Volume 2 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
Zhang Chao Yue, Zhang Chaoqi, Pan Jiang Long, Sun Guo Wen, Shi Zude, Li Canhuang, Chang Xingqi, Sun Geng Zhi, Zhou Jin Yuan, Cabot Andreu. Surface strain-enhanced MoS2 as a high-performance cathode catalyst for lithium–sulfur batteries[J]. eScience, 2022, 2(4): 405-415. doi: 10.1016/j.esci.2022.07.001
Citation: Zhang Chao Yue, Zhang Chaoqi, Pan Jiang Long, Sun Guo Wen, Shi Zude, Li Canhuang, Chang Xingqi, Sun Geng Zhi, Zhou Jin Yuan, Cabot Andreu. Surface strain-enhanced MoS2 as a high-performance cathode catalyst for lithium–sulfur batteries[J]. eScience, 2022, 2(4): 405-415. doi: 10.1016/j.esci.2022.07.001

Surface strain-enhanced MoS2 as a high-performance cathode catalyst for lithium–sulfur batteries

doi: 10.1016/j.esci.2022.07.001
More Information
  • Corresponding author: E-mail address: zhoujy@lzu.edu.cn (J. Zhou); acabot@irec.cat (A. Cabot)
  • Received Date: 2022-03-13
  • Revised Date: 2022-06-17
  • Accepted Date: 2022-07-04
  • Available Online: 2022-07-13
  • Lithium–sulfur batteries (LSBs) are one of the main candidates for the next generation of energy storage systems. To improve the performance of LSBs, we herein propose the use of strained MoS2 (s-MoS2) as a catalytically active sulfur host. The introduction of strain in the MoS2 surface, which alters its atomic positions and expands the S–Mo–S angle, shifts the d-band center closer to the Fermi level and provides the surface with abundant and highly active catalytic sites; these enhance the catalyst's ability to adsorb lithium polysulfides (LiPS), accelerating its catalytic conversion and promoting lithium-ion transferability. Strain is generated through the synthesis of core–shell nanoparticles, using different metal sulfides as strain-inducing cores. s-MoS2 nanoparticles are supported on carbon nanofibers (CNF/s-MoS2), and the resulting electrodes are characterized by capacities of 1290 and 657 ​mAh g−1 ​at 0.2 and 5 ​C, respectively, with a 0.05% capacity decay rate per cycle at 8 ​C during 700 cycles. Overall, this work not only provides an ingenious and effective strategy to regulate LiPS adsorption and conversion through strain engineering, but also indicates a path toward the application of strain engineering in other energy storage and conversion fields.
  • ● The CNF/s-MoS2 cathodes show a high capacity, a remarkable rate capability, and an ultralow decay rate.
    ● The fast ion diffusion and reaction kinetics of CNF/s-MoS2 electrodes are verified by calculations and experiments.
    ● Strained MoS2 is grown on different metal sulfides to form a core–shell structure through the electrospinning.
  • loading
  • eScience-2-4-405.docx
  • [1]
    A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, Y.-S. Su, Rechargeable lithium–sulfur batteries, Chem. Rev. 114(2014) 11751–11787. doi: 10.1021/cr500062v
    [2]
    H. Yuan, H.-J. Peng, B.-Q. Li, J. Xie, L. Kong, M. Zhao, X. Chen, J.-Q. Huang, Q. Zhang, Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium–sulfur batteries, Adv. Energy Mater. 9(2019) 1802768.
