction catalysis, Energy Fuels 34(2020) 13089–13095. doi: 10.1021/acs.energyfuels.0c02246
    [31]
    P. Rao, Y. Liu, Y.-Q. Su, M. Zhong, K. Zhang, J. Luo, J. Li, C. Jia, Y. Shen, C. Shen, X. Tian, S, N co-doped carbon nanotube encased Co NPs as efficient bifunctional oxygen electrocatalysts for zinc-air batteries, Chem. Eng. J. 422(2021) 130135. doi: 10.1016/j.cej.2021.130135
    [32]
    Y. Deng, X. Tian, B. Chi, Q. Wang, W. Ni, Y. Gao, Z. Liu, J. Luo, C. Lin, L. Ling, F. Cheng, Y. Zhang, S. Liao, S. Zhang, Hierarchically open-porous carbon networks enriched with exclusive Fe-Nx active sites as efficient oxygen reduction catalysts towards acidic H2-O2 PEM fuel cell and alkaline Zn-air battery, Chem. Eng. J. 390(2020) 124479. doi: 10.1016/j.cej.2020.124479
    [33]
    A. Han, X. Wang, K. Tang, Z. Zhang, C. Ye, K. Kong, H. Hu, L. Zheng, P. Jiang, C. Zhao, Q. Zhang, D. Wang, Y. Li, An adjacent atomic platinum site enables singleatom iron with high oxygen reduction reaction performance, Angew. Chem. Int. Ed. 60(2021) 19262–19271. doi: 10.1002/anie.202105186
    [34]
    P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin, W. Liu, H. Ju, J. Zhu, X. Hong, Z. Deng, G. Zhou, S. Wei, Y. Li, Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts, Angew. Chem. Int. Ed. 55(2016) 10800–10805. doi: 10.1002/anie.201604802
    [35]
    Q. Cheng, S. Han, K. Mao, C. Chen, L. Yang, Z. Zou, M. Gu, Z. Hu, H. Yang, Co nanoparticle embedded in atomically-dispersed Co-N-C nanofibersfor oxygen reduction with high activity and remarkable durability, Nano Energy 52(2018) 485–493. doi: 10.1016/j.nanoen.2018.08.005
    [36]
    S. Treimer, A. Tang, D.C. Johnson, A consideration of the application of kouteckýlevich plots in the diagnoses of charge-transfer mechanisms at rotated disk electrodes, Electroanalysis 14(2002) 165–171. doi: 10.1002/1521-4109(200202)14:3<165::AID-ELAN165>3.0.CO;2-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (199) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return