Volume 2 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
Bai Shengjie, Qiu Haoran, Song Mengmeng, He Guiwei, Wang Feng, Liu Ya, Guo Liejin. Porous fixed-bed photoreactor for boosting C–C coupling in photocatalytic CO2 reduction[J]. eScience, 2022, 2(4): 428-437. doi: 10.1016/j.esci.2022.06.006
Citation: Bai Shengjie, Qiu Haoran, Song Mengmeng, He Guiwei, Wang Feng, Liu Ya, Guo Liejin. Porous fixed-bed photoreactor for boosting C–C coupling in photocatalytic CO2 reduction[J]. eScience, 2022, 2(4): 428-437. doi: 10.1016/j.esci.2022.06.006

Porous fixed-bed photoreactor for boosting C–C coupling in photocatalytic CO2 reduction

doi: 10.1016/j.esci.2022.06.006
More Information
  • Solar-driven CO2 conversion to chemical fuels in an aqueous solution is restricted not only by photocatalysts but also by mass transfer. Here, a regulatable three-phase interface on a porous fixed-bed is constructed for efficient C–C coupling in photocatalytic CO2 reduction. The photocatalytic results show that ~90% selectivity towards C2+ products is obtained by a Cu/Cd0.5Zn0.5S photocatalyst, with a yield of 6.54 ​μmol/h (an irradiation area of 0.785 cm2), while only 0.94 ​μmol/h (an irradiation area of 19.625 cm2) is achieved with a commonly used suspension photocatalytic reactor. We find that under the same CO2 feed rate, the local CO2 concentration in this porous fixed-bed photoreactor is obviously higher than in the suspension photoreactor. The larger local CO2 coverage derived from a higher CO2 supply and aggregation enhances the C–C coupling, thereby generating more C2+. Even an observable three-phase interface on the porous fixed-bed can be regulated by adjusting the CO2 supply, for which the optimal gas inlet rate is 5–10 sccm.
  • ● A three-phase interface was formed and regulated by adjusting CO2 feed, while a K+ tracer experiment was used to observe it.
    ● Local CO2 concentration from the three-phase interface enhanced *CO–COH coupling, with ~90% selectivity to C2+ products.
    ● A homemade porous fixed-bed photoreactor for overcoming the mass transfer bottleneck was designed and constructed.
  • loading
  • eScience-2-4-428.docx
  • [1]
    G.A. Ozin, T. Yan, N. Li, L. Wang, Q. Liu, A. Jelle, L. Wang, Y. -F. Xu, Y. Liang, Y. Dai, B. Huang, J. You, How to make an efficient gas-phase heterogeneous CO2 hydrogenation photocatalyst, Energ. Environ. Sci. 13 (2020) 3054-3063 doi: 10.1039/D0EE01124J
    [2]
    Q. Liu, H. Cheng, T. Chen, T.W.B. Lo, Z. Xiang, F. Wang, Regulating the *OCCHO intermediate pathway towards highly selective photocatalytic CO2 reduction to CH3CHO over locally crystallized carbon nitride, Energ. Environ. Sci. 15 (2022) 225-233 doi: 10.1039/d1ee02073k
    [3]
    R. Das, S. Chakraborty, S.C. Peter, Systematic assessment of solvent selection in photocatalytic CO2 reduction, ACS Energy Lett. (2021) 3270-3274 doi: 10.1021/acsenergylett.1c01522
    [4]
    S. Wageh, A.A. Al-Ghamdi, L.J. Liu, S-Scheme heterojunction photocatalyst for CO2 photoreduction, Acta Phys. Chim. Sin. 37 (2021) 2010024
    [5]
    Y.F. Li, M. Zhang. L. Zhou, S.J. Yang, Z.S. Wu, Y.H. Ma, Recent advances in surface-modified g-C3N4-based photocatalysts for H2 production and CO2 reduction, Acta Phys. Chim. Sin. 37 (2021) 2009030
    [6]