    [3]
    L.F. Nazar, M. Cuisinier, Q. Pang, Lithium-sulfur batteries, MRS Bull. 39(2014) 436–442. doi: 10.1557/mrs.2014.86
    [4]
    Q. Wu, Z. Yao, X. Zhou, J. Xu, F. Cao, C. Li, Built-in catalysis in confined nanoreactors for high-loading Li–S batteries, ACS Nano 14(2020) 3365–3377. doi: 10.1021/acsnano.9b09231
    [5]
    L. Hu, C. Dai, H. Liu, Y. Li, B. Shen, Y. Chen, S.-J. Bao, M. Xu, Double-shelled NiO-NiCo2O4 Heterostructure@Carbon hollow nanocages as an efficient sulfur host for advanced lithium–sulfur batteries, Adv. Energy Mater. 8(2018) 1800709. doi: 10.1002/aenm.201800709
    [6]
    W.-J. Chen, C.-X. Zhao, B.-Q. Li, Q. Jin, X.-Q. Zhang, T.-Q. Yuan, X. Zhang, Z. Jin, S. Kaskel, Q. Zhang, A mixed ether electrolyte for lithium metal anode protection in working lithium–sulfur batteries, Energy Environ. Mater. 3(2020) 160–165. doi: 10.1002/eem2.12073
    [7]
    Z. Sun, S. Vijay, H.H. Heenen, A.Y.S. Eng, W. Tu, Y. Zhao, S.W. Koh, P. Gao, Z.W. Seh, K. Chan, H. Li, Catalytic polysulfide conversion and physiochemical confinement for lithium–sulfur batteries, Adv. Energy Mater. 10(2020) 1904010. doi: 10.1002/aenm.201904010
    [8]
    Z. Liang, D. Yang, P. Tang, C. Zhang, J. Jacas Biendicho, Y. Zhang, J. Llorca, X. Wang, J. Li, M. Heggen, J. David, R.E. Dunin-Borkowski, Y. Zhou, J.R. Morante, A. Cabot, J. Arbiol, Atomically dispersed Fe in a C2N based catalyst as a sulfur host for efficient lithium–sulfur batteries, Adv. Energy Mater. 11(2021) 2003507. doi: 10.1002/aenm.202003507
    [9]
    C. Zhang, R. Du, J.J. Biendicho, M. Yi, K. Xiao, D. Yang, T. Zhang, X. Wang, J. Arbiol, J. Llorca, Y. Zhou, J.R. Morante, A. Cabot, Tubular CoFeP@CN as a mott–Schottky catalyst with multiple adsorption sites for robust Lithium-Sulfur batteries, Adv. Energy Mater. 11(2021) 2100432. doi: 10.1002/aenm.202100432
    [10]
    C. Ye, D. Chao, J. Shan, H. Li, K. Davey, S.-Z. Qiao, Unveiling the advances of 2D materials for Li/Na-S batteries experimentally and theoretically, Matter 2(2020) 323–344. doi: 10.1016/j.matt.2019.12.020
    [11]
    T. Lei, W. Chen, J. Huang, C. Yan, H. Sun, C. Wang, W. Zhang, Y. Li, J. Xiong, Multifunctional layered WS2 nanosheets for enhancing the performance of lithium–sulfur batteries, Adv. Energy Mater. 7(2017) 1601843. doi: 10.1002/aenm.201601843
    [12]
    Q. Li, D. Yang, H. Chen, X. Lv, Y. Jiang, Y. Feng, X. Rui, Y. Yu, Advances in metal phosphides for sodium-ion batteries, SusMat 1(2021) 359–392. doi: 10.1002/sus2.19
    [13]
    Y. Chen, Z. Wang, X. Li, X. Yao, C. Wang, Y. Li, W. Xue, D. Yu, S.Y. Kim, F. Yang, A. Kushima, G. Zhang, H. Huang, N. Wu, Y.-W. Mai, J.B. Goodenough, J. Li, Li metal deposition and stripping in a solid-state battery via Coble creep, Nature 578(2020) 251–255. doi: 10.1038/s41586-020-1972-y
    [14]
    Y.-H. Wang, X.-T. Li, W.-P. Wang, H.-J. Yan, S. Xin, Y.-G. Guo, Chalcogen cathode and its conversion electrochemistry in rechargeable Li/Na batteries, Sci. China Chem. 63(2020) 1402–1415. doi: 10.1007/s11426-020-9845-5
    [15]
    H. Wang, Q. Zhang, H. Yao, Z. Liang, H.-W. Lee, P.-C. Hsu, G. Zheng, Y. Cui, High electrochemical selectivity of edge versus terrace sites in two-dimensional layered MoS2 materials, Nano Lett. 14(2014) 7138–7144. doi: 10.1021/nl503730c
    [16]
    Q. Zhang, Y. Wang, Z.W. Seh, Z. Fu, R. Zhang, Y. Cui, Understanding the anchoring effect of two-dimensional layered materials for lithium–sulfur batteries, Nano Lett. 15(2015) 3780–3786. doi: 10.1021/acs.nanolett.5b00367
    [17]
    W. Liu, C. Luo, S. Zhang, B. Zhang, J. Ma, X. Wang, W. Liu, Z. Li, Q.-H. Yang, W. Lv, Cobalt-doping of molybdenum disulfide for enhanced catalytic polysulfide conversion in lithium–sulfur batteries, ACS Nano 15(2021) 7491–7499. doi: 10.1021/acsnano.1c00896
