Citation: | Liu Yun, Cai Jinyan, Zhou Jianbin, Zang Yipeng, Zheng Xusheng, Zhu Zixuan, Liu Bo, Wang Gongming, Qian Yitai. Tailoring the adsorption behavior of superoxide intermediates on nickel carbide enables high-rate Li–O2 batteries[J]. eScience, 2022, 2(4): 389-398. doi: 10.1016/j.esci.2022.06.002 |
![]() |
![]() |
[1] |
Z. Peng, Z. Yong, X. Zhang, Functional and stability orientation synthesis of materials and structures in aprotic Li–O2 batteries, Chem. Soc. Rev. 47(2018) 2921–3004. doi: 10.1039/C8CS00009C
|
[2] |
X.P. Zhang, X.W. Mu, S.X. Yang, P.F. Wang, S.H. Guo, Research progress for the development of Li-air batteries: addressing parasitic reactions arising from air composition, Energy Environ. Mater. 1(2018) 61–74. doi: 10.1002/eem2.12008
|
[3] |
K. Chen, D.-Y. Yang, G. Huang, X.-B. Zhang, Lithium–air batteries: airelectrochemistry and anode stabilization, Acc. Chem. Res. 54(2021) 632–641. doi: 10.1021/acs.accounts.0c00772
|
[4] |
Q.C. Liu, J.J. Xu, D. Xu, X.B. Zhang, Flexible lithium–oxygen battery based on a recoverable cathode, Nat. Commun. 6(2015) 7892. doi: 10.1038/ncomms8892
|
[5] |
Y. Zhou, K. Yin, Q. Gu, L. Tao, Y. Li, H. Tan, J. Zhou, W. Zhang, H. Li, S.J. Guo, Lewis-acidic ptir multipods enable high-performance Li-O2 batteries, Angew. Chem. Int. Ed. 60(2021) 26592–26598. doi: 10.1002/anie.202114067
|
[6] |
M. Asadi, B. Sayahpour, P. Abbasi, A.T. Ngo, A. Salehi-Khojin, A lithium–oxygen battery with a long cycle life in an air-like atmosphere, Nature 555(2018) 502–506. doi: 10.1038/nature25984
|
[7] |
Q. Lv, Z. Zhu, S. Zhao, L. Wang, Q. Zhao, F. Li, L.A. Archer, J. Chen, Semiconducting metal–organic polymer nanosheets for a photoinvolved Li–O2 battery under visible light, J. Am. Chem. Soc. 143(2021) 1941–1947. doi: 10.1021/jacs.0c11400
|
[8] |
X. Hu, J. Chen, MCNTs@MnO2 nanocomposite cathode integrated with soluble O2-carrier co-salen in electrolyte for high-performance Li-air batteries, Nano Lett. 17(2017) 2073–2078. doi: 10.1021/acs.nanolett.7b00203
|
[9] |
X. Hu, G. Luo, Q. Zhao, D. Wu, T. Yang, J. Wen, R. Wang, C. Xu, N. Hu, Ru single atoms on N-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li–O2 batteries, J. Am. Chem. Soc. 142(2020) 16776–16786. doi: 10.1021/jacs.0c07317
|
[10] |
D. Aurbach, B.D. Mccloskey, L.F. Nazar, P.G. Bruce, Advances in understanding mechanisms underpinning lithium–air batteries, Nat. Energy 1(2016) 16128. doi: 10.1038/nenergy.2016.128
|
[11] |
J.C. Dong, X.G. Zhang, V. Briega-Martos, X. Jin, J. Yang, S. Chen, Z.L. Yang, D.Y. Wu, J.M. Feliu, C.T. Williams, In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces, Nat. Energy 4(2019) 60–67. doi: 10.1038/s41560-018-0292-z
|
[12] |
Q. Xiong, G. Huang, X.B. Zhang, High-capacity and stable Li-O2 batteries enabled by a trifunctional soluble redox mediator, Angew. Chem. lnt. Ed. 59(2020) 19311–19319. doi: 10.1002/anie.202009064
|
[13] |
Z. Lyu, Z. Yin, W. Dai, X. Cui, C. Wei, Recent advances in understanding of the mechanism and control of Li2O2 formation in aprotic Li–O2 batteries, Chem. Soc. Rev. 46(2017) 6046–6072. doi: 10.1039/C7CS00255F
|
[14] |
L. Johnson, C. Li, Z. Liu, Y. Chen, S.A. Freunberger, P.C. Ashok, B. Praveen, K. Dholakia, J.M. Tarascon, P.G. Bruce, The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries, Nat. Chem. 6(2014) 1091–1099. doi: 10.1038/nchem.2101
