Volume 2 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
Li Ziyun, Wang Wentao, Qian Qizhu, Zhu Yin, Feng Yafei, Zhang Yangyang, Zhang Huaikun, Cheng Mingyu, Zhang Genqiang. Magic hybrid structure as multifunctional electrocatalyst surpassing benchmark Pt/C enables practical hydrazine fuel cell integrated with energy-saving H2 production[J]. eScience, 2022, 2(4): 416-427. doi: 10.1016/j.esci.2022.06.004
Citation: Li Ziyun, Wang Wentao, Qian Qizhu, Zhu Yin, Feng Yafei, Zhang Yangyang, Zhang Huaikun, Cheng Mingyu, Zhang Genqiang. Magic hybrid structure as multifunctional electrocatalyst surpassing benchmark Pt/C enables practical hydrazine fuel cell integrated with energy-saving H2 production[J]. eScience, 2022, 2(4): 416-427. doi: 10.1016/j.esci.2022.06.004

Magic hybrid structure as multifunctional electrocatalyst surpassing benchmark Pt/C enables practical hydrazine fuel cell integrated with energy-saving H2 production

doi: 10.1016/j.esci.2022.06.004
More Information
  • Corresponding author: E-mail address: gqzhangmse@ustc.edu.cn (G. Zhang)
  • Received Date: 2022-03-23
  • Revised Date: 2022-05-19
  • Accepted Date: 2022-06-16
  • Available Online: 2022-06-27
  • A hybrid catalyst structure can provide abundant active sites and tailored electronic properties, but the major challenge lies in achieving delicate control over its composition and architecture to improve the catalytic activity toward different electrochemical reactions simultaneously. Herein, we present the rational design of a magic hybrid structure with low Pt loading (5.90 ​wt%), composed of CoPt3 and CoPt nanoparticles supported on N-doped carbon (CoPt3/CoPt⊂PLNC). Importantly, it shows superior multifunctional catalytic activity in alkaline conditions, requiring a low overpotential of 341 and 20 ​mV to achieve 10 ​mA ​cm−2 for the hydrazine oxidation reaction (HzOR)/hydrogen evolution reaction (HER), respectively, and it delivers a half-wave potential of 0.847 ​V for the oxygen reduction reaction (ORR). Theoretical calculations reveal that the metal–carbon hybrid modulates kinetic behavior and induces electron redistribution, achieving the energetic requirements for multiple electrocatalysis. We demonstrate sustainable H2 production utilizing solely the CoPt3/CoPt⊂PLNC catalyst, without external electric power input, suggesting its inspiring practical utility.
  • ● The delicate construction of a metal–carbon nanohybrid enhances electrocatalytic activity exceeding benchmark Pt/C.
    ● An integrated system for green H2 production without external electric power input is demonstrated.
    ● Symbiotic CoPt and CoPt3 coupled with carbon enables excellent multifunctional electrocatalytic performance.
  • loading
  • eScience-2-4-416.doc
  • [1]
    M. Zhou, C. Li, J. Fang, Noble-metal based random alloy and intermetallic nanocrystals: syntheses and applications, Chem. Rev. 121 (2021) 736-795 doi: 10.1021/acs.chemrev.0c00436
    [2]
    Y. Yan, J.Y. Zhang, X.R. Shi, Y. Zhu, C. Xia, S. Zaman, X. Hu, X. Wang, B.Y. Xia, A zeolitic-imidazole framework-derived trifunctional electrocatalyst for hydrazine fuel cells, ACS Nano 15 (2021) 10286-10295 doi: 10.1021/acsnano.1c02440
    [3]
    Y. Huang, M. Zhu, Y. Huang, Z. Pei, H. Li, Z. Wang, Q. Xue, C. Zhi, Multifunctional energy storage and conversion devices, Adv. Mater. 28 (2016) 8344-8364 doi: 10.1002/adma.201601928
    [4]
