Citation: | Li Ziyun, Wang Wentao, Qian Qizhu, Zhu Yin, Feng Yafei, Zhang Yangyang, Zhang Huaikun, Cheng Mingyu, Zhang Genqiang. Magic hybrid structure as multifunctional electrocatalyst surpassing benchmark Pt/C enables practical hydrazine fuel cell integrated with energy-saving H2 production[J]. eScience, 2022, 2(4): 416-427. doi: 10.1016/j.esci.2022.06.004 |
![]() |
![]() |
[1] |
M. Zhou, C. Li, J. Fang, Noble-metal based random alloy and intermetallic nanocrystals: syntheses and applications, Chem. Rev. 121 (2021) 736-795 doi: 10.1021/acs.chemrev.0c00436
|
[2] |
Y. Yan, J.Y. Zhang, X.R. Shi, Y. Zhu, C. Xia, S. Zaman, X. Hu, X. Wang, B.Y. Xia, A zeolitic-imidazole framework-derived trifunctional electrocatalyst for hydrazine fuel cells, ACS Nano 15 (2021) 10286-10295 doi: 10.1021/acsnano.1c02440
|
[3] |
Y. Huang, M. Zhu, Y. Huang, Z. Pei, H. Li, Z. Wang, Q. Xue, C. Zhi, Multifunctional energy storage and conversion devices, Adv. Mater. 28 (2016) 8344-8364 doi: 10.1002/adma.201601928
|
[4] |
D.H. Kweon, M.S. Okyay, S.J. Kim, J.P. Jeon, H.J. Noh, N. Park, J. Mahmood, J.B. Baek, Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced faradaic efficiency, Nat. Commun. 11 (2020) 1278 doi: 10.1038/s41467-020-15069-3
|
[5] |
J. Ying, J. Li, G.P. Jiang, Z.P. Cano, Z. Ma, C. Zhong, D. Su, Z.W. Chen, Metal-organic frameworks derived platinum-cobalt bimetallic nanoparticles in nitrogen-doped hollow porous carbon capsules as a highly active and durable catalyst for oxygen reduction reaction, Appl. Catal. B 225 (2018) 496-503 doi: 10.1016/j.apcatb.2017.11.077
|
[6] |
X.R. Zhao, C. Xi, R. Zhang, L. Song, C.Y. Wang, J.S. Spendelow, A.I. Frenkel, J. Yang, H.L. Xin, K. Sasaki, High-performance nitrogen-doped intermetallic PtNi catalyst for the oxygen reduction reaction, ACS Catal. 10 (2020) 10637-10645 doi: 10.1021/acscatal.0c03036
|
[7] |
T.Y. Yoo, J.M. Yoo, A.K. Sinha, M.S. Bootharaju, E. Jung, H.S. Lee, B.H. Lee, J. Kim, W.H. Antink, Y.M. Kim, J. Lee, E. Lee, D.W. Lee, S.P. Cho, S.J. Yoo, Y.E. Sung, T. Hyeon, Direct synthesis of intermetallic platinum-alloy nanoparticles highly loaded on carbon supports for efficient electrocatalysis, J. Am. Chem. Soc. 142 (2020) 14190-14200 doi: 10.1021/jacs.0c05140
|
[8] |
Z. Li, Z. Qi, S. Wang, T. Ma, L. Zhou, Z. Wu, X. Luan, F.Y. Lin, M. Chen, J.T. Miller, H. Xin, W. Huang, Y. Wu, In situ formed Pt3Ti nanoparticles on a two-dimensional transition metal carbide (MXene) used as efficient catalysts for hydrogen evolution reactions, Nano Lett. 19 (2019) 5102-5108 doi: 10.1021/acs.nanolett.9b01381
|
[9] |
Y.L. Zhang, M.C. Luo, Y. Yang, Y.J. Li, S.J. Guo, Advanced multifunctional electrocatalysts for energy conversion, ACS Energy Lett. 4 (2019) 1672-1680 doi: 10.1021/acsenergylett.9b01045
|
[10] |