    [18]
    J. He, G. Hartmann, M. Lee, G.S. Hwang, Y. Chen, A. Manthiram, Freestanding 1T MoS2/graphene heterostructures as a highly efficient electrocatalyst for lithium polysulfides in Li–S batteries, Energy Environ. Sci. 12(2019) 344–350. doi: 10.1039/C8EE03252A
    [19]
    L. Zhang, H.B. Wu, Y. Yan, X. Wang, X.W. Lou, Hierarchical MoS2 microboxes constructed by nanosheets with enhanced electrochemical properties for lithium storage and water splitting, Energy Environ. Sci. 7(2014) 3302–3306. doi: 10.1039/C4EE01932F
    [20]
    X.-Y. Yu, H. Hu, Y. Wang, H. Chen, X.W. Lou, Ultrathin MoS2 nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties, Angew. Chem. Int. Ed. 54(2015) 7395–7398. doi: 10.1002/anie.201502117
    [21]
    M. Zhen, S.-Q. Guo, B. Shen, Constructing defect-rich MoS2/N-doped carbon nanosheets for catalytic polysulfide conversion in lithium–sulfur batteries, ACS Sustain. Chem. Eng. 8(2020) 13318–13327. doi: 10.1021/acssuschemeng.0c03887
    [22]
    Y. Tian, G. Li, Y. Zhang, D. Luo, X. Wang, Y. Zhao, H. Liu, P. Ji, X. Du, J. Li, Z. Chen, Low-bandgap Se-deficient antimony selenide as a multifunctional polysulfide barrier toward high-performance lithium-sulfur batteries, Adv. Mater. 32(2019) 1904876.
    [23]
    D. Luo, Z. Zhang, G. Li, S. Cheng, S. Li, J. Li, R. Gao, M. Li, S. Sy, Y.P. Deng, Y. Jiang, Y. Zhu, H. Dou, Y. Hu, A. Yu, Z. Chen, Revealing the rapid electrocatalytic behavior of ultrafine amorphous defective Nb2O5-x nanocluster toward superior Li-S performance, ACS Nano 14(2020) 4849–4860. doi: 10.1021/acsnano.0c00799
    [24]
    H. Lin, L. Yang, X. Jiang, G. Li, T. Zhang, Q. Yao, G.W. Zheng, J.Y. Lee, Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium–sulfur batteries, Energy Environ. Sci. 10(2017) 1476–1486. doi: 10.1039/C7EE01047H
    [25]
    W. Chen, T. Lei, W. Lv, Y. Hu, Y. Yan, Y. Jiao, W. He, Z. Li, C. Yan, J. Xiong, Atomic interlamellar ion path in high sulfur content lithium-montmorillonite host enables high-rate and stable lithium–sulfur battery, Adv. Mater. 30(2018) 1804084. doi: 10.1002/adma.201804084
    [26]
    B. Li, Q. Su, L. Yu, J. Zhang, G. Du, D. Wang, D. Han, M. Zhang, S. Ding, B. Xu, Tuning the band structure of MoS2 via Co9S8@MoS2 core–shell structure to boost catalytic activity for lithium–sulfur batteries, ACS Nano 14(2020) 17285–17294. doi: 10.1021/acsnano.0c07332
    [27]
    C.Y. Zhang, Z.W. Lu, Y.H. Wang, Z. Dai, H. Zhao, G.Z. Sun, W. Lan, X.J. Pan, J.Y. Zhou, E.Q. Xie, Cooperative chemisorption of polysulfides via 2D hexagonal WS2-rimmed Co9S8 heterostructures for lithium–sulfur batteries, Chem. Eng. J. 392(2020) 123734. doi: 10.1016/j.cej.2019.123734
    [28]
    M. Wang, L. Fan, D. Tian, X. Wu, Y. Qiu, C. Zhao, B. Guan, Y. Wang, N. Zhang, K. Sun, Rational design of hierarchical SnO2/1T-MoS2 nanoarray electrode for ultralong-life Li–S batteries, ACS Energy Lett. 3(2018) 1627–1633. doi: 10.1021/acsenergylett.8b00856
    [29]
    M. Waqas, Y. Han, D. Chen, S. Ali, C. Zhen, C. Feng, B. Yuan, J. Han, W. He, Molecular 'capturing' and 'seizing' MoS2/TiN interlayers suppress polysulfide shuttling and self-discharge of Li–S batteries, Energy Stor. Mater. 27(2020) 333–341. doi: 10.1016/j.ensm.2020.02.015
    [30]
    W.G. Lim, S. Kim, C. Jo, J. Lee, A comprehensive review of materials with catalytic effects in Li-S batteries: enhanced redox kinetics, Angew. Chem. Int. Ed. 58(2019) 18746–18757. doi: 10.1002/anie.201902413
    [31]