    D.H. Kweon, M.S. Okyay, S.J. Kim, J.P. Jeon, H.J. Noh, N. Park, J. Mahmood, J.B. Baek, Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced faradaic efficiency, Nat. Commun. 11 (2020) 1278 doi: 10.1038/s41467-020-15069-3
    [5]
    J. Ying, J. Li, G.P. Jiang, Z.P. Cano, Z. Ma, C. Zhong, D. Su, Z.W. Chen, Metal-organic frameworks derived platinum-cobalt bimetallic nanoparticles in nitrogen-doped hollow porous carbon capsules as a highly active and durable catalyst for oxygen reduction reaction, Appl. Catal. B 225 (2018) 496-503 doi: 10.1016/j.apcatb.2017.11.077
    [6]
    X.R. Zhao, C. Xi, R. Zhang, L. Song, C.Y. Wang, J.S. Spendelow, A.I. Frenkel, J. Yang, H.L. Xin, K. Sasaki, High-performance nitrogen-doped intermetallic PtNi catalyst for the oxygen reduction reaction, ACS Catal. 10 (2020) 10637-10645 doi: 10.1021/acscatal.0c03036
    [7]
    T.Y. Yoo, J.M. Yoo, A.K. Sinha, M.S. Bootharaju, E. Jung, H.S. Lee, B.H. Lee, J. Kim, W.H. Antink, Y.M. Kim, J. Lee, E. Lee, D.W. Lee, S.P. Cho, S.J. Yoo, Y.E. Sung, T. Hyeon, Direct synthesis of intermetallic platinum-alloy nanoparticles highly loaded on carbon supports for efficient electrocatalysis, J. Am. Chem. Soc. 142 (2020) 14190-14200 doi: 10.1021/jacs.0c05140
    [8]
    Z. Li, Z. Qi, S. Wang, T. Ma, L. Zhou, Z. Wu, X. Luan, F.Y. Lin, M. Chen, J.T. Miller, H. Xin, W. Huang, Y. Wu, In situ formed Pt3Ti nanoparticles on a two-dimensional transition metal carbide (MXene) used as efficient catalysts for hydrogen evolution reactions, Nano Lett. 19 (2019) 5102-5108 doi: 10.1021/acs.nanolett.9b01381
    [9]
    Y.L. Zhang, M.C. Luo, Y. Yang, Y.J. Li, S.J. Guo, Advanced multifunctional electrocatalysts for energy conversion, ACS Energy Lett. 4 (2019) 1672-1680 doi: 10.1021/acsenergylett.9b01045
    [10]
    C. Hu, Q. Dai, L. Dai, Multifunctional carbon-based metal-free catalysts for advanced energy conversion and storage, Cell Rep. Phys. Sci. 2 (2021) 100328 doi: 10.1016/j.xcrp.2021.100328
    [11]
    Y. Liu, J. Zhang, Y. Li, Q. Qian, Z. Li, Y. Zhu, G. Zhang, Manipulating dehydrogenation kinetics through dual-doping Co3N electrode enables highly efficient hydrazine oxidation assisting self-powered H2 production, Nat. Commun. 11 (2020) 1853 doi: 10.1038/s41467-020-15563-8
    [12]
    H. Liu, J. Guan, S. Yang, Y. Yu, R. Shao, Z. Zhang, M. Dou, F. Wang, Q. Xu, Metal-organic-framework-derived Co2P nanoparticle/multi-doped porous carbon as a trifunctional electrocatalyst, Adv. Mater. 32 (2020) 2003649 doi: 10.1002/adma.202003649
    [13]
    Y. Guo, J. Li, Y. Yuan, L. Li, M. Zhang, C. Zhou, Z. Lin, A rapid microwave-assisted thermolysis route to highly crystalline carbon nitrides for efficient hydrogen generation, Angew. Chem. Int. Ed. 55 (2016) 14693-14697 doi: 10.1002/anie.201608453
    [14]
    Q. Lu, J. Yu, X. Zou, K. Liao, P. Tan, W. Zhou, M. Ni, Z. Shao, Self-catalyzed growth of Co, N-codoped CNTs on carbon-encased CoSx surface: A noble-metal-free bifunctional oxygen electrocatalyst for flexible solid Zn-air batteries, Adv. Funct. Mater. 29 (2019) 1904481 doi: 10.1002/adfm.201904481
    [15]
    Y.P. Li, Y. Liu, Q.Z. Qian, G.R. Wang, G.Q. Zhang, Supramolecular assisted one-pot synthesis of donut-shaped CoP@PNC hybrid nanostructures as multifunctional electrocatalysts for rechargeable Zn-air batteries and self-powered hydrogen production, Energy Storage Mater. 28 (2020) 27-36 doi: 10.1117/12.2576226
    [16]
