Volume 2 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
Liu Yun, Cai Jinyan, Zhou Jianbin, Zang Yipeng, Zheng Xusheng, Zhu Zixuan, Liu Bo, Wang Gongming, Qian Yitai. Tailoring the adsorption behavior of superoxide intermediates on nickel carbide enables high-rate Li–O2 batteries[J]. eScience, 2022, 2(4): 389-398. doi: 10.1016/j.esci.2022.06.002
Citation: Liu Yun, Cai Jinyan, Zhou Jianbin, Zang Yipeng, Zheng Xusheng, Zhu Zixuan, Liu Bo, Wang Gongming, Qian Yitai. Tailoring the adsorption behavior of superoxide intermediates on nickel carbide enables high-rate Li–O2 batteries[J]. eScience, 2022, 2(4): 389-398. doi: 10.1016/j.esci.2022.06.002

Tailoring the adsorption behavior of superoxide intermediates on nickel carbide enables high-rate Li–O2 batteries

doi: 10.1016/j.esci.2022.06.002
More Information
  • Probing the relationship between the adsorption of superoxide species and the kinetics of Li–O2 chemistry is critical for designing superior oxygen electrodes for the Li–O2 battery, yet the modulation essence, especially at the atomic level, remains little understood. Herein, we reveal that the adsorption behaviors of superoxide species can be effectively regulated via a core-induced interfacial charge interaction, and we find that moderate adsorption strength can enable superior rate capability in a Li–O2 battery. More importantly, operando X-ray absorption near-edge structure and surface-enhanced Raman spectroscopy provide tools to monitor in situ the evolution of the superoxide intermediates and the electronic states of the catalyst's metal sites during the discharge and charge processes, and correlate these with the surface adsorption states. The concept of tuning adsorption behavior through interfacial charge engineering could open up new opportunities to further advance the development of the Li–O2 battery and beyond.
  • ● Moderate adsorption strength can enable superior rate capability in a Li–O2 battery.
    ● The developed operando spectroscopies can monitor in situ the evolution of superoxide intermediates and the electronic states of a catalyst's metal sites during the discharge and charge processes.
    ● The adsorption behaviors of superoxide species can be well regulated via a core-induced interfacial charge interaction.
    1 These authors contributed equally to this work.
  • loading
  • eScience-2-4-389.docx
  • [1]
    Z. Peng, Z. Yong, X. Zhang, Functional and stability orientation synthesis of materials and structures in aprotic Li–O2 batteries, Chem. Soc. Rev. 47(2018) 2921–3004. doi: 10.1039/C8CS00009C
    [2]
    X.P. Zhang, X.W. Mu, S.X. Yang, P.F. Wang, S.H. Guo, Research progress for the development of Li-air batteries: addressing parasitic reactions arising from air composition, Energy Environ. Mater. 1(2018) 61–74. doi: 10.1002/eem2.12008
    [3]
    K. Chen, D.-Y. Yang, G. Huang, X.-B. Zhang, Lithium–air batteries: airelectrochemistry and anode stabilization, Acc. Chem. Res. 54(2021) 632–641. doi: 10.1021/acs.accounts.0c00772
    [4]
    Q.C. Liu, J.J. Xu, D. Xu, X.B. Zhang, Flexible lithium–oxygen battery based on a recoverable cathode, Nat. Commun. 6(2015) 7892. doi: 10.1038/ncomms8892
    [5]
    Y. Zhou, K. Yin, Q. Gu, L. Tao, Y. Li, H. Tan, J. Zhou, W. Zhang, H. Li, S.J. Guo, Lewis-acidic ptir multipods enable high-performance Li-O2 batteries, Angew. Chem. Int. Ed. 60(2021) 26592–26598. doi: 10.1002/anie.202114067
    [6]
    M. Asadi, B. Sayahpour, P. Abbasi, A.T. Ngo, A. Salehi-Khojin, A lithium–oxygen battery with a long cycle life in an air-like atmosphere, Nature 555(2018) 502–506. doi: 10.1038/nature25984