    Z. Xia, S. Guo, Strain engineering of metal-based nanomaterials for energy electrocatalysis, Chem. Soc. Rev. 48(2019) 3265–3278. doi: 10.1039/C8CS00846A
    [32]
    M. Luo, S. Guo, Strain-controlled electrocatalysis on multimetallic nanomaterials, Nat. Rev. Mater. 2(2017) 17059. doi: 10.1038/natrevmats.2017.59
    [33]
    H. Zhu, G. Gao, M. Du, J. Zhou, K. Wang, W. Wu, X. Chen, Y. Li, P. Ma, W. Dong, F. Duan, M. Chen, G. Wu, J. Wu, H. Yang, S. Guo, Atomic-scale core/shell structure engineering induces precise tensile strain to boost hydrogen evolution catalysis, Adv. Mater. 30(2018) 1707301. doi: 10.1002/adma.201707301
    [34]
    L. Jiao, C. Zhang, C. Geng, S. Wu, H. Li, W. Lv, Y. Tao, Z. Chen, G. Zhou, J. Li, G. Ling, Y. Wan, Q.-H. Yang, Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium–sulfur batteries, Adv. Energy Mater. 9(2019) 1900219. doi: 10.1002/aenm.201900219
    [35]
    D. Zhou, S. Wang, Y. Jia, X. Xiong, H. Yang, S. Liu, J. Tang, J. Zhang, D. Liu, L. Zheng, Y. Kuang, X. Sun, B. Liu, NiFe hydroxide lattice tensile strain: enhancement of adsorption of oxygenated intermediates for efficient water oxidation catalysis, Angew. Chem. Int. Ed. 58(2019) 736–740. doi: 10.1002/anie.201809689
    [36]
    X. Li, W. Chen, Q. Qian, H. Huang, Y. Chen, Z. Wang, Q. Chen, J. Yang, J. Li, Y.-W. Mai, Electrospinning-based strategies for battery materials, Adv. Energy Mater. 11(2021) 2000845. doi: 10.1002/aenm.202000845
    [37]
    C. Li, M. Qiu, R. Li, X. Li, M. Wang, J. He, G. Lin, L. Xiao, Q. Qian, Q. Chen, J. Wu, X. Li, Y.-W. Mai, Y. Chen, Electrospinning engineering enables high-performance sodium-ion batteries, Adv. Fiber Mater. 4(2022) 43–65. doi: 10.1007/s42765-021-00088-6
    [38]
    A. Romano, E.S. Şuhubi, On Wulff's law about equilibrium configurations of crystals, Int. J. Eng. Sci. 27(1989) 1135–1142. doi: 10.1016/0020-7225(89)90093-1
    [39]
    N.G. van der Berg, J.B. Malherbe, A.J. Botha, E. Friedland, Thermal etching of SiC, Appl. Surf. Sci. 258(2012) 5561–5566. doi: 10.1016/j.apsusc.2011.12.132
    [40]
    A.B. Wong, S. Brittman, Y. Yu, N.P. Dasgupta, P. Yang, Core–shell CdS–Cu2S nanorod array solar cells, Nano Lett. 15(2015) 4096–4101. doi: 10.1021/acs.nanolett.5b01203
    [41]
    S.G. Kwon, G. Krylova, P.J. Phillips, R.F. Klie, S. Chattopadhyay, T. Shibata, E.E. Bunel, Y. Liu, V.B. Prakapenka, B. Lee, E.V. Shevchenko, Heterogeneous nucleation and shape transformation of multicomponent metallic nanostructures, Nat. Mater. 14(2015) 215–223. doi: 10.1038/nmat4115
    [42]
    D. Mukherjee, J.T.L. Gamler, S.E. Skrabalak, R.R. Unocic, Lattice strain measurement of Core@Shell electrocatalysts with 4D scanning transmission electron microscopy nanobeam electron diffraction, ACS Catal. 10(2020) 5529–5541. doi: 10.1021/acscatal.0c00224
    [43]
    M.J. Hÿtch, E. Snoeck, R. Kilaas, Quantitative measurement of displacement and strain fields from HREM micrographs, Ultramicroscopy 74(1998) 131–146. doi: 10.1016/S0304-3991(98)00035-7
    [44]
    H. Zhu, J. Zhang, R. Yanzhang, M. Du, Q. Wang, G. Gao, J. Wu, G. Wu, M. Zhang, B. Liu, J. Yao, X. Zhang, When cubic cobalt sulfide meets layered molybdenum disulfide: a core–shell system toward synergetic electrocatalytic water splitting, Adv. Mater. 27(2015) 4752–4759. doi: 10.1002/adma.201501969
    [45]
    A. Castellanos-Gomez, R. Roldán, E. Cappelluti, M. Buscema, F. Guinea, H.S.J. van der Zant, G.A. Steele, Local strain engineering in atomically thin MoS2, Nano Lett. 13(2013) 5361–5366. doi: 10.1021/nl402875m
    [46]
    H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund, S.T. Pantelides, K.I. Bolotin, Bandgap engineering of strained monolayer and bilayer MoS2, Nano Lett. 13(2013) 3626–3630.