    Y. Liu, S.J. Bai, F. Wang, Y.B. Chen, Photoelectrochemical technology for solar fuel generation, from single photoelectrodes to unassisted cells: a review. Environ. Chem. Lett. 20 (2022) 1169-1192 doi: 10.1007/s10311-021-01364-y
    [7]
    X. Zhou, C. Xiang, Comparative analysis of solar-to-fuel conversion efficiency: a direct, one-step electrochemical CO2 reduction reactor versus a two-step, cascade electrochemical CO2 reduction reactor, ACS Energy Lett. 3 (2018) 1892-1897 doi: 10.1021/acsenergylett.8b01077
    [8]
    M. Ben-Naim, R.J. Britto, C.W. Aldridge, R. Mow, M.A. Steiner, A.C. Nielander, L.A. King, D.J. Friedman, T.G. Deutsch, J.L. Young, T.F. Jaramillo, Addressing the Stability Gap in Photoelectrochemistry: Molybdenum Disulfide Protective Catalysts for Tandem Ⅲ-Ⅴ Unassisted Solar Water Splitting, ACS Energy Lett. 5 (2020) 2631-2640 doi: 10.1021/acsenergylett.0c01132
    [9]
    H. Rao, L.C. Schmidt, J. Bonin, M. Robert, Visible-light-driven methane formation from CO2 with a molecular iron catalyst, Nature 548 (2017) 74 doi: 10.1038/nature23016
    [10]
    H. Guo, D. H. Si, H. J. Zhu, Q. X. Li, Y. B. Huang, R. Cao, Ni single-atom sites supported on carbon aerogel for highly efficient electroreduction of carbon dioxide with industrial current densities, eScience 2 (2022) 295-303 doi: 10.1016/j.esci.2022.03.007
    [11]
    L. Yuan, Y. J. Xu, Photocatalytic conversion of CO2 into value-added and renewable fuels, Appl. Surf. Sci. 342 (2015) 154-167 doi: 10.1016/j.apsusc.2015.03.050
    [12]
    Y. X. Pan, Y. You, S. Xin, Y. Li, G. Fu, Z. Cui, Y. L. Men, F. F. Cao, S. H. Yu, J.B. Goodenough, Photocatalytic CO2 reduction by carbon-coated Indium-Oxide nanobelts, J. Am. Chem. Soc. 139 (2017) 4123-4129 doi: 10.1021/jacs.7b00266
    [13]
    X. Li, J. Wen, J. Low, Y. Fang, J. Yu, Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel, Sci. China Mater. 57 (2014) 70-100 doi: 10.1007/s40843-014-0003-1
    [14]
    B. C. Zhu, X. Y. Hong, L. Y. Tang, Q. Q. Liu, H. Tang, Enhanced photocatalytic CO2 reduction over 2D/1D BiOBr0.5Cl0.5/WO3 S-scheme heterostructure, Acta Phys. Chim. Sin. 38 (2022) 2111008
    [15]
    H. Wang, Y. Wang, L. Guo, X. Zhang, C. Ribeiro, T. He, Solar-heating boosted catalytic reduction of CO2 under full-solar spectrum, Chin. J. Catal. 41 (2020) 131-139 doi: 10.1016/S1872-2067(19)63393-0
    [16]
    Z. Wang, Y. Chen, L. Zhang, B. Cheng, J. Yu, J. Fan, Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity, J. Mater. Sci. Technol. 56 (2020) 143-150 doi: 10.1016/j.jmst.2020.02.062
    [17]
    C. Han, Y.H. Li, J.Y. Li, M.Y. Qi, Z.R. Tang, Y.J. Xu, Cooperative syngas production and C-N bond formation in one photoredox cycle, Angew. Chem. Int. Ed. 133 (2021) 8041-8049 doi: 10.1002/ange.202015756
    [18]
    L. Wan, Q. Zhou, X. Wang, T.E. Wood, L. Wang, P.N. Duchesne, J. Guo, X. Yan, M. Xia, Y.F. Li, A.A. Jelle, U. Ulmer, J. Jia, T. Li, W. Sun, G.A. Ozin, Cu2O nanocubes with mixed oxidation-state facets for (photo)catalytic hydrogenation of carbon dioxide, Nat. Catal. 2 (2019) 889-898 doi: 10.1038/s41929-019-0338-z
    [19]
    K. Wang, S. He, Y. Lin, X. Chen, W. Dai, X. Fu, Photo-enhanced thermal catalytic CO2 methanation activity and stability over oxygen-deficient Ru/TiO2 with exposed TiO2 {001} facets: Adjusting photogenerated electron behaviors by metal-support interactions, Chin. J. Catal. 43 (2022) 391-402 doi: 10.1016/S1872-2067(21)63825-1
