Volume 2 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
Wang Huaping, Liu Jiandong, He Jian, Qi Shihan, Wu Mingguang, Li Fang, Huang Junda, Huang Yun, Ma Jianmin. Pseudo-concentrated electrolytes for lithium metal batteries[J]. eScience, 2022, 2(5): 557-565. doi: 10.1016/j.esci.2022.06.005
Citation: Wang Huaping, Liu Jiandong, He Jian, Qi Shihan, Wu Mingguang, Li Fang, Huang Junda, Huang Yun, Ma Jianmin. Pseudo-concentrated electrolytes for lithium metal batteries[J]. eScience, 2022, 2(5): 557-565. doi: 10.1016/j.esci.2022.06.005

Pseudo-concentrated electrolytes for lithium metal batteries

doi: 10.1016/j.esci.2022.06.005
More Information
  • Corresponding author: E-mail address: nanoelechem@hnu.edu.cn (J. Ma)
  • Received Date: 2022-04-11
  • Revised Date: 2022-06-08
  • Accepted Date: 2022-06-21
  • Available Online: 2022-06-28
  • Lithium metal batteries suffer from short lifespans and low Coulombic efficiency (CE) due to the high reactivity of Li and the poor stability of the solid electrolyte interphase (SEI). Herein, we propose the concept of a pseudo-concentrated electrolyte (PCE) induced by an electron-deficient additive (4-pyridylboronic acid; 4-PBA) to form a robust, LiF-rich SEI, thus addressing the above issues. Molecular dynamics simulations confirm that 4-PBA can increase the coordination number of anions in the Li+ solvation sheath to achieve pseudo-concentrated LiPF6 in the electrolyte. Moreover, the 4-PBA can scavenge harmful PF5 decomposed from LiPF6 to stabilize the LiF-rich SEI. The resulting robust LiF-rich SEI promotes Li growth along the SEI/Li interface and represses the growth of Li dendrites. Thus, excellent performance is achieved, with a high CE of 97.1% for a Li||Cu cell at 1.0 ​mA ​cm−2, and over 950 cycles at 0.5 ​mA ​cm−2 for Li||Li symmetric cells with 1.0 ​wt% 4-PBA electrolyte. Meanwhile, the resulting stable boron-containing cathode electrolyte interphase enables Li||LiNi0·6Co0·2Mn0·2O2 (NCM622) cells to achieve excellent stability, with a capacity retention of 86.9% after 200 cycles.
  • ● 4-pyridylboronic acid can scavenge harmful PF5 in the electrolyte.
    ● As an additive, 4-pyridylboronic acid can have a pseudo-concentrated effect on electrolytes.
    ● The concept of a pseudo-concentrated electrolyte is presented.
    ● 4-pyridylboronic acid can increase the coordination number of PF6 anions in the Li+ solvation sheath.
    Declaration of competing interest
    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
    Supplementary data to this article can be found online at https://doi.org/10.1016/j.esci.2022.06.005.
    Appendix A. Supplementary data
  • loading
  • eScience-2-5-557.docx
  • [1]
    H. Wang, R. Tan, Z. Yang, Y. Feng, X. Duan, J. Ma, Stabilization perspective on metal anodes for aqueous batteries, Adv. Energy Mater. 11 (2021) 2000962. doi: 10.1002/aenm.202000962
    [2]
    Y. Guo, H. Li, T. Zhai, Reviving lithium-metal anodes for next-generation high-energy batteries, Adv. Mater. 29 (2017) 1700007. doi: 10.1002/adma.201700007
    [3]
    X. Zhou, L. Yu, X.Y. Yu, X.W. Lou, Encapsulating Sn nanoparticles in amorphous carbon nanotubes for enhanced lithium storage properties, Adv. Energy Mater. 6 (2016) 1601177. doi: 10.1002/aenm.201601177
    [4]
    H. Dai, K. Xi, X. Liu, C. Lai, S. Zhang, Cationic surfactant-based electrolyte additives for uniform lithium deposition via lithiophobic repulsion mechanisms, J. Am. Chem. Soc. 140 (2018) 17515–17521. doi: 10.1021/jacs.8b08963
    [5]
    Y. Zhou, M. Su, X. Yu, Y. Zhang, J.G. Wang, X. Ren, R. Cao, W. Xu, D.R. Baer, Y. Du, O. Borodin, Y. Wang, X.L. Wang, K. Xu, Z. Xu, C. Wang, Z. Zhu, Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery, Nat. Nanotechnol. 15 (2020) 224–230. doi: 10.1038/s41565-019-0618-4