    [47]
    S.-H. Chang, M.-D. Lu, Y.-L. Tung, H.-Y. Tuan, Gram-scale synthesis of catalytic Co9S8 nanocrystal ink as a cathode material for spray-deposited, large-area dyesensitized solar cells, ACS Nano 7(2013) 9443–9451. doi: 10.1021/nn404272j
    [48]
    Z. Sun, J. Zhang, L. Yin, G. Hu, R. Fang, H.-M. Cheng, F. Li, Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries, Nat. Commun. 8(2017) 14627.
    [49]
    J. Zhou, X. Liu, L. Zhu, J. Zhou, Y. Guan, L. Chen, S. Niu, J. Cai, D. Sun, Y. Zhu, J. Du, G. Wang, Y. Qian, Deciphering the modulation essence of p bands in Co-based compounds on Li-S chemistry, Joule 2(2018) 2681–2693. doi: 10.1016/j.joule.2018.08.010
    [50]
    D. Yang, C. Zhang, J.J. Biendicho, X. Han, Z. Liang, R. Du, M. Li, J. Li, J. Arbiol, J. Llorca, Y. Zhou, J.R. Morante, A. Cabot, ZnSe/N-Doped carbon nanoreactor with multiple adsorption sites for stable lithium-sulfur batteries, ACS Nano 14(2020) 15492–15504.
    [51]
    C.Y. Zhang, G.W. Sun, Y.F. Bai, Z. Dai, Y.R. Zhao, X.P. Gao, G.Z. Sun, X.B. Pan, X.J. Pan, J.Y. Zhou, Ultrastable lithium–sulfur batteries with outstanding rate capability boosted by NiAs-type vanadium sulfides, J. Mater. Chem. A 8(2020) 18358–18366.
    [52]
    C. Zhang, J.J. Biendicho, T. Zhang, R. Du, J. Li, X. Yang, J. Arbiol, Y. Zhou, J.R. Morante, A. Cabot, Combined high catalytic activity and efficient polar tubular nanostructure in urchin-like metallic NiCo2Se4 for high-performance lithium–sulfur batteries, Adv. Funct. Mater. 29(2019) 1903842.
    [53]
    C.Y. Zhang, G.W. Sun, Z. De Shi, Q.Y. Liu, J.L. Pan, Y.C. Wang, H. Zhao, G.Z. Sun, X.P. Gao, X.J. Pan, J.Y. Zhou, Deciphering the catalysis essence of vanadium selfintercalated two-dimensional vanadium sulfides (V5S8) on lithium polysulfide towards high-rate and ultra-stable Li-S batteries, Energy Stor. Mater. 43(2021) 471–481.
    [54]
    Y. Zhang, Z. Mu, C. Yang, Z. Xu, S. Zhang, X. Zhang, Y. Li, J. Lai, Z. Sun, Y. Yang, Y. Chao, C. Li, X. Ge, W. Yang, S. Guo, Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium–sulfur batteries, Adv. Funct. Mater. 28(2018) 1707578. doi: 10.1002/adfm.201707578
    [55]
    Y. Pan, L. Gong, X. Cheng, Y. Zhou, Y. Fu, J. Feng, H. Ahmed, H. Zhang, Layerspacing-enlarged MoS2 superstructural nanotubes with further enhanced catalysis and immobilization for Li–S batteries, ACS Nano 14(2020) 5917–5925. doi: 10.1021/acsnano.0c01124
    [56]
    Z. Ma, Y. Liu, J. Gautam, W. Liu, A.N. Chishti, J. Gu, G. Yang, Z. Wu, J. Xie, M. Chen, L. Ni, G. Diao, Embedding cobalt atom clusters in CNT-wired MoS2 tubein-tube nanostructures with enhanced sulfur immobilization and catalyzation for Li–S batteries, Small 17(2021) 2102710.