|
[15] |
J.J. Xu, Z.W. Chang, Y. Wang, D.P. Liu, Y. Zhang, X.B. Zhang, Cathode surfaceinduced, solvation-mediated, micrometer-sized Li2O2 cycling for Li-O2 batteries, Adv. Mater. 28(2016) 9620–9628. doi: 10.1002/adma.201603454
|
[16] |
G. Tan, L. Chong, R. Amine, J. Lu, C. Liu, Y. Yuan, J. Wen, K. He, X. Bi, Y. Guo, Toward highly efficient electrocatalyst for Li-O2 batteries using biphasic n-doping cobalt@graphene multiple-capsule heterostructures, Nano Lett. 17(2017) 2959–2966. doi: 10.1021/acs.nanolett.7b00207
|
[17] |
B. Aetukuri, Krupp E. Nagaphani, M.c Leslie, D. loskey, Garcia Bryan, M. Jeannette, Venkatasubramanian Viswanathan, Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O2 batteries, Nat. Chem. 7(2015) 50–56. doi: 10.1038/nchem.2132
|
[18] |
P. Zhang, L. Liu, X. He, X. Liu, H. Wang, J. He, Y. Zhao, Promoting surface-mediated oxygen reduction reaction of solid catalysts in metal-O2 batteries by capturing superoxide species, J. Am. Chem. Soc. 141(2019) 6263–6270. doi: 10.1021/jacs.8b13568
|
[19] |
Y. Zhang, Q. Cui, X. Zhang, W.C. Mckee, Z. Peng, Amorphous Li2O2: chemical synthesis and electrochemical properties, Angew. Chem. lnt. Ed. 55(2016) 10717–10721. doi: 10.1002/anie.201605228
|
[20] |
R. Gao, X. Liang, P. Yin, J. Wang, Y.L. Lee, Z. Hu, X. Liu, An amorphous LiO2-based Li-O2 battery with low overpotential and high rate capability, Nano Energy 41(2017) 535–542. doi: 10.1016/j.nanoen.2017.10.013
|
[21] |
Y. Li, R. Zhang, B. Chen, N. Wang, J. Sha, L. Ma, D. Zhao, E. Liu, S. Zhu, C. Shi, Induced construction of large-area amorphous Li2O2 film via elemental co-doping and spatial confinement to achieve high-performance Li-O2 batteries, Energy Storage Mater. 44(2021) 285–295.
|
[22] |
Y. Dou, X.-G. Wang, D. Wang, Q. Zhang, C. Wang, G. Chen, Y. Wei, Z. Zhou, Tuning the structure and morphology of Li2O2 by controlling the crystallinity of catalysts for Li-O2 batteries, Chem. Eng. J. 409(2021) 128145. doi: 10.1016/j.cej.2020.128145
|
[23] |
F. Li, J. Chen, Mechanistic evolution of aprotic lithium-oxygen batteries, Adv. Energy Mater. 7(2017) 1602934. doi: 10.1002/aenm.201602934
|
[24] |
H.-D. Lim, B. Lee, Y. Bae, H. Park, Y. Ko, H. Kim, J. Kim, K. Kang, Reaction chemistry in rechargeable Li-O2 batteries, Chem. Soc. Rev. 46(2017) 2873–2888. doi: 10.1039/C6CS00929H
|
[25] |
Y.-C. Lu, B.M. Gallant, D.G. Kwabi, J.R. Harding, R.R. Mitchell, M.S. Whittingham, Y. Shao-Horn, Lithium–oxygen batteries: bridging mechanistic understanding and battery performance, Energy Environ. Sci. 6(2013) 750–768. doi: 10.1039/c3ee23966g
|
[26] |
N.-C. Lai, G. Cong, Z. Liang, Y.-C. Lu, A highly active oxygen evolution catalyst for lithium-oxygen batteries enabled by high-surface-energy facets, Joule 2(2018) 1511–1521. doi: 10.1016/j.joule.2018.04.009
|
[27] |
J. Zhu, F. Wang, B. Wang, Y. Wang, J. Liu, W. Zhang, Z. Wen, Surface acidity as descriptor of catalytic activity for oxygen evolution reaction in Li-O2 battery, J. Am. Chem. Soc. 137(2015) 13572–13579. doi: 10.1021/jacs.5b07792
|
[28] |
Y. Wang, Z. Liang, Q. Zou, G. Cong, Y.-C. Lu, Mechanistic insights into catalystassisted nonaqueous oxygen evolution reaction in lithium–oxygen batteries, J. Phys. Chem. C 120(2016) 6459–6466.