    [6]
    W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.G. Zhang, Lithium metal anodes for rechargeable batteries, Energy Environ. Sci. 7 (2014) 513–537. doi: 10.1039/C3EE40795K
    [7]
    F. Qiu, S. Ren, X. Mu, Y. Liu, X. Zhang, P. He, H. Zhou, Towards a stable Li–CO2 battery: the effects of CO2 to the Li metal anode, Energy Stor. Mater. 26 (2020) 443–447. doi: 10.1016/j.ensm.2019.11.017
    [8]
    G. Yasin, M. Arif, T. Mehtab, X. Lu, D. Yu, N. Muhammad, M.T. Nazir, H. Song, Understanding and suppression strategies toward stable Li metal anode for safe lithium batteries, Energy Stor. Mater. 25 (2020) 644–678. doi: 10.1016/j.ensm.2019.09.020
    [9]
    H. Ye, Z.J. Zheng, H.R. Yao, S.C. Liu, T.T. Zuo, X.W. Wu, Y.X. Yin, N.W. Li, J.J. Gu, F.F. Cao, Y.G. Guo, Guiding uniform Li plating/stripping through lithium–aluminum alloying medium for long-life Li metal batteries, Angew. Chem. Int. Ed. 58 (2019) 1094–1099. doi: 10.1002/anie.201811955
    [10]
    L. Liu, Y.X. Yin, J.Y. Li, S.H. Wang, Y.G. Guo, L.J. Wan, Uniform lithium nucleation/ growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes, Adv. Mater. 30 (2018) 1706216. doi: 10.1002/adma.201706216
    [11]
    S. -S. Chi, Y. Liu, W.L. Song, L.Z. Fan, Q. Zhang, Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode, Adv. Funct. Mater. 27 (2017) 1700348. doi: 10.1002/adfm.201700348
    [12]
    S.J. Tan, X.X. Zeng, Q. Ma, X.W. Wu, Y.G. Guo, Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries, Electrochem. Energy Rev. 1 (2018) 113–138. doi: 10.1007/s41918-018-0011-2
    [13]
    W. Zhang, Z. Shen, S. Li, L. Fan, X. Wang, F. Chen, X. Zang, T. Wu, F. Ma, Y. Lu, Engineering wavy-nanostructured anode interphases with fast ion transfer kinetics: toward practical Li-metal full batteries, Adv. Funct. Mater. 30 (2020) 2003800. doi: 10.1002/adfm.202003800
    [14]
    H. Dai, X. Gu, J. Dong, C. Wang, C. Lai, S. Sun, Stabilizing lithium metal anode by octaphenyl polyoxyethylene-lithium complexation, Nat. Commun. 11 (2020) 643. doi: 10.1038/s41467-020-14505-8
    [15]
    J. Xiang, L. Yuan, Y. Shen, Z. Cheng, K. Yuan, Z. Guo, Y. Zhang, X. Chen, Y. Huang, Improved rechargeability of lithium metal anode via controlling lithium-ion flux, Adv. Energy Mater. 8 (2018) 1802352. doi: 10.1002/aenm.201802352
    [16]
    G. Xu, X.S. Guan, S. Dong, X. Zhou, G. Cui, Formulation of blended-lithium-salt electrolytes for lithium batteries, Angew. Chem. Int. Ed. 59 (2020) 3400–3415. doi: 10.1002/anie.201906494
    [17]
    S. Liu, X. Ji, N. Piao, J. Chen, N. Eidson, J. Xu, P. Wang, L. Chen, J. Zhang, T. Deng, S. Hou, T. Jin, H. Wan, J. Li, J. Tu, C. Wang, An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes, Angew. Chem. Int. Ed. 60 (2021) 3661. doi: 10.1002/anie.202012005
    [18]
    J. Chen, Q. Li, T.P. Pollard, X. Fan, O. Borodin, C. Wang, Electrolyte design for Li metal-free Li batteries, Mater. Today 39 (2020) 118–126. doi: 10.1016/j.mattod.2020.04.004
    [19]
    S.J. Tan, J. Yue, X.C. Hu, Z.Z. Shen, W.P. Wang, J.Y. Li, T.T. Zuo, H. Duan, Y. Xiao, Y.X. Yin, R. Wen, Y.G. Guo, Nitriding-interface-regulated lithium plating enables flame-retardant electrolytes for high-voltage lithium metal batteries, Angew. Chem. Int. Ed. 58 (2019) 7802–7807. doi: 10.1002/anie.201903466
    [20]
    M. Wan, X. Duan, H. Cui, J. Du, L. Fu, Z. Chen, Z. Lu, G. Li, Y. Li, E. Mao, L. Wang, Y. Sun, Stabilized Li metal anode with robust C-Li3N interphase for high energy density batteries, Energy Stor. Mater. 46 (2022) 563–569. doi: 10.1016/j.ensm.2022.01.044
    [21]