    [57]
    D.-A. Zhang, Q. Wang, Q. Wang, J. Sun, L.-L. Xing, X.-Y. Xue, High capacity and cyclability of hierarchical MoS2/SnO2 nanocomposites as the cathode of lithiumsulfur battery, Electrochim. Acta 173(2015) 476–482. doi: 10.1016/j.electacta.2015.05.086
    [58]
    T. Tang, T. Zhang, L. Zhao, B. Zhang, W. Li, J. Xu, L. Zhang, H. Qiu, Y. Hou, Multifunctional ultrasmall-MoS2/graphene composites for high sulfur loading Li–S batteries, Mater. Chem. Front. 4(2020) 1483–1491.
    [59]
    J. Wu, H. Zeng, X. Li, X. Xiang, Y. Liao, Z. Xue, Y. Ye, X. Xie, Ultralight layer-bylayer self-assembled MoS2-polymer modified separator for simultaneously trapping polysulfides and suppressing lithium dendrites, Adv. Energy Mater. 8(2018) 1802430. doi: 10.1002/aenm.201802430
    [60]
    S. Wang, S. Feng, J. Liang, Q. Su, F. Zhao, H. Song, M. Zheng, Q. Sun, Z. Song, X. Jia, J. yang, Y. Li, J. Liao, R. Li, X. Sun, Insight into MoS2–Mon heterostructure to accelerate polysulfide conversion toward high-energy-density lithium–sulfur batteries, Adv. Energy Mater. 11(2021) 2003314.
    [61]
    Y. Tang, Y. Huang, L. Luo, D. Fan, Y. Lu, A. Manthiram, Self-supported MoO2/MoS2 nano-sheets embedded in a carbon cloth as a binder-free substrate for high-energy lithium–sulfur batteries, Electrochim. Acta 367(2021) 137482. doi: 10.1016/j.electacta.2020.137482
    [62]
    X. Wang, D. Luo, J. Wang, Z. Sun, G. Cui, Y. Chen, T. Wang, L. Zheng, Y. Zhao, L. Shui, G. Zhou, K. Kempa, Y. Zhang, Z. Chen, Strain engineering of a MXene/CNT hierarchical porous hollow microsphere electrocatalyst for a high-efficiency lithium polysulfide conversion process, Angew. Chem. Int. Ed. 60(2021) 2371–2378. doi: 10.1002/anie.202016891
    [63]
    J. Wang, L. Jia, S. Duan, H. Liu, Q. Xiao, T. Li, H. Fan, K. Feng, J. Yang, Q. Wang, M. Liu, J. Zhong, W. Duan, H. Lin, Y. Zhang, Single atomic cobalt catalyst significantly accelerates lithium ion diffusion in high mass loading Li2S cathode, Energy Stor. Mater. 28(2020) 375–382. doi: 10.1016/j.ensm.2020.03.023
    [64]
    T. Zhou, W. Lv, J. Li, G. Zhou, Y. Zhao, S. Fan, B. Liu, B. Li, F. Kang, Q.-H. Yang, Twinborn TiO2–TiN heterostructures enabling smooth trapping–diffusion–conversion of polysulfides towards ultralong life lithium–sulfur batteries, Energy Environ. Sci. 10(2017) 1694–1703. doi: 10.1039/C7EE01430A
    [65]
    T. Meng, J. Gao, J. Zhu, N. Li, M. Xu, C.M. Li, J. Jiang, Unearth the understanding of interfacial engineering techniques on nano sulfur cathodes for steady Li–S cell systems, J. Mater. Chem. A 8(2020) 11976–11985. doi: 10.1039/D0TA04592F
    [66]
    S. Chen, J. Luo, N. Li, X. Han, J. Wang, Q. Deng, Z. Zeng, S. Deng, Multifunctional LDH/Co9S8 heterostructure nanocages as high-performance lithium–sulfur battery cathodes with ultralong lifespan, Energy Stor. Mater. 30(2020) 187–195 doi: 10.1016/j.ensm.2020.05.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (369) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return