|
[29] |
Q.C. Liu, L. Li, J.J. Xu, Z.W. Chang, D. Xu, Y.B. Yin, X.Y. Yang, T. Liu, Y.S. Jiang, J.M. Yan, Flexible and foldable Li-O2 battery based on paper-ink cathode, Adv. Mater. 27(2015) 8095–8101. doi: 10.1002/adma.201503025
|
[30] |
Y. Qiao, K. Jiang, H. Deng, H. Zhou, A high-energy-density and long-life lithium-ion battery via reversible oxide–peroxide conversion, Nat. Catal. 2(2019) 1035–1044. doi: 10.1038/s41929-019-0362-z
|
[31] |
H. Jang, A. Zahoor, Y. Kim, M. Christy, M.Y. Oh, V. Aravindan, Y.S. Lee, K.S. Nahm, Tailoring three dimensional α–MnO2/RuO2 hybrid nanostructure as prospective bifunctional catalyst for Li–O2 batteries, Electrochim. Acta 212(2016) 701–709. doi: 10.1016/j.electacta.2016.07.067
|
[32] |
Y. Xing, Y. Yang, R. Chen, M. Luo, N. Chen, Y. Ye, J. Qian, L. Li, F. Wu, S. Guo, Strongly coupled carbon nanosheets/molybdenum carbide nanocluster hollow nanospheres for high-performance aprotic Li-O2 battery, Small 14(2018) 1704366. doi: 10.1002/smll.201704366
|
[33] |
Y. Yang, Y. Qin, X. Xue, X. Wang, M. Yao, H. Huang, Intrinsic properties affecting the catalytic activity of 3d transition-metal carbides in Li-O2 battery, J. Phys. Chem. C 122(2018) 17812–17819. doi: 10.1021/acs.jpcc.8b04285
|
[34] |
M.M.O. Thotiyl, S.A. Freunberger, Z. Peng, Y. Chen, Z. Liu, P.G. Bruce, A stable cathode for the aprotic Li-O2 battery, Nat. Mater. 12(2013) 1050–1056. doi: 10.1038/nmat3737
|
[35] |
Z. Peng, S.A. Freunberger, Y. Chen, P.G. Bruce, A reversible and higher-rate Li-O2 battery, Science 337(2012) 563–566. doi: 10.1126/science.1223985
|
[36] |
C.O. Laoire, S. Mukerjee, K. Abraham, E.J. Plichta, M.A. Hendrickson, Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium–air battery, J. Phys. Chem. C 114(2010) 9178–9186. doi: 10.1021/jp102019y
|
[37] |
M.J. Trahan, S. Mukerjee, E.J. Plichta, M.A. Hendrickson, K. Abraham, Studies of Liair cells utilizing dimethyl sulfoxide-based electrolyte, J. Electrochem. Soc. 160(2012) A259.