    M. Watanabe, M.L. Thomas, S. Zhang, K. Ueno, T. Yasuda, K. Dokko, Application of ionic liquids to energy storage and conversion materials and devices, Chem. Rev. 117 (2017) 7190–7239. doi: 10.1021/acs.chemrev.6b00504
    [22]
    S.H. Lee, J.Y. Hwang, J. Ming, Z. Cao, H.A. Nguyen, H.G. Jung, J. Kim, Y.K. Sun, Toward the sustainable lithium metal batteries with a new electrolyte solvation chemistry, Adv. Energy Mater. 10 (2020) 2000567. doi: 10.1002/aenm.202000567
    [23]
    S. Li, M. Jiang, Y. Xie, H. Xu, J. Jia, J. Li, Developing high-performance lithium metal anode in liquid electrolytes: challenges and progress, Adv. Mater. 30 (2018) 1706375. doi: 10.1002/adma.201706375
    [24]
    J. Ma, F. Li, J. He, J. Liu, M. Wu, Y. Hou, H. Wang, S. Qi, Q. Liu, J. Hu, Gradient solid electrolyte interphase and lithium ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries, Angew. Chem. Int. Ed. 60 (2021) 6600–6608. doi: 10.1002/anie.202013993
    [25]
    S. Qi, J. He, J. Liu, H. Wang, M. Wu, F. Li, D. Wu, X. Li, J. Ma, Phosphonium bromides regulating solid electrolyte interphase components and optimizing solvation sheath structure for suppressing lithium dendrite growth, Adv. Funct. Mater. 31 (2021) 2009013. doi: 10.1002/adfm.202009013
    [26]
    W.P. Wang, J. Zhang, Y.X. Yin, H. Duan, J. Chou, S.Y. Li, M. Yan, S. Xin, Y.G. Guo, A rational reconfiguration of electrolyte for high-energy and long-life lithium–chalcogen batteries, Adv. Mater. 32 (2020) 2000302. doi: 10.1002/adma.202000302
    [27]
    H. Jia, L. Zou, P. Gao, X. Cao, W. Zhao, Y. He, M.H. Engelhard, S.D. Burton, H. Wang, X. Ren, Q. Li, R. Yi, X. Zhang, C. Wang, Z. Xu, X. Li, J.G. Zhang, W. Xu, High-performance silicon anodes enabled by nonflammable localized high-concentration electrolytes, Adv. Energy Mater. 9 (2019) 1900784. doi: 10.1002/aenm.201900784
    [28]
    Z. Peng, X. Cao, P. Gao, H. Jia, X. Ren, S. Roy, Z. Li, Y. Zhu, W. Xie, D. Liu, Q. Li, D. Wang, W. Xu, J.G. Zhang, High-power lithium metal batteries enabled by high-concentration acetonitrile-based electrolytes with vinylene carbonate additive, Adv. Funct. Mater. 30 (2020) 2001285. doi: 10.1002/adfm.202001285
    [29]
    Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Advances and issues in developing salt-concentrated battery electrolytes, Nat. Energy 4 (2019) 269–280. doi: 10.1038/s41560-019-0336-z
    [30]
    A. Bouibes, N. Takenaka, S. Saha, M. Nagaoka, Microscopic origin of the solid electrolyte interphase formation in fire-extinguishing electrolyte: formation of pure inorganic layer in high salt concentration, J. Phys. Chem. Lett. 10 (2019) 5949–5955. doi: 10.1021/acs.jpclett.9b02392
    [31]
    Y. Yamada, K. Furukawa, K. Sodeyama, K. Kikuchi, M. Yaegashi, Y. Tateyama, A. Yamada, Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries, J. Am. Chem. Soc. 136 (2014) 5039–5046. doi: 10.1021/ja412807w
    [32]
    H. Wang, M. Matsui, H. Kuwata, H. Sonoki, Y. Matsuda, X. Shang, Y. Takeda, O. Yamamoto, N. Imanishi, A reversible dendrite-free high-areal-capacity lithium metal electrode, Nat. Commun. 8 (2017) 15106. doi: 10.1038/ncomms15106
    [33]
    Y. Yamada, K. Usui, C.H. Chiang, K. Kikuchi, K. Furukawa, A. Yamada, General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes, ACS Appl. Mater. Interfaces 6 (2014) 10892–10899. doi: 10.1021/am5001163
    [34]
    Y. Ding, J. Yun, H. Liu, Z. Wan, M. Shen, L. Zhang, Q. Qu, H. Zheng, A safe and superior propylene carbonate-based electrolyte with high-concentration Li salt, Pure Appl. Chem. 86 (2014) 585–591. doi: 10.1515/pac-2013-1120
    [35]
    K. Kanamura, S. Shiraishi, Z.I. Takehara, Electrochemical deposition of very smooth lithium using nonaqueous electrolytes containing HF, J. Electrochem. Soc. 143 (1996) 2187. doi: 10.1149/1.1836979