    [7]
    Q. Lv, Z. Zhu, S. Zhao, L. Wang, Q. Zhao, F. Li, L.A. Archer, J. Chen, Semiconducting metal–organic polymer nanosheets for a photoinvolved Li–O2 battery under visible light, J. Am. Chem. Soc. 143(2021) 1941–1947. doi: 10.1021/jacs.0c11400
    [8]
    X. Hu, J. Chen, MCNTs@MnO2 nanocomposite cathode integrated with soluble O2-carrier co-salen in electrolyte for high-performance Li-air batteries, Nano Lett. 17(2017) 2073–2078. doi: 10.1021/acs.nanolett.7b00203
    [9]
    X. Hu, G. Luo, Q. Zhao, D. Wu, T. Yang, J. Wen, R. Wang, C. Xu, N. Hu, Ru single atoms on N-doped carbon by spatial confinement and ionic substitution strategies for high-performance Li–O2 batteries, J. Am. Chem. Soc. 142(2020) 16776–16786. doi: 10.1021/jacs.0c07317
    [10]
    D. Aurbach, B.D. Mccloskey, L.F. Nazar, P.G. Bruce, Advances in understanding mechanisms underpinning lithium–air batteries, Nat. Energy 1(2016) 16128. doi: 10.1038/nenergy.2016.128
    [11]
    J.C. Dong, X.G. Zhang, V. Briega-Martos, X. Jin, J. Yang, S. Chen, Z.L. Yang, D.Y. Wu, J.M. Feliu, C.T. Williams, In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces, Nat. Energy 4(2019) 60–67. doi: 10.1038/s41560-018-0292-z
    [12]
    Q. Xiong, G. Huang, X.B. Zhang, High-capacity and stable Li-O2 batteries enabled by a trifunctional soluble redox mediator, Angew. Chem. lnt. Ed. 59(2020) 19311–19319. doi: 10.1002/anie.202009064
    [13]
    Z. Lyu, Z. Yin, W. Dai, X. Cui, C. Wei, Recent advances in understanding of the mechanism and control of Li2O2 formation in aprotic Li–O2 batteries, Chem. Soc. Rev. 46(2017) 6046–6072. doi: 10.1039/C7CS00255F
    [14]
    L. Johnson, C. Li, Z. Liu, Y. Chen, S.A. Freunberger, P.C. Ashok, B. Praveen, K. Dholakia, J.M. Tarascon, P.G. Bruce, The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries, Nat. Chem. 6(2014) 1091–1099. doi: 10.1038/nchem.2101
    [15]
    J.J. Xu, Z.W. Chang, Y. Wang, D.P. Liu, Y. Zhang, X.B. Zhang, Cathode surfaceinduced, solvation-mediated, micrometer-sized Li2O2 cycling for Li-O2 batteries, Adv. Mater. 28(2016) 9620–9628. doi: 10.1002/adma.201603454
    [16]
    G. Tan, L. Chong, R. Amine, J. Lu, C. Liu, Y. Yuan, J. Wen, K. He, X. Bi, Y. Guo, Toward highly efficient electrocatalyst for Li-O2 batteries using biphasic n-doping cobalt@graphene multiple-capsule heterostructures, Nano Lett. 17(2017) 2959–2966. doi: 10.1021/acs.nanolett.7b00207
    [17]
    B. Aetukuri, Krupp E. Nagaphani, M.c Leslie, D. loskey, Garcia Bryan, M. Jeannette, Venkatasubramanian Viswanathan, Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O2 batteries, Nat. Chem. 7(2015) 50–56. doi: 10.1038/nchem.2132
    [18]
    P. Zhang, L. Liu, X. He, X. Liu, H. Wang, J. He, Y. Zhao, Promoting surface-mediated oxygen reduction reaction of solid catalysts in metal-O2 batteries by capturing superoxide species, J. Am. Chem. Soc. 141(2019) 6263–6270. doi: 10.1021/jacs.8b13568
    [19]
    Y. Zhang, Q. Cui, X. Zhang, W.C. Mckee, Z. Peng, Amorphous Li2O2: chemical synthesis and electrochemical properties, Angew. Chem. lnt. Ed. 55(2016) 10717–10721. doi: 10.1002/anie.201605228
    [20]
    R. Gao, X. Liang, P. Yin, J. Wang, Y.L. Lee, Z. Hu, X. Liu, An amorphous LiO2-based Li-O2 battery with low overpotential and high rate capability, Nano Energy 41(2017) 535–542. doi: 10.1016/j.nanoen.2017.10.013
    [21]
    Y. Li, R. Zhang, B. Chen, N. Wang, J. Sha, L. Ma, D. Zhao, E. Liu, S. Zhu, C. Shi, Induced construction of large-area amorphous Li2O2 film via elemental co-doping and spatial confinement to achieve high-performance Li-O2 batteries, Energy Storage Mater. 44(2021) 285–295.