C. Hu, Q. Dai, L. Dai, Multifunctional carbon-based metal-free catalysts for advanced energy conversion and storage, Cell Rep. Phys. Sci. 2 (2021) 100328 doi: 10.1016/j.xcrp.2021.100328
|
[11] |
Y. Liu, J. Zhang, Y. Li, Q. Qian, Z. Li, Y. Zhu, G. Zhang, Manipulating dehydrogenation kinetics through dual-doping Co3N electrode enables highly efficient hydrazine oxidation assisting self-powered H2 production, Nat. Commun. 11 (2020) 1853 doi: 10.1038/s41467-020-15563-8
|
[12] |
H. Liu, J. Guan, S. Yang, Y. Yu, R. Shao, Z. Zhang, M. Dou, F. Wang, Q. Xu, Metal-organic-framework-derived Co2P nanoparticle/multi-doped porous carbon as a trifunctional electrocatalyst, Adv. Mater. 32 (2020) 2003649 doi: 10.1002/adma.202003649
|
[13] |
Y. Guo, J. Li, Y. Yuan, L. Li, M. Zhang, C. Zhou, Z. Lin, A rapid microwave-assisted thermolysis route to highly crystalline carbon nitrides for efficient hydrogen generation, Angew. Chem. Int. Ed. 55 (2016) 14693-14697 doi: 10.1002/anie.201608453
|
[14] |
Q. Lu, J. Yu, X. Zou, K. Liao, P. Tan, W. Zhou, M. Ni, Z. Shao, Self-catalyzed growth of Co, N-codoped CNTs on carbon-encased CoSx surface: A noble-metal-free bifunctional oxygen electrocatalyst for flexible solid Zn-air batteries, Adv. Funct. Mater. 29 (2019) 1904481 doi: 10.1002/adfm.201904481
|
[15] |
Y.P. Li, Y. Liu, Q.Z. Qian, G.R. Wang, G.Q. Zhang, Supramolecular assisted one-pot synthesis of donut-shaped CoP@PNC hybrid nanostructures as multifunctional electrocatalysts for rechargeable Zn-air batteries and self-powered hydrogen production, Energy Storage Mater. 28 (2020) 27-36 doi: 10.1117/12.2576226
|
[16] |
Z.C. Xing, C. Han, D.W. Wang, Q. Li, X.R. Yang, Ultrafine Pt nanoparticle-decorated Co(OH)2 nanosheet arrays with enhanced catalytic activity toward hydrogen evolution, ACS Catal. 7 (2017) 7131-7135 doi: 10.1021/acscatal.7b01994
|
[17] |
Y. Luo, X. Li, X. Cai, X. Zou, F. Kang, H.M. Cheng, B. Liu, Two-dimensional MoS2 confined Co(OH)2 electrocatalysts for hydrogen evolution in alkaline electrolytes, ACS Nano 12 (2018) 4565-4573 doi: 10.1021/acsnano.8b00942
|
[18] |
P. Li, Z. Jin, Y. Qian, Z. Fang, D. Xiao, G. Yu, Probing enhanced site activity of Co-Fe bimetallic subnanoclusters derived from dual cross-linked hydrogels for oxygen electrocatalysis, ACS Energy Lett. 4 (2019) 1793-1802 doi: 10.1021/acsenergylett.9b00893
|
[19] |
T. Varga, G. Ballai, L. Vasarhelyi, H. Haspel, A. Kukovecz, Z. Konya, Co4N/nitrogen-doped graphene: A non-noble metal oxygen reduction electrocatalyst for alkaline fuel cells, Appl. Catal. B 237 (2018) 826-834 doi: 10.1016/j.apcatb.2018.06.054
|
[20] |
C. Dong, C. Lian, S. Hu, Z. Deng, J. Gong, M. Li, H. Liu, M. Xing, J. Zhang, Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles, Nat. Commun. 9 (2018) 1252 doi: 10.1038/s41467-018-03666-2
