Citation: | Wang Huaping, Liu Jiandong, He Jian, Qi Shihan, Wu Mingguang, Li Fang, Huang Junda, Huang Yun, Ma Jianmin. Pseudo-concentrated electrolytes for lithium metal batteries[J]. eScience, 2022, 2(5): 557-565. doi: 10.1016/j.esci.2022.06.005 |
![]() |
![]() |
[1] |
H. Wang, R. Tan, Z. Yang, Y. Feng, X. Duan, J. Ma, Stabilization perspective on metal anodes for aqueous batteries, Adv. Energy Mater. 11 (2021) 2000962. doi: 10.1002/aenm.202000962
|
[2] |
Y. Guo, H. Li, T. Zhai, Reviving lithium-metal anodes for next-generation high-energy batteries, Adv. Mater. 29 (2017) 1700007. doi: 10.1002/adma.201700007
|
[3] |
X. Zhou, L. Yu, X.Y. Yu, X.W. Lou, Encapsulating Sn nanoparticles in amorphous carbon nanotubes for enhanced lithium storage properties, Adv. Energy Mater. 6 (2016) 1601177. doi: 10.1002/aenm.201601177
|
[4] |
H. Dai, K. Xi, X. Liu, C. Lai, S. Zhang, Cationic surfactant-based electrolyte additives for uniform lithium deposition via lithiophobic repulsion mechanisms, J. Am. Chem. Soc. 140 (2018) 17515–17521. doi: 10.1021/jacs.8b08963
|
[5] |
Y. Zhou, M. Su, X. Yu, Y. Zhang, J.G. Wang, X. Ren, R. Cao, W. Xu, D.R. Baer, Y. Du, O. Borodin, Y. Wang, X.L. Wang, K. Xu, Z. Xu, C. Wang, Z. Zhu, Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery, Nat. Nanotechnol. 15 (2020) 224–230. doi: 10.1038/s41565-019-0618-4
|
[6] |
W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.G. Zhang, Lithium metal anodes for rechargeable batteries, Energy Environ. Sci. 7 (2014) 513–537. doi: 10.1039/C3EE40795K
|
[7] |
F. Qiu, S. Ren, X. Mu, Y. Liu, X. Zhang, P. He, H. Zhou, Towards a stable Li–CO2 battery: the effects of CO2 to the Li metal anode, Energy Stor. Mater. 26 (2020) 443–447. doi: 10.1016/j.ensm.2019.11.017
|
[8] |
G. Yasin, M. Arif, T. Mehtab, X. Lu, D. Yu, N. Muhammad, M.T. Nazir, H. Song, Understanding and suppression strategies toward stable Li metal anode for safe lithium batteries, Energy Stor. Mater. 25 (2020) 644–678. doi: 10.1016/j.ensm.2019.09.020
|
[9] |
H. Ye, Z.J. Zheng, H.R. Yao, S.C. Liu, T.T. Zuo, X.W. Wu, Y.X. Yin, N.W. Li, J.J. Gu, F.F. Cao, Y.G. Guo, Guiding uniform Li plating/stripping through lithium–aluminum alloying medium for long-life Li metal batteries, Angew. Chem. Int. Ed. 58 (2019) 1094–1099. doi: 10.1002/anie.201811955
|
[10] |
L. Liu, Y.X. Yin, J.Y. Li, S.H. Wang, Y.G. Guo, L.J. Wan, Uniform lithium nucleation/ growth induced by lightweight nitrogen-doped graphitic carbon foams for high-performance lithium metal anodes, Adv. Mater. 30 (2018) 1706216. doi: 10.1002/adma.201706216
|
[11] |
S. -S. Chi, Y. Liu, W.L. Song, L.Z. Fan, Q. Zhang, Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode, Adv. Funct. Mater. 27 (2017) 1700348. doi: 10.1002/adfm.201700348
|
[12] |
S.J. Tan, X.X. Zeng, Q. Ma, X.W. Wu, Y.G. Guo, Recent advancements in polymer-based composite electrolytes for rechargeable lithium batteries, Electrochem. Energy Rev. 1 (2018) 113–138. doi: 10.1007/s41918-018-0011-2
|
[13] |