    Z.C. Xing, C. Han, D.W. Wang, Q. Li, X.R. Yang, Ultrafine Pt nanoparticle-decorated Co(OH)2 nanosheet arrays with enhanced catalytic activity toward hydrogen evolution, ACS Catal. 7 (2017) 7131-7135 doi: 10.1021/acscatal.7b01994
    [17]
    Y. Luo, X. Li, X. Cai, X. Zou, F. Kang, H.M. Cheng, B. Liu, Two-dimensional MoS2 confined Co(OH)2 electrocatalysts for hydrogen evolution in alkaline electrolytes, ACS Nano 12 (2018) 4565-4573 doi: 10.1021/acsnano.8b00942
    [18]
    P. Li, Z. Jin, Y. Qian, Z. Fang, D. Xiao, G. Yu, Probing enhanced site activity of Co-Fe bimetallic subnanoclusters derived from dual cross-linked hydrogels for oxygen electrocatalysis, ACS Energy Lett. 4 (2019) 1793-1802 doi: 10.1021/acsenergylett.9b00893
    [19]
    T. Varga, G. Ballai, L. Vasarhelyi, H. Haspel, A. Kukovecz, Z. Konya, Co4N/nitrogen-doped graphene: A non-noble metal oxygen reduction electrocatalyst for alkaline fuel cells, Appl. Catal. B 237 (2018) 826-834 doi: 10.1016/j.apcatb.2018.06.054
    [20]
    C. Dong, C. Lian, S. Hu, Z. Deng, J. Gong, M. Li, H. Liu, M. Xing, J. Zhang, Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles, Nat. Commun. 9 (2018) 1252 doi: 10.1038/s41467-018-03666-2
    [21]
    Y. Zhao, C. Wang, J. Liu, F. Wang, PDA-assisted formation of ordered intermetallic CoPt3 catalysts with enhanced oxygen reduction activity and stability, Nanoscale 10 (2018) 9038-9043 doi: 10.1039/C8NR02207K
    [22]
    J.H. Zeng, J.Y. Lee, Effects of preparation conditions on performance of carbon-supported nanosize Pt-Co catalysts for methanol electro-oxidation under acidic conditions, J. Power Sources 140 (2005) 268-273 doi: 10.1016/j.jpowsour.2004.08.022
    [23]
    Y. Xiong, Y. Yang, F.J. DiSalvo, H.D. Abruna, Synergistic bimetallic metallic organic framework-derived Pt-Co oxygen reduction electrocatalysts, ACS Nano 14 (2020) 13069-13080 doi: 10.1021/acsnano.0c04559
    [24]
    D. Wang, H.L. Xin, R. Hovden, H. Wang, Y. Yu, D.A. Muller, F.J. DiSalvo, H.D. Abruna, Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts, Nat. Mater. 12 (2013) 81-87 doi: 10.1038/nmat3458
    [25]
    M. Zhang, J. Zhu, B. Liu, Y. Hou, C. Zhang, J. Wang, J. Niu, Ultrafine Co6W6C as an efficient anode catalyst for direct hydrazine fuel cells, Chem. Commun. 57 (2021) 10415-10418 doi: 10.1039/d1cc03446d
    [26]
    S. Chen, J. Duan, A. Vasileff, S.Z. Qiao, Size fractionation of two-dimensional sub-nanometer thin manganese dioxide crystals towards superior urea electrocatalytic conversion, Angew. Chem. Int. Ed. 55 (2016) 3804-3808 doi: 10.1002/anie.201600387
    [27]
    L.F. Shen, B.A. Lu, Y.Y. Li, J. Liu, Z.C. Huang-Fu, H. Peng, J.Y. Ye, X.M. Qu, J.M. Zhang, G. Li, W.B. Cai, Y.X. Jiang, S.G. Sun, Interfacial structure of water as a new descriptor of the hydrogen evolution reaction, Angew. Chem. Int. Ed. 59 (2020) 22397-22402 doi: 10.1002/anie.202007567
    [28]
    Y.C. Wang, L.Y. Wan, P.X. Cui, L. Tong, Y.Q. Ke, T. Sheng, M. Zhang, S.H. Sun, H.W. Liang, Y.S. Wang, K. Zaghib, H. Wang, Z.Y. Zhou, J. Yuan, Porous carbon membrane-supported atomically dispersed pyrrole-type FeN4 as active sites for electrochemical hydrazine oxidation reaction, Small 16 (2020) 2002203 doi: 10.1002/smll.202002203
    [29]
    Q.Q. Sun, L.Y. Wang, Y.Q. Shen, M. Zhou, Y. Ma, Z.L. Wang, C. Zhao, Bifunctional copper-doped nickel catalysts enable energy-efficient hydrogen production via hydrazine oxidation and hydrogen evolution reduction, ACS Sustain. Chem. Eng. 6 (2018) 12746-12754 doi: 10.1021/acssuschemeng.8b01887