|
[21] |
Y. Zhao, C. Wang, J. Liu, F. Wang, PDA-assisted formation of ordered intermetallic CoPt3 catalysts with enhanced oxygen reduction activity and stability, Nanoscale 10 (2018) 9038-9043 doi: 10.1039/C8NR02207K
|
[22] |
J.H. Zeng, J.Y. Lee, Effects of preparation conditions on performance of carbon-supported nanosize Pt-Co catalysts for methanol electro-oxidation under acidic conditions, J. Power Sources 140 (2005) 268-273 doi: 10.1016/j.jpowsour.2004.08.022
|
[23] |
Y. Xiong, Y. Yang, F.J. DiSalvo, H.D. Abruna, Synergistic bimetallic metallic organic framework-derived Pt-Co oxygen reduction electrocatalysts, ACS Nano 14 (2020) 13069-13080 doi: 10.1021/acsnano.0c04559
|
[24] |
D. Wang, H.L. Xin, R. Hovden, H. Wang, Y. Yu, D.A. Muller, F.J. DiSalvo, H.D. Abruna, Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts, Nat. Mater. 12 (2013) 81-87 doi: 10.1038/nmat3458
|
[25] |
M. Zhang, J. Zhu, B. Liu, Y. Hou, C. Zhang, J. Wang, J. Niu, Ultrafine Co6W6C as an efficient anode catalyst for direct hydrazine fuel cells, Chem. Commun. 57 (2021) 10415-10418 doi: 10.1039/d1cc03446d
|
[26] |
S. Chen, J. Duan, A. Vasileff, S.Z. Qiao, Size fractionation of two-dimensional sub-nanometer thin manganese dioxide crystals towards superior urea electrocatalytic conversion, Angew. Chem. Int. Ed. 55 (2016) 3804-3808 doi: 10.1002/anie.201600387
|
[27] |
L.F. Shen, B.A. Lu, Y.Y. Li, J. Liu, Z.C. Huang-Fu, H. Peng, J.Y. Ye, X.M. Qu, J.M. Zhang, G. Li, W.B. Cai, Y.X. Jiang, S.G. Sun, Interfacial structure of water as a new descriptor of the hydrogen evolution reaction, Angew. Chem. Int. Ed. 59 (2020) 22397-22402 doi: 10.1002/anie.202007567
|
[28] |
Y.C. Wang, L.Y. Wan, P.X. Cui, L. Tong, Y.Q. Ke, T. Sheng, M. Zhang, S.H. Sun, H.W. Liang, Y.S. Wang, K. Zaghib, H. Wang, Z.Y. Zhou, J. Yuan, Porous carbon membrane-supported atomically dispersed pyrrole-type FeN4 as active sites for electrochemical hydrazine oxidation reaction, Small 16 (2020) 2002203 doi: 10.1002/smll.202002203
|
[29] |
Q.Q. Sun, L.Y. Wang, Y.Q. Shen, M. Zhou, Y. Ma, Z.L. Wang, C. Zhao, Bifunctional copper-doped nickel catalysts enable energy-efficient hydrogen production via hydrazine oxidation and hydrogen evolution reduction, ACS Sustain. Chem. Eng. 6 (2018) 12746-12754 doi: 10.1021/acssuschemeng.8b01887
|
[30] |
C. Tang, R. Zhang, W. Lu, Z. Wang, D. Liu, S. Hao, G. Du, A.M. Asiri, X. Sun, Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst, Angew. Chem. Int. Ed. 56 (2017) 842-846 doi: 10.1002/anie.201608899
|
[31] |
F. Sun, J. Qin, Z. Wang, M. Yu, X. Wu, X. Sun, J. Qiu, Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation, Nat. Commun. 12 (2021) 4182 doi: 10.1038/s41467-021-24529-3
|
[32] |