W. Zhang, Z. Shen, S. Li, L. Fan, X. Wang, F. Chen, X. Zang, T. Wu, F. Ma, Y. Lu, Engineering wavy-nanostructured anode interphases with fast ion transfer kinetics: toward practical Li-metal full batteries, Adv. Funct. Mater. 30 (2020) 2003800. doi: 10.1002/adfm.202003800
|
[14] |
H. Dai, X. Gu, J. Dong, C. Wang, C. Lai, S. Sun, Stabilizing lithium metal anode by octaphenyl polyoxyethylene-lithium complexation, Nat. Commun. 11 (2020) 643. doi: 10.1038/s41467-020-14505-8
|
[15] |
J. Xiang, L. Yuan, Y. Shen, Z. Cheng, K. Yuan, Z. Guo, Y. Zhang, X. Chen, Y. Huang, Improved rechargeability of lithium metal anode via controlling lithium-ion flux, Adv. Energy Mater. 8 (2018) 1802352. doi: 10.1002/aenm.201802352
|
[16] |
G. Xu, X.S. Guan, S. Dong, X. Zhou, G. Cui, Formulation of blended-lithium-salt electrolytes for lithium batteries, Angew. Chem. Int. Ed. 59 (2020) 3400–3415. doi: 10.1002/anie.201906494
|
[17] |
S. Liu, X. Ji, N. Piao, J. Chen, N. Eidson, J. Xu, P. Wang, L. Chen, J. Zhang, T. Deng, S. Hou, T. Jin, H. Wan, J. Li, J. Tu, C. Wang, An inorganic-rich solid electrolyte interphase for advanced lithium-metal batteries in carbonate electrolytes, Angew. Chem. Int. Ed. 60 (2021) 3661. doi: 10.1002/anie.202012005
|
[18] |
J. Chen, Q. Li, T.P. Pollard, X. Fan, O. Borodin, C. Wang, Electrolyte design for Li metal-free Li batteries, Mater. Today 39 (2020) 118–126. doi: 10.1016/j.mattod.2020.04.004
|
[19] |
S.J. Tan, J. Yue, X.C. Hu, Z.Z. Shen, W.P. Wang, J.Y. Li, T.T. Zuo, H. Duan, Y. Xiao, Y.X. Yin, R. Wen, Y.G. Guo, Nitriding-interface-regulated lithium plating enables flame-retardant electrolytes for high-voltage lithium metal batteries, Angew. Chem. Int. Ed. 58 (2019) 7802–7807. doi: 10.1002/anie.201903466
|
[20] |
M. Wan, X. Duan, H. Cui, J. Du, L. Fu, Z. Chen, Z. Lu, G. Li, Y. Li, E. Mao, L. Wang, Y. Sun, Stabilized Li metal anode with robust C-Li3N interphase for high energy density batteries, Energy Stor. Mater. 46 (2022) 563–569. doi: 10.1016/j.ensm.2022.01.044
|
[21] |
M. Watanabe, M.L. Thomas, S. Zhang, K. Ueno, T. Yasuda, K. Dokko, Application of ionic liquids to energy storage and conversion materials and devices, Chem. Rev. 117 (2017) 7190–7239. doi: 10.1021/acs.chemrev.6b00504
|
[22] |
S.H. Lee, J.Y. Hwang, J. Ming, Z. Cao, H.A. Nguyen, H.G. Jung, J. Kim, Y.K. Sun, Toward the sustainable lithium metal batteries with a new electrolyte solvation chemistry, Adv. Energy Mater. 10 (2020) 2000567. doi: 10.1002/aenm.202000567
|
[23] |
S. Li, M. Jiang, Y. Xie, H. Xu, J. Jia, J. Li, Developing high-performance lithium metal anode in liquid electrolytes: challenges and progress, Adv. Mater. 30 (2018) 1706375. doi: 10.1002/adma.201706375
|
[24] |
J. Ma, F. Li, J. He, J. Liu, M. Wu, Y. Hou, H. Wang, S. Qi, Q. Liu, J. Hu, Gradient solid electrolyte interphase and lithium ion solvation regulated by bisfluoroacetamide for stable lithium metal batteries, Angew. Chem. Int. Ed. 60 (2021) 6600–6608. doi: 10.1002/anie.202013993
|
[25] |
S. Qi, J. He, J. Liu, H. Wang, M. Wu, F. Li, D. Wu, X. Li, J. Ma, Phosphonium bromides regulating solid electrolyte interphase components and optimizing solvation sheath structure for suppressing lithium dendrite growth, Adv. Funct. Mater. 31 (2021) 2009013. doi: 10.1002/adfm.202009013