    [20]
    A. Reyes, R.P. Jansonius, B.A.W. Mowbray, Y. Cao, D.G. Wheeler, J. Chau, D.J. Dvorak, C.P. Berlinguette, Managing hydration at the cathode enables efficient CO2 electrolysis at commercially relevant current densities, ACS Energy Lett. 5 (2020) 1612-1618 doi: 10.1021/acsenergylett.0c00637
    [21]
    I. Liberman, R. Shimoni, R. Ifraemov, I. Rozenberg, C. Singh, I. Hod, Active-Site modulation in an Fe-porphyrin-based metal-organic framework through ligand axial coordination: accelerating electrocatalysis and charge-transport kinetics, J. Am. Chem. Soc. 142 (2020) 1933-1940 doi: 10.1021/jacs.9b11355
    [22]
    J. Fu, K. Jiang, X. Qiu, J. Yu, M. Liu, Product selectivity of photocatalytic CO2 reduction reactions, Mater. Today 32 (2020) 222-243 doi: 10.1016/j.mattod.2019.06.009
    [23]
    N. Shehzad, M. Tahir, K. Johari, T. Murugesan, M. Hussain, A critical review on TiO2 based photocatalytic CO2 reduction system: Strategies to improve efficiency, J. CO2 Util. 26 (2018) 98-122 doi: 10.1016/j.jcou.2018.04.026
    [24]
    S. Shoji, X. Peng, A. Yamaguchi, R. Watanabe, C. Fukuhara, Y. Cho, T. Yamamoto, S. Matsumura, M. -W. Yu, S. Ishii, T. Fujita, H. Abe, M. Miyauchi, Photocatalytic uphill conversion of natural gas beyond the limitation of thermal reaction systems, Nat. Catal. 3 (2020) 148-153 doi: 10.1038/s41929-019-0419-z
    [25]
    D. Li, Y. Huang, S. Li, C. Wang, Y. Li, X. Zhang, Y. Liu, Thermal coupled photoconductivity as a tool to understand the photothermal catalytic reduction of CO2, Chin. J. Catal. 41 (2020) 154-160 doi: 10.1016/S1872-2067(19)63475-3
    [26]
    M. Y. Qi, Q. Lin, Z. R. Tang, Y. J. Xu, Photoredox coupling of benzyl alcohol oxidation with CO2 reduction over CdS/TiO2 heterostructure under visible light irradiation, Appl. Catal. B 307 (2022) 121158 doi: 10.1016/j.apcatb.2022.121158
    [27]
    L. Cheng, P. Zhang, Q. Wen, J. Fan, Q. Xiang, Copper and platinum dual-single-atoms supported on crystalline graphitic carbon nitride for enhanced photocatalytic CO2 reduction, Chin. J. Catal. 43 (2022) 451-460 doi: 10.1016/S1872-2067(21)63879-2
    [28]
    L. Cheng, D. Zhang, Y. Liao, J. Fan, Q. Xiang, Structural engineering of 3D hierarchical Cd0.8Zn0.2S for selective photocatalytic CO2 reduction, Chin. J. Catal. 42 (2021) 131-140 doi: 10.1016/S1872-2067(20)63623-3
    [29]
    X. Fei, H. Tan, B. Cheng, B. Zhu, L. Zhang, 2D/2D black phosphorus/g-C3N4 S-Scheme heterojunction photocatalysts for CO2 reduction investigated using DFT calculations, Acta Phys. Chim. Sin. 37 (2021) 2010027
    [30]
    Y. Liu, F.B. Yu, F. Wang, S.J. Bai, G.W. He, Construction of Z-scheme In2S3-TiO2 for CO2 reduction under concentrated natural sunlight[J]. Chinese J. Struc. Chem. 41 (2022) 34-39
    [31]
    Z. T. Xu, K. Xie, Enhanced CO2 electrolysis with metal-oxide interface structures, Chinese J. Struc. Chem. 40 (2021) 31-41 doi: 10.1117/12.2588703
    [32]
    F. Xu, K. Meng, B. Zhu, H. Liu, J. Xu, J. Yu, Graphdiyne: A new photocatalytic CO2 reduction cocatalyst, Adv. Funct. Mater. 29 (2019) 1904256 doi: 10.1002/adfm.201904256
    [33]