Y.R. Zheng, P. Wu, M.R. Gao, X.L. Zhang, F.Y. Gao, H.X. Ju, R. Wu, Q. Gao, R. You, W.X. Huang, S.J. Liu, S.W. Hu, J. Zhu, Z. Li, S.H. Yu, Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis, Nat. Commun. 9 (2018) 2533 doi: 10.1038/s41467-018-04954-7
|
[33] |
J. Li, S. Sharma, X. Liu, Y. -T. Pan, J.S. Spendelow, M. Chi, Y. Jia, P. Zhang, D.A. Cullen, Z. Xi, H. Lin, Z. Yin, B. Shen, M. Muzzio, C. Yu, Y.S. Kim, A.A. Peterson, K.L. More, H. Zhu, S. Sun, Hard-magnet L10-CoPt nanoparticles advance fuel cell catalysis, Joule 3 (2019) 124-135 doi: 10.1016/j.joule.2018.09.016
|
[34] |
Y. Li, J. Zhang, Y. Liu, Q. Qian, Z. Li, Y. Zhu, G. Zhang, Partially exposed RuP2 surface in hybrid structure endows its bifunctionality for hydrazine oxidation and hydrogen evolution catalysis, Sci. Adv. 6 (2020) eabb4197 doi: 10.1126/sciadv.abb4197
|
[35] |
G. Feng, L. An, B. Li, Y. Zuo, J. Song, F. Ning, N. Jiang, X. Cheng, Y. Zhang, D. Xia, Atomically ordered non-precious Co3Ta intermetallic nanoparticles as high-performance catalysts for hydrazine electrooxidation, Nat. Commun. 10 (2019) 4514 doi: 10.1038/s41467-019-12509-7
|
[36] |
J. Diao, Y. Qiu, S. Liu, W. Wang, K. Chen, H. Li, W. Yuan, Y. Qu, X. Guo, Interfacial engineering of W2N/WC heterostructures derived from solid-state synthesis: A highly efficient trifunctional electrocatalyst for ORR, OER, and HER, Adv. Mater. 32 (2020) 1905679 doi: 10.1002/adma.201905679
|
[37] |
G. Lv, Y. Wu, Y. Wang, W. Kang, H. Zhang, M. Zhou, Z. Huang, J. Li, Z. Guo, Y. Wang, Rational design of perfect interface coupling to boost electrocatalytical oxygen reduction, Nano Energy 76 (2020) 105055 doi: 10.1016/j.nanoen.2020.105055
|
[38] |
J. Zhang, Y. Liu, J. Li, X. Jin, Y. Li, Q. Qian, Y. Wang, A. El-Harairy, Z. Li, Y. Zhu, H. Zhang, M. Cheng, S. Zeng, G. Zhang, Vanadium substitution steering reaction kinetics acceleration for Ni3N nanosheets endows exceptionally energy-saving hydrogen evolution coupled with hydrazine oxidation, ACS Appl. Mater. Interfaces 13 (2021) 3881-3890 doi: 10.1021/acsami.0c18684
|
[39] |
Y. Zheng, Y. Jiao, Y. Zhu, L.H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec, S.Z. Qiao, Hydrogen evolution by a metal-free electrocatalyst, Nat. Commun. 5 (2014) 3783 doi: 10.1038/ncomms4783
|
[40] |
W. Gou, J. Li, W. Gao, Z. Xia, S. Zhang, Y. Ma, Downshifted d-band center of Ru/MWCNTs by turbostratic carbon nitride for efficient and robust hydrogen evolution in alkali, ChemCatChem 11 (2019) 1970-1976 doi: 10.1002/cctc.201900006
|
[41] |
K. Tu, D. Tranca, F. Rodriguez-Hernández, K. Jiang, S. Huang, Q. Zheng, M.X. Chen, C. Lu, Y. Su, Z. Chen, H. Mao, C. Yang, J. Jiang, H.W. Liang, X. Zhuang, A novel heterostructure based on RuMo nanoalloys and N-doped carbon as an efficient electrocatalyst for the hydrogen evolution reaction, Adv. Mater. 32 (2020) 2005433 doi: 10.1002/adma.202005433
|