|
[38] |
D. Xu, Z.-l. Wang, J.-j. Xu, L.-l. Zhang, X.-b. Zhang, Novel dmso-based electrolyte for high performance rechargeable Li-O2 batteries, Chem. Commun. 48(2012) 6948–6950. doi: 10.1039/c2cc32844e
|
[39] |
K.R. Yoon, K. Shin, J. Park, S.-H. Cho, C. Kim, J.-W. Jung, J.Y. Cheong, H.R. Byon, H.M. Lee, I.-D. Kim, Brush-like cobalt nitride anchored carbon nanofiber membrane: current collector-catalyst integrated cathode for long cycle Li-O2 batteries, ACS Nano 12(2018) 128–139. doi: 10.1021/acsnano.7b03794
|
[40] |
S. Xu, Y. Yao, Y. Guo, X. Zeng, S.D. Lacey, H. Song, C. Chen, Y. Li, J. Dai, Y. Wang, Textile inspired lithium–oxygen battery cathode with decoupled oxygen and electrolyte pathways, Adv. Mater. 30(2018) 1704907. doi: 10.1002/adma.201704907
|
[41] |
X.Y. Yang, J.J. Xu, Z.W. Chang, D. Bao, Y.B. Yin, T. Liu, J.M. Yan, D.P. Liu, Y. Zhang, X.B. Zhang, Blood-capillary-inspired, free-standing, flexible, and low-cost superhydrophobic N-CNTs@SS cathodes for high-capacity, high-rate, and stable Li-air batteries, Adv. Energy Mater. 8(2018) 1702242. doi: 10.1002/aenm.201702242
|
[42] |
H. Song, S. Xu, Y. Li, J. Dai, A. Gong, M. Zhu, C. Zhu, C. Chen, Y. Chen, Y. Yao, Hierarchically porous, ultrathick, "breathable" wood-derived cathode for lithiumoxygen batteries, Adv. Energy Mater. 8(2018) 1701203. doi: 10.1002/aenm.201701203
|
[43] |
Y.J. Lee, S.H. Park, S.H. Kim, Y. Ko, K. Kang, Y.J. Lee, High-rate and high-arealcapacity air cathodes with enhanced cycle life based on RuO2/MnO2 bifunctional electrocatalysts supported on CNT for pragmatic Li-O2 batteries, ACS Catal. 8(2018) 2923–2934. doi: 10.1021/acscatal.8b00248
|
[44] |
X. Lin, R. Yuan, S. Cai, Y. Jiang, J. Lei, S.G. Liu, Q.H. Wu, H.G. Liao, M. Zheng, Q. Dong, An open-structured matrix as oxygen cathode with high catalytic activity and large Li2O2 accommodations for lithium–oxygen batteries, Adv. Energy Mater. 8(2018) 1800089. doi: 10.1002/aenm.201800089
|
[45] |
G. Liu, W. Li, R. Bi, C. Atangana Etogo, X.-Y. Yu, L. Zhang, Cation-assisted formation of porous TiO2-x nanoboxes with high grain boundary density as efficient electrocatalysts for lithium–oxygen batteries, ACS Catal. 8(2018) 1720–1727. doi: 10.1021/acscatal.7b04182
|
[46] |
A. Dutta, R.A. Wong, W. Park, K. Yamanaka, T. Ohta, Y. Jung, H.R. Byon, Nanostructuring one-dimensional and amorphous lithium peroxide for high roundtrip efficiency in lithium-oxygen batteries, Nat. Commun. 9(2018) 1–10. doi: 10.1038/s41467-017-02088-w
|
[47] |
Y. Zheng, R. Gao, L. Zheng, L. Sun, Z. Hu, X. Liu, Ultrathin Co3O4 nanosheets with edge-enriched {111} planes as efficient catalysts for lithium–oxygen batteries, ACS Catal. 9(2019) 3773–3782. doi: 10.1021/acscatal.8b05182
|
[48] |
P. Wang, C. Li, S. Dong, X. Ge, P. Zhang, X. Miao, R. Wang, Z. Zhang, L. Yin, Hierarchical NiCo2S4@NiO core–shell heterostructures as catalytic cathode for long-life Li-O2 batteries, Adv. Energy Mater. 9(2019) 1900788. doi: 10.1002/aenm.201900788
|
[49] |
Z. Zhu, A. Kushima, Z. Yin, L. Qi, K. Amine, J. Lu, J. Li, Anion-redox nanolithia cathodes for Li-ion batteries, Nat. Energy 1(2016) 16111. doi: 10.1038/nenergy.2016.111
|
[50] |
X. Xu, Y. Sun, Z. Fan, D. Zhao, S. Xiong, B. Zhang, S. Zhou, G. Liu, Mechanisms for ·O2- and ·OH production on flowerlike BiVO4 photocatalysis based on electron spin resonance, Front. Chem. 6(2018) 64. doi: 10.3389/fchem.2018.00064
|
[51] |
T. Liu, L. Lin, X. Bi, L. Tian, K. Yang, J. Liu, M. Li, Z. Chen, J. Lu, K. Amine, In situ quantification of interphasial chemistry in Li-ion battery, Nat. Nanotechnol. 14(2019) 50–56. doi: 10.1038/s41565-018-0284-y
|