    Y.A. Wu, I. McNulty, C. Liu, K.C. Lau, Q. Liu, A.P. Paulikas, C. J. Sun, Z. Cai, J.R. Guest, Y. Ren, V. Stamenkovic, L.A. Curtiss, Y. Liu, T. Rajh, Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol, Nat. Energy 4 (2019) 957-968 doi: 10.1038/s41560-019-0490-3
    [34]
    S. -H. Li, M. -Y. Qi, Z. -R. Tang, Y. -J. Xu, Nanostructured metal phosphides: from controllable synthesis to sustainable catalysis, Chem. Soc. Rev. 50 (2021) 7539-7586 doi: 10.1039/d1cs00323b
    [35]
    S. Chen, Y. Qi, C. Li, K. Domen, F. Zhang, Surface strategies for particulate photocatalysts toward artificial photosynthesis, Joule 2 (2018) 2260-2288 doi: 10.1016/j.joule.2018.07.030
    [36]
    Z. Sun, W. Fang, L. Zhao, H. Wang, 3D porous Cu-NPs/g-C3N4 foam with excellent CO2 adsorption and Schottky junction effect for photocatalytic CO2 reduction, Appl. Surf. Sci. 504 (2020) 144347 doi: 10.1016/j.apsusc.2019.144347
    [37]
    J. Albero, Y. Peng, H. Garcia, Photocatalytic CO2 reduction to C2+ products, ACS Catal. 10 (2020) 5734-5749 doi: 10.1021/acscatal.0c00478
    [38]
    A. Li, Q. Cao, G. Zhou, B.V.K.J. Schmidt, W. Zhu, X. Yuan, H. Huo, J. Gong, M. Antonietti, Three-phase photocatalysis for the enhanced selectivity and activity of CO2 reduction on a hydrophobic surface, Angew. Chem. Int. Ed. 58 (2019) 14549-14555 doi: 10.1002/anie.201908058
    [39]
    Y. Xia, K. Xiao, B. Cheng, J. Yu, L. Jiang, M. Antonietti, S. Cao, Improving artificial photosynthesis over carbon nitride by gas-liquid-solid interface management for full light-induced CO2 reduction to C1 and C2 fuels and O2, ChemSusChem 13 (2020) 1730-1734 doi: 10.1002/cssc.201903515
    [40]
    M. Liu, Y. Chen, J. Su, J. Shi, X. Wang, L. Guo, Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiSx co-catalyst, Nat. Energy 1 (2016) 16151 doi: 10.1038/nenergy.2016.151
    [41]
    M. Liu, D. Jing, Z. Zhou, L. Guo, Twin-induced one-dimensional homojunctions yield high quantum efficiency for solar hydrogen generation, Nat. Commun. 4 (2013) 2278 doi: 10.1038/ncomms3278
    [42]
    H.M. Jeong, Y. Kwon, J.H. Won, Y. Lum, M. -J. Cheng, K.H. Kim, M. Head-Gordon, J.K. Kang, Atomic-scale spacing between copper facets for the electrochemical reduction of carbon dioxide, Adv. Energy Mater. 10 (2020) 1903423 doi: 10.1002/aenm.201903423
    [43]
    L. Ding, T. Shi, J. Gu, Y. Cui, Z. Zhang, C. Yang, T. Chen, M. Lin, P. Wang, N. Xue, L. Peng, X. Guo, Y. Zhu, Z. Chen, W. Ding, CO2 hydrogenation to ethanol over Cu@Na-Beta, Chem 6 (2020) 2673-2689 doi: 10.1016/j.chempr.2020.07.001
    [44]
    W. Ma, S. Xie, T. Liu, Q. Fan, J. Ye, F. Sun, Z. Jiang, Q. Zhang, J. Cheng, Y. Wang, Electrocatalytic reduction of CO2 to ethylene and ethanol through hydrogen-assisted C-C coupling over fluorine-modified copper, Nat. Catal. 3 (2020) 478-487 doi: 10.1038/s41929-020-0450-0
    [45]
    S. Kreft, R. Schoch, J. Schneidewind, J. Rabeah, E.V. Kondratenko, V.A. Kondratenko, H. Junge, M. Bauer, S. Wohlrab, M. Beller, Improving selectivity and activity of CO2 reduction photocatalysts with oxygen, Chem 5 (2019) 1818-1833 doi: 10.1016/j.chempr.2019.04.006
    [46]
    Z. H. Yan, M. H. Du, J. Liu, S. Jin, C. Wang, G. L. Zhuang, X. J. Kong, L. S. Long, L. S. Zheng, Photo-generated dinuclear {Eu(Ⅱ)}2 active sites for selective CO2 reduction in a photosensitizing metal-organic framework, Nat. Commun. 9 (2018) 3353 doi: 10.1038/s41467-018-05659-7