|
[26] |
W.P. Wang, J. Zhang, Y.X. Yin, H. Duan, J. Chou, S.Y. Li, M. Yan, S. Xin, Y.G. Guo, A rational reconfiguration of electrolyte for high-energy and long-life lithium–chalcogen batteries, Adv. Mater. 32 (2020) 2000302. doi: 10.1002/adma.202000302
|
[27] |
H. Jia, L. Zou, P. Gao, X. Cao, W. Zhao, Y. He, M.H. Engelhard, S.D. Burton, H. Wang, X. Ren, Q. Li, R. Yi, X. Zhang, C. Wang, Z. Xu, X. Li, J.G. Zhang, W. Xu, High-performance silicon anodes enabled by nonflammable localized high-concentration electrolytes, Adv. Energy Mater. 9 (2019) 1900784. doi: 10.1002/aenm.201900784
|
[28] |
Z. Peng, X. Cao, P. Gao, H. Jia, X. Ren, S. Roy, Z. Li, Y. Zhu, W. Xie, D. Liu, Q. Li, D. Wang, W. Xu, J.G. Zhang, High-power lithium metal batteries enabled by high-concentration acetonitrile-based electrolytes with vinylene carbonate additive, Adv. Funct. Mater. 30 (2020) 2001285. doi: 10.1002/adfm.202001285
|
[29] |
Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Advances and issues in developing salt-concentrated battery electrolytes, Nat. Energy 4 (2019) 269–280. doi: 10.1038/s41560-019-0336-z
|
[30] |
A. Bouibes, N. Takenaka, S. Saha, M. Nagaoka, Microscopic origin of the solid electrolyte interphase formation in fire-extinguishing electrolyte: formation of pure inorganic layer in high salt concentration, J. Phys. Chem. Lett. 10 (2019) 5949–5955. doi: 10.1021/acs.jpclett.9b02392
|
[31] |
Y. Yamada, K. Furukawa, K. Sodeyama, K. Kikuchi, M. Yaegashi, Y. Tateyama, A. Yamada, Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries, J. Am. Chem. Soc. 136 (2014) 5039–5046. doi: 10.1021/ja412807w
|
[32] |
H. Wang, M. Matsui, H. Kuwata, H. Sonoki, Y. Matsuda, X. Shang, Y. Takeda, O. Yamamoto, N. Imanishi, A reversible dendrite-free high-areal-capacity lithium metal electrode, Nat. Commun. 8 (2017) 15106. doi: 10.1038/ncomms15106
|
[33] |
Y. Yamada, K. Usui, C.H. Chiang, K. Kikuchi, K. Furukawa, A. Yamada, General observation of lithium intercalation into graphite in ethylene-carbonate-free superconcentrated electrolytes, ACS Appl. Mater. Interfaces 6 (2014) 10892–10899. doi: 10.1021/am5001163
|
[34] |
Y. Ding, J. Yun, H. Liu, Z. Wan, M. Shen, L. Zhang, Q. Qu, H. Zheng, A safe and superior propylene carbonate-based electrolyte with high-concentration Li salt, Pure Appl. Chem. 86 (2014) 585–591. doi: 10.1515/pac-2013-1120
|
[35] |
K. Kanamura, S. Shiraishi, Z.I. Takehara, Electrochemical deposition of very smooth lithium using nonaqueous electrolytes containing HF, J. Electrochem. Soc. 143 (1996) 2187. doi: 10.1149/1.1836979
|
[36] |
J.G. Han, M.Y. Jeong, K. Kim, C. Park, C.H. Sung, D.W. Bak, K.H. Kim, K. -M. Jeong, N.S. Choi, An electrolyte additive capable of scavenging HF and PF5 enables fast charging of lithium-ion batteries in LiPF6-based electrolytes, J. Power Sources 446 (2020) 227366. doi: 10.1016/j.jpowsour.2019.227366
|
[37] |