    [22]
    Y. Dou, X.-G. Wang, D. Wang, Q. Zhang, C. Wang, G. Chen, Y. Wei, Z. Zhou, Tuning the structure and morphology of Li2O2 by controlling the crystallinity of catalysts for Li-O2 batteries, Chem. Eng. J. 409(2021) 128145. doi: 10.1016/j.cej.2020.128145
    [23]
    F. Li, J. Chen, Mechanistic evolution of aprotic lithium-oxygen batteries, Adv. Energy Mater. 7(2017) 1602934. doi: 10.1002/aenm.201602934
    [24]
    H.-D. Lim, B. Lee, Y. Bae, H. Park, Y. Ko, H. Kim, J. Kim, K. Kang, Reaction chemistry in rechargeable Li-O2 batteries, Chem. Soc. Rev. 46(2017) 2873–2888. doi: 10.1039/C6CS00929H
    [25]
    Y.-C. Lu, B.M. Gallant, D.G. Kwabi, J.R. Harding, R.R. Mitchell, M.S. Whittingham, Y. Shao-Horn, Lithium–oxygen batteries: bridging mechanistic understanding and battery performance, Energy Environ. Sci. 6(2013) 750–768. doi: 10.1039/c3ee23966g
    [26]
    N.-C. Lai, G. Cong, Z. Liang, Y.-C. Lu, A highly active oxygen evolution catalyst for lithium-oxygen batteries enabled by high-surface-energy facets, Joule 2(2018) 1511–1521. doi: 10.1016/j.joule.2018.04.009
    [27]
    J. Zhu, F. Wang, B. Wang, Y. Wang, J. Liu, W. Zhang, Z. Wen, Surface acidity as descriptor of catalytic activity for oxygen evolution reaction in Li-O2 battery, J. Am. Chem. Soc. 137(2015) 13572–13579. doi: 10.1021/jacs.5b07792
    [28]
    Y. Wang, Z. Liang, Q. Zou, G. Cong, Y.-C. Lu, Mechanistic insights into catalystassisted nonaqueous oxygen evolution reaction in lithium–oxygen batteries, J. Phys. Chem. C 120(2016) 6459–6466.
    [29]
    Q.C. Liu, L. Li, J.J. Xu, Z.W. Chang, D. Xu, Y.B. Yin, X.Y. Yang, T. Liu, Y.S. Jiang, J.M. Yan, Flexible and foldable Li-O2 battery based on paper-ink cathode, Adv. Mater. 27(2015) 8095–8101. doi: 10.1002/adma.201503025
    [30]
    Y. Qiao, K. Jiang, H. Deng, H. Zhou, A high-energy-density and long-life lithium-ion battery via reversible oxide–peroxide conversion, Nat. Catal. 2(2019) 1035–1044. doi: 10.1038/s41929-019-0362-z
    [31]
    H. Jang, A. Zahoor, Y. Kim, M. Christy, M.Y. Oh, V. Aravindan, Y.S. Lee, K.S. Nahm, Tailoring three dimensional α–MnO2/RuO2 hybrid nanostructure as prospective bifunctional catalyst for Li–O2 batteries, Electrochim. Acta 212(2016) 701–709. doi: 10.1016/j.electacta.2016.07.067
    [32]
    Y. Xing, Y. Yang, R. Chen, M. Luo, N. Chen, Y. Ye, J. Qian, L. Li, F. Wu, S. Guo, Strongly coupled carbon nanosheets/molybdenum carbide nanocluster hollow nanospheres for high-performance aprotic Li-O2 battery, Small 14(2018) 1704366. doi: 10.1002/smll.201704366
    [33]
    Y. Yang, Y. Qin, X. Xue, X. Wang, M. Yao, H. Huang, Intrinsic properties affecting the catalytic activity of 3d transition-metal carbides in Li-O2 battery, J. Phys. Chem. C 122(2018) 17812–17819. doi: 10.1021/acs.jpcc.8b04285
    [34]
    M.M.O. Thotiyl, S.A. Freunberger, Z. Peng, Y. Chen, Z. Liu, P.G. Bruce, A stable cathode for the aprotic Li-O2 battery, Nat. Mater. 12(2013) 1050–1056. doi: 10.1038/nmat3737
    [35]
    Z. Peng, S.A. Freunberger, Y. Chen, P.G. Bruce, A reversible and higher-rate Li-O2 battery, Science 337(2012) 563–566. doi: 10.1126/science.1223985
    [36]
    C.O. Laoire, S. Mukerjee, K. Abraham, E.J. Plichta, M.A. Hendrickson, Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium–air battery, J. Phys. Chem. C 114(2010) 9178–9186. doi: 10.1021/jp102019y
    [37]
    M.J. Trahan, S. Mukerjee, E.J. Plichta, M.A. Hendrickson, K. Abraham, Studies of Liair cells utilizing dimethyl sulfoxide-based electrolyte, J. Electrochem. Soc. 160(2012) A259.