    [36]
    J.G. Han, M.Y. Jeong, K. Kim, C. Park, C.H. Sung, D.W. Bak, K.H. Kim, K. -M. Jeong, N.S. Choi, An electrolyte additive capable of scavenging HF and PF5 enables fast charging of lithium-ion batteries in LiPF6-based electrolytes, J. Power Sources 446 (2020) 227366. doi: 10.1016/j.jpowsour.2019.227366
    [37]
    S.F. Lux, I.T. Lucas, E. Pollak, S. Passerini, M. Winter, R. Kostecki, The mechanism of HF formation in LiPF6 based organic carbonate electrolytes, Electrochem. Commun. 14 (2012) 47–50. doi: 10.1016/j.elecom.2011.10.026
    [38]
    X. Li, J. Zheng, X. Ren, M.H. Engelhard, W. Zhao, Q. Li, J.G. Zhang, W. Xu, Dendrite-free and performance-enhanced lithium metal batteries through optimizing solvent compositions and adding combinational additives, Adv. Energy Mater. 8 (2018) 1703022. doi: 10.1002/aenm.201703022
    [39]
    Z. Huang, J. Ren, W. Zhang, M. Xie, Y. Li, D. Sun, Y. Shen, Y. Huang, Protecting the Li-metal anode in a Li-O2 battery by using boric acid as an SEI-forming additive, Adv. Mater. 30 (2018) 1803270. doi: 10.1002/adma.201803270
    [40]
    L. Qiao, Z. Cui, B. Chen, G. Xu, Z. Zhang, J. Ma, H. Du, X. Liu, S. Huang, K. Tang, S. Dong, X. Zhou, G. Cui, A promising bulky anion based lithium borate salt for lithium metal batteries, Chem. Sci. 9 (2018) 3451–3458. doi: 10.1039/C8SC00041G
    [41]
    A. Du, Z. Zhang, H. Qu, Z. Cui, L. Qiao, L. Wang, J. Chai, T. Lu, S. Dong, T. Dong, H. Xu, X. Zhou, G. Cui, An efficient organic magnesium borate-based electrolyte with non-nucleophilic characteristics for magnesium–sulfur battery, Energy Environ. Sci. 10 (2017) 2616–2625. doi: 10.1039/C7EE02304A
    [42]
    Y.C. Chen, C.Y. Ouyang, L.J. Song, Z.L. Sun, Electrical and lithium ion dynamics in three main components of solid electrolyte interphase from density functional theory study, Trends Phys. Chem. C 115 (2011) 7044–7049. doi: 10.1021/jp112202s
    [43]
    G. Ma, L. Wang, X. He, J. Zhang, H. Chen, W. Xu, Y. Ding, Pseudoconcentrated electrolyte with high ionic conductivity and stability enables high-voltage lithium-ion battery chemistry, ACS Appl. Energy Mater. 1 (2018) 5446–5452.
    [44]
    J.F. Ding, R. Xu, N. Yao, X. Chen, Y. Xiao, Y.X. Yao, C. Yan, J. Xie, J.Q. Huang, Non-solvating and low-dielectricity cosolvent for anion-derived solid electrolyte interphases in lithium metal batteries, Angew. Chem. Int. Ed. 60 (2021) 11442–11447. doi: 10.1002/anie.202101627
    [45]
    H. Yue, Y. Yang, Y. Xiao, Z. Dong, S. Cheng, Y. Yin, C. Ling, W. Yang, Y. Yu, S. Yang, Boron additive passivated carbonate electrolytes for stable cycling of 5 V lithium–metal batteries, J. Mater. Chem. 7 (2019) 594–602. doi: 10.1039/C8TA09380F
    [46]
    T. Deng, X. Fan, L. Cao, J. Chen, S. Hou, X. Ji, L. Chen, S. Li, X. Zhou, E. Hu, D. Su, X.Q. Yang, C. Wang, Designing in-situ-formed interphases enables highly reversible cobalt-free LiNiO2 cathode for Li-ion and Li-metal batteries, Joule 3 (2019) 2550–2564. doi: 10.1016/j.joule.2019.08.004
    [47]
    S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995) 1–19. doi: 10.1006/jcph.1995.1039
    [48]
    M. Masia, M. Probst, R. Rey, Ethylene carbonate Li+: a theoretical study of structural and vibrational properties in gas and liquid phases, J. Phys. Chem. B 108 (2004) 2016–2027. doi: 10.1021/jp036673w
    [49]
    A.F. Oliveira, P. Philipsen, T. Heine, DFTB parameters for the periodic table, part 2: energies and energy gradients from hydrogen to calcium, J. Chem. Theor. Comput. 11 (2015) 5209–5218. doi: 10.1021/acs.jctc.5b00702
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (126) PDF downloads(20) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return