S.F. Lux, I.T. Lucas, E. Pollak, S. Passerini, M. Winter, R. Kostecki, The mechanism of HF formation in LiPF6 based organic carbonate electrolytes, Electrochem. Commun. 14 (2012) 47–50. doi: 10.1016/j.elecom.2011.10.026
|
[38] |
X. Li, J. Zheng, X. Ren, M.H. Engelhard, W. Zhao, Q. Li, J.G. Zhang, W. Xu, Dendrite-free and performance-enhanced lithium metal batteries through optimizing solvent compositions and adding combinational additives, Adv. Energy Mater. 8 (2018) 1703022. doi: 10.1002/aenm.201703022
|
[39] |
Z. Huang, J. Ren, W. Zhang, M. Xie, Y. Li, D. Sun, Y. Shen, Y. Huang, Protecting the Li-metal anode in a Li-O2 battery by using boric acid as an SEI-forming additive, Adv. Mater. 30 (2018) 1803270. doi: 10.1002/adma.201803270
|
[40] |
L. Qiao, Z. Cui, B. Chen, G. Xu, Z. Zhang, J. Ma, H. Du, X. Liu, S. Huang, K. Tang, S. Dong, X. Zhou, G. Cui, A promising bulky anion based lithium borate salt for lithium metal batteries, Chem. Sci. 9 (2018) 3451–3458. doi: 10.1039/C8SC00041G
|
[41] |
A. Du, Z. Zhang, H. Qu, Z. Cui, L. Qiao, L. Wang, J. Chai, T. Lu, S. Dong, T. Dong, H. Xu, X. Zhou, G. Cui, An efficient organic magnesium borate-based electrolyte with non-nucleophilic characteristics for magnesium–sulfur battery, Energy Environ. Sci. 10 (2017) 2616–2625. doi: 10.1039/C7EE02304A
|
[42] |
Y.C. Chen, C.Y. Ouyang, L.J. Song, Z.L. Sun, Electrical and lithium ion dynamics in three main components of solid electrolyte interphase from density functional theory study, Trends Phys. Chem. C 115 (2011) 7044–7049. doi: 10.1021/jp112202s
|
[43] |
G. Ma, L. Wang, X. He, J. Zhang, H. Chen, W. Xu, Y. Ding, Pseudoconcentrated electrolyte with high ionic conductivity and stability enables high-voltage lithium-ion battery chemistry, ACS Appl. Energy Mater. 1 (2018) 5446–5452.
|
[44] |
J.F. Ding, R. Xu, N. Yao, X. Chen, Y. Xiao, Y.X. Yao, C. Yan, J. Xie, J.Q. Huang, Non-solvating and low-dielectricity cosolvent for anion-derived solid electrolyte interphases in lithium metal batteries, Angew. Chem. Int. Ed. 60 (2021) 11442–11447. doi: 10.1002/anie.202101627
|
[45] |
H. Yue, Y. Yang, Y. Xiao, Z. Dong, S. Cheng, Y. Yin, C. Ling, W. Yang, Y. Yu, S. Yang, Boron additive passivated carbonate electrolytes for stable cycling of 5 V lithium–metal batteries, J. Mater. Chem. 7 (2019) 594–602. doi: 10.1039/C8TA09380F
|
[46] |
T. Deng, X. Fan, L. Cao, J. Chen, S. Hou, X. Ji, L. Chen, S. Li, X. Zhou, E. Hu, D. Su, X.Q. Yang, C. Wang, Designing in-situ-formed interphases enables highly reversible cobalt-free LiNiO2 cathode for Li-ion and Li-metal batteries, Joule 3 (2019) 2550–2564. doi: 10.1016/j.joule.2019.08.004
|
[47] |
S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995) 1–19. doi: 10.1006/jcph.1995.1039
|
[48] |
M. Masia, M. Probst, R. Rey, Ethylene carbonate Li+: a theoretical study of structural and vibrational properties in gas and liquid phases, J. Phys. Chem. B 108 (2004) 2016–2027. doi: 10.1021/jp036673w
|
[49] |
A.F. Oliveira, P. Philipsen, T. Heine, DFTB parameters for the periodic table, part 2: energies and energy gradients from hydrogen to calcium, J. Chem. Theor. Comput. 11 (2015) 5209–5218. doi: 10.1021/acs.jctc.5b00702
|