    [38]
    D. Xu, Z.-l. Wang, J.-j. Xu, L.-l. Zhang, X.-b. Zhang, Novel dmso-based electrolyte for high performance rechargeable Li-O2 batteries, Chem. Commun. 48(2012) 6948–6950. doi: 10.1039/c2cc32844e
    [39]
    K.R. Yoon, K. Shin, J. Park, S.-H. Cho, C. Kim, J.-W. Jung, J.Y. Cheong, H.R. Byon, H.M. Lee, I.-D. Kim, Brush-like cobalt nitride anchored carbon nanofiber membrane: current collector-catalyst integrated cathode for long cycle Li-O2 batteries, ACS Nano 12(2018) 128–139. doi: 10.1021/acsnano.7b03794
    [40]
    S. Xu, Y. Yao, Y. Guo, X. Zeng, S.D. Lacey, H. Song, C. Chen, Y. Li, J. Dai, Y. Wang, Textile inspired lithium–oxygen battery cathode with decoupled oxygen and electrolyte pathways, Adv. Mater. 30(2018) 1704907. doi: 10.1002/adma.201704907
    [41]
    X.Y. Yang, J.J. Xu, Z.W. Chang, D. Bao, Y.B. Yin, T. Liu, J.M. Yan, D.P. Liu, Y. Zhang, X.B. Zhang, Blood-capillary-inspired, free-standing, flexible, and low-cost superhydrophobic N-CNTs@SS cathodes for high-capacity, high-rate, and stable Li-air batteries, Adv. Energy Mater. 8(2018) 1702242. doi: 10.1002/aenm.201702242
    [42]
    H. Song, S. Xu, Y. Li, J. Dai, A. Gong, M. Zhu, C. Zhu, C. Chen, Y. Chen, Y. Yao, Hierarchically porous, ultrathick, "breathable" wood-derived cathode for lithiumoxygen batteries, Adv. Energy Mater. 8(2018) 1701203. doi: 10.1002/aenm.201701203
    [43]
    Y.J. Lee, S.H. Park, S.H. Kim, Y. Ko, K. Kang, Y.J. Lee, High-rate and high-arealcapacity air cathodes with enhanced cycle life based on RuO2/MnO2 bifunctional electrocatalysts supported on CNT for pragmatic Li-O2 batteries, ACS Catal. 8(2018) 2923–2934. doi: 10.1021/acscatal.8b00248
    [44]
    X. Lin, R. Yuan, S. Cai, Y. Jiang, J. Lei, S.G. Liu, Q.H. Wu, H.G. Liao, M. Zheng, Q. Dong, An open-structured matrix as oxygen cathode with high catalytic activity and large Li2O2 accommodations for lithium–oxygen batteries, Adv. Energy Mater. 8(2018) 1800089. doi: 10.1002/aenm.201800089
    [45]
    G. Liu, W. Li, R. Bi, C. Atangana Etogo, X.-Y. Yu, L. Zhang, Cation-assisted formation of porous TiO2-x nanoboxes with high grain boundary density as efficient electrocatalysts for lithium–oxygen batteries, ACS Catal. 8(2018) 1720–1727. doi: 10.1021/acscatal.7b04182
    [46]
    A. Dutta, R.A. Wong, W. Park, K. Yamanaka, T. Ohta, Y. Jung, H.R. Byon, Nanostructuring one-dimensional and amorphous lithium peroxide for high roundtrip efficiency in lithium-oxygen batteries, Nat. Commun. 9(2018) 1–10. doi: 10.1038/s41467-017-02088-w
    [47]
    Y. Zheng, R. Gao, L. Zheng, L. Sun, Z. Hu, X. Liu, Ultrathin Co3O4 nanosheets with edge-enriched {111} planes as efficient catalysts for lithium–oxygen batteries, ACS Catal. 9(2019) 3773–3782. doi: 10.1021/acscatal.8b05182
    [48]
    P. Wang, C. Li, S. Dong, X. Ge, P. Zhang, X. Miao, R. Wang, Z. Zhang, L. Yin, Hierarchical NiCo2S4@NiO core–shell heterostructures as catalytic cathode for long-life Li-O2 batteries, Adv. Energy Mater. 9(2019) 1900788. doi: 10.1002/aenm.201900788
    [49]
    Z. Zhu, A. Kushima, Z. Yin, L. Qi, K. Amine, J. Lu, J. Li, Anion-redox nanolithia cathodes for Li-ion batteries, Nat. Energy 1(2016) 16111. doi: 10.1038/nenergy.2016.111
    [50]
    X. Xu, Y. Sun, Z. Fan, D. Zhao, S. Xiong, B. Zhang, S. Zhou, G. Liu, Mechanisms for ·O2- and ·OH production on flowerlike BiVO4 photocatalysis based on electron spin resonance, Front. Chem. 6(2018) 64. doi: 10.3389/fchem.2018.00064
    [51]
    T. Liu, L. Lin, X. Bi, L. Tian, K. Yang, J. Liu, M. Li, Z. Chen, J. Lu, K. Amine, In situ quantification of interphasial chemistry in Li-ion battery, Nat. Nanotechnol. 14(2019) 50–56. doi: 10.1038/s41565-018-0284-y
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (174) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return