    [47]
    K. Q. Lu, Y. H. Li, F. Zhang, M. Y. Qi, X. Chen, Z. R. Tang, Y. M. A. Yamada, M. Anpo, M. Conte, Y. J. Xu, Rationally designed transition metal hydroxide nanosheet arrays on graphene for artificial CO2 reduction, Nat. Commun. 11 (2020) 5181 doi: 10.1038/s41467-020-18944-1
    [48]
    L. Chen, X. Feng, Enhanced catalytic reaction at an air-liquid-solid triphase interface, Chem. Sci. 11 (2020) 3124-3131 doi: 10.1039/c9sc06505a
    [49]
    R. Shi, J. Guo, X. Zhang, G.I.N. Waterhouse, Z. Han, Y. Zhao, L. Shang, C. Zhou, L. Jiang, T. Zhang, Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces, Nat. Commun. 11 (2020) 3028 doi: 10.1038/s41467-020-16847-9
    [50]
    Y.C. Tan, K.B. Lee, H. Song, J. Oh, Modulating local CO2 concentration as a general strategy for enhancing C-C coupling in CO2 electroreduction, Joule 4 (2020) 1104-1120 doi: 10.1016/j.joule.2020.03.013
    [51]
    M.R. Singh, J.D. Goodpaster, A.Z. Weber, M. Head-Gordon, A.T. Bell, Mechanistic insights into electrochemical reduction of CO2 over Ag using density functional theory and transport models, P. Natl. Acad. Sci. USA 114 (2017) E8812-E8821 doi: 10.1073/pnas.1709080114
    [52]
    S. Xie, W. Ma, X. Wu, H. Zhang, Q. Zhang, Y. Wang, Y. Wang, Photocatalytic and electrocatalytic transformations of C1 molecules involving C-C coupling, Energ. Environ. Sci. 14 (2021) 37-89 doi: 10.1039/d0ee01860k
    [53]
    X. Chen, Q. Li, M. Zhang, J. Li, S. Cai, J. Chen, H. Jia, MOF-templated preparation of highly dispersed Co/Al2O3 composite as the photothermal catalyst with high solar-to-fuel efficiency for CO2 methanation, ACS Appl. Mater. Inter. 12 (2020) 39304-39317 doi: 10.1021/acsami.0c11576
    [54]
    K. Wang, J. Lu, Y. Lu, C.H. Lau, Y. Zheng, X. Fan, Unravelling the CC coupling in CO2 photocatalytic reduction with H2O on Au/TiO2-x: Combination of plasmonic excitation and oxygen vacancy, Appl. Catal. B 292 (2021) 120147 doi: 10.1016/j.apcatb.2021.120147
    [55]
    X. Li, J. Yu, M. Jaroniec, X. Chen, Cocatalysts for selective photoreduction of CO2 into solar fuels, Chem. Rev. 119 (2019) 3962-4179 doi: 10.1021/acs.chemrev.8b00400
    [56]
    Y. Huo, J. Zhang, K. Dai, C. Liang, Amine-modified S-scheme porous g-C3N4/CdSe-diethylenetriamine composite with enhanced photocatalytic CO2 reduction activity, ACS Appl. Energy Mater. 4 (2021) 956-968 doi: 10.1021/acsaem.0c02896
    [57]
    J.T. Feaster, C. Shi, E.R. Cave, T. Hatsukade, D.N. Abram, K.P. Kuhl, C. Hahn, J.K. Noerskov, T.F. Jaramillo, Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes, ACS Catal. 7 (2017) 4822-4827 doi: 10.1021/acscatal.7b00687
    [58]
    Y. Lin, Y. Luo, W. Li, J. Li, Z. Sun, Y. Cao, W.J. Minkowycz, Numerical study of flow reversal during bubble growth and confinement of flow boiling in microchannels, Int. J. Heat Mass Tran. 177 (2021) 121491 doi: 10.1016/j.ijheatmasstransfer.2021.121491
    [59]
    S.S. Lafmejani, A.C. Olesen, S.K. Kaer, VOF modelling of gas-liquid flow in PEM water electrolysis cell micro-channels, Int. J. Hydrogen Energ. 42 (2017) 16333-16344 doi: 10.1016/j.ijhydene.2017.05.079
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (82) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return