    [30]
    C. Tang, R. Zhang, W. Lu, Z. Wang, D. Liu, S. Hao, G. Du, A.M. Asiri, X. Sun, Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst, Angew. Chem. Int. Ed. 56 (2017) 842-846 doi: 10.1002/anie.201608899
    [31]
    F. Sun, J. Qin, Z. Wang, M. Yu, X. Wu, X. Sun, J. Qiu, Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation, Nat. Commun. 12 (2021) 4182 doi: 10.1038/s41467-021-24529-3
    [32]
    Y.R. Zheng, P. Wu, M.R. Gao, X.L. Zhang, F.Y. Gao, H.X. Ju, R. Wu, Q. Gao, R. You, W.X. Huang, S.J. Liu, S.W. Hu, J. Zhu, Z. Li, S.H. Yu, Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis, Nat. Commun. 9 (2018) 2533 doi: 10.1038/s41467-018-04954-7
    [33]
    J. Li, S. Sharma, X. Liu, Y. -T. Pan, J.S. Spendelow, M. Chi, Y. Jia, P. Zhang, D.A. Cullen, Z. Xi, H. Lin, Z. Yin, B. Shen, M. Muzzio, C. Yu, Y.S. Kim, A.A. Peterson, K.L. More, H. Zhu, S. Sun, Hard-magnet L10-CoPt nanoparticles advance fuel cell catalysis, Joule 3 (2019) 124-135 doi: 10.1016/j.joule.2018.09.016
    [34]
    Y. Li, J. Zhang, Y. Liu, Q. Qian, Z. Li, Y. Zhu, G. Zhang, Partially exposed RuP2 surface in hybrid structure endows its bifunctionality for hydrazine oxidation and hydrogen evolution catalysis, Sci. Adv. 6 (2020) eabb4197 doi: 10.1126/sciadv.abb4197
    [35]
    G. Feng, L. An, B. Li, Y. Zuo, J. Song, F. Ning, N. Jiang, X. Cheng, Y. Zhang, D. Xia, Atomically ordered non-precious Co3Ta intermetallic nanoparticles as high-performance catalysts for hydrazine electrooxidation, Nat. Commun. 10 (2019) 4514 doi: 10.1038/s41467-019-12509-7
    [36]
    J. Diao, Y. Qiu, S. Liu, W. Wang, K. Chen, H. Li, W. Yuan, Y. Qu, X. Guo, Interfacial engineering of W2N/WC heterostructures derived from solid-state synthesis: A highly efficient trifunctional electrocatalyst for ORR, OER, and HER, Adv. Mater. 32 (2020) 1905679 doi: 10.1002/adma.201905679
    [37]
    G. Lv, Y. Wu, Y. Wang, W. Kang, H. Zhang, M. Zhou, Z. Huang, J. Li, Z. Guo, Y. Wang, Rational design of perfect interface coupling to boost electrocatalytical oxygen reduction, Nano Energy 76 (2020) 105055 doi: 10.1016/j.nanoen.2020.105055
    [38]
    J. Zhang, Y. Liu, J. Li, X. Jin, Y. Li, Q. Qian, Y. Wang, A. El-Harairy, Z. Li, Y. Zhu, H. Zhang, M. Cheng, S. Zeng, G. Zhang, Vanadium substitution steering reaction kinetics acceleration for Ni3N nanosheets endows exceptionally energy-saving hydrogen evolution coupled with hydrazine oxidation, ACS Appl. Mater. Interfaces 13 (2021) 3881-3890 doi: 10.1021/acsami.0c18684
    [39]
    Y. Zheng, Y. Jiao, Y. Zhu, L.H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, S.Z. Qiao, Hydrogen evolution by a metal-free electrocatalyst, Nat. Commun. 5 (2014) 3783 doi: 10.1038/ncomms4783
    [40]
    W. Gou, J. Li, W. Gao, Z. Xia, S. Zhang, Y. Ma, Downshifted d-band center of Ru/MWCNTs by turbostratic carbon nitride for efficient and robust hydrogen evolution in alkali, ChemCatChem 11 (2019) 1970-1976 doi: 10.1002/cctc.201900006
    [41]
    K. Tu, D. Tranca, F. Rodriguez-Hernández, K. Jiang, S. Huang, Q. Zheng, M.X. Chen, C. Lu, Y. Su, Z. Chen, H. Mao, C. Yang, J. Jiang, H.W. Liang, X. Zhuang, A novel heterostructure based on RuMo nanoalloys and N-doped carbon as an efficient electrocatalyst for the hydrogen evolution reaction, Adv. Mater. 32 (2020) 2005433 doi: 10.1002/adma.202005433
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (137) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return