Citation: | Ling JinKiong, Kunwar Ria, Li Linlin, Peng Shengjie, Misnon Izan Izwan, Ab Rahim Mohd Hasbi, Yang Chun-Chen, Jose Rajan. Self-rechargeable energizers for sustainability[J]. eScience, 2022, 2(4): 347-364. doi: 10.1016/j.esci.2022.07.002 |
[1] |
Y. Liu, M. Pharr, G.A. Salvatore, stretchable electronics for wearable health monitoring, ACS Nano 11 (2017) 9614-9635. doi: 10.1021/acsnano.7b04898
|
[2] |
Y. Gu, T. Zhang, H. Chen, F. Wang, Y. Pu, C. Gao, S. Li, Mini review on flexible and wearable electronics for monitoring human health information, Nanoscale Res. Lett. 14 (2019) 263. doi: 10.1186/s11671-019-3084-x
|
[3] |
Z. Zhao, K. Xia, Y. Hou, Q. Zhang, Z. Ye, J. Lu, Designing flexible, smart and selfsustainable supercapacitors for portable/wearable electronics: from conductive polymers, Chem. Soc. Rev. 50 (2021) 12702-12743. doi: 10.1039/D1CS00800E
|
[4] |
A. Costanzo, M. Dionigi, D. Masotti, M. Mongiardo, G. Monti, L. Tarricone, R. Sorrentino, Electromagnetic energy harvesting and wireless power transmission: a unified approach, Proc. IEEE 102 (2014) 1692-1711. doi: 10.1109/JPROC.2014.2355261
|
[5] |
S. Mizojiri, K. Shimamura, M. Fukunari, S. Minakawa, S. Yokota, Y. Yamaguchi, Y. Tatematsu, T. Saito, Subterahertz wireless power transmission using 303-GHz rectenna and 300-kW-Class gyrotron, IEEE Microw. Wireless Compon. Lett. 28 (2018) 834-836. doi: 10.1109/LMWC.2018.2860248
|
[6] |
Y. Hong, L. Jin, B. Wang, J. Liao, B. He, T. Yang, Z. Long, P. Li, Z. Zhang, S. Liu, Y. Lee, B.L. Khoo, Z. Yang, A wood-templated unidirectional piezoceramic composite for transmuscular ultrasonic wireless power transfer, Energy Environ. Sci. 14 (2021) 6574-6585. doi: 10.1039/D1EE02353E
|
[7] |
B. Hu, H. Li, T. Li, H. Wang, Y. Zhou, X. Zhao, X. Hu, X. Du, Y. Zhao, X. Li, T. Qi, M. Helaoui, W. Chen, F. Ghannouchi, A long-distance high-power microwave wireless power transmission system based on asymmetrical resonant magnetron and cyclotron-wave rectifier, Energy Rep. 7 (2021) 1154-1161. doi: 10.1016/j.egyr.2020.12.026
|
[8] |
W.-J. Zhi, L.-F. Wang, X.-J. Hu, Recent advances in the effects of microwave radiation on brains, Mil. Med. Res. 4 (2017) 29.
|
[9] |
S. Tan, H. Wang, X. Xu, L. Zhao, J. Zhang, J. Dong, B. Yao, H. Wang, H. Zhou, Y. Gao, R. Peng, Study on dose-dependent, frequency-dependent, and accumulative effects of 1.5 GHz and 2.856 GHz microwave on cognitive functions in Wistar rats, Sci. Rep. 7 (2017) 10781. doi: 10.1038/s41598-017-11420-9
|
[10] |
P. Bhartiya, S. Mumtaz, J.S. Lim, N. Kaushik, P. Lamichhane, L.N. Nguyen, J.H. Jang, S.H. Yoon, J.J. Choi, N.K. Kaushik, E.H. Choi, Pulsed 3.5 GHz high power microwaves irradiation on physiological solution and their biological evaluation on human cell lines, Sci. Rep. 11 (2021) 8475. doi: 10.1038/s41598-021-88078-x
|
[11] |
T. Hou, B. Wang, Z. Jia, H. Wu, D. Lan, Z. Huang, A. Feng, M. Ma, G. Wu, A review of metal oxide-related microwave absorbing materials from the dimension and morphology perspective, J. Mater. Sci. Mater. Electron. 30 (2019) 10961-10984. doi: 10.1007/s10854-019-01537-0
|
[12] |
J.-B. Cheng, H.-G. Shi, M. Cao, T. Wang, H.-B. Zhao, Y.-Z. Wang, Porous carbon materials for microwave absorption, Mater. Adv. 1 (2020) 2631-2645. doi: 10.1039/D0MA00662A
|
[13] |
S. Niu, X. Wang, F. Yi, Y.S. Zhou, Z.L. Wang, A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics, Nat. Commun. 6 (2015) 8975. doi: 10.1038/ncomms9975
|
[14] |
H. Guo, M.-H. Yeh, Y. Zi, Z. Wen, J. Chen, G. Liu, C. Hu, Z.L. Wang, Ultralight cutpaper-based self-charging power unit for self-powered portable electronic and medical systems, ACS Nano 11 (2017) 4475-4482. doi: 10.1021/acsnano.7b00866
|
[15] |
J. Luo, T.L. Liu, Tandem solar flow batteries for conversion, storage, and utilization of solar energy, Chem 4 (2018) 2488-2490. doi: 10.1016/j.chempr.2018.10.008
|
[16] |
J. Lv, J. Chen, P.S. Lee, Sustainable wearable energy storage devices self-charged by human-body bioenergy, SusMat 1 (2021) 285-302. doi: 10.1002/sus2.14
|
[17] |
R. Liu, C. Liu, S. Fan, A photocapacitor based on organometal halide perovskite and PANI/CNT composites integrated using a CNT bridge, J. Mater. Chem. A 5 (2017) 23078-23084. doi: 10.1039/C7TA06297D
|
[18] |
I. Jeon, J. Yoon, U. Kim, C. Lee, R. Xiang, A. Shawky, J. Xi, J. Byeon, H.M. Lee, M. Choi, S. Maruyama, Y. Matsuo, High-performance solution-processed doublewalled carbon nanotube transparent electrode for perovskite solar cells, Adv. Energy Mater. 9 (2019) 1901204. doi: 10.1002/aenm.201901204
|
[19] |
J. Ling, P.K.K. Kizhakkedath, T.M. Watson, I. Mora-Seró, L. Schmidt-Mende, T.M. Brown, R. Jose, A perspective on the commercial viability of perovskite solar cells, Solar RRL 5 (2021) 2100401. doi: 10.1002/solr.202100401
|
[20] |
J. Xu, Z. Ku, Y. Zhang, D. Chao, H.J. Fan, Integrated photo-supercapacitor based on PEDOT modified printable perovskite solar cell, Adv. Mater. Technol. 1 (2016) 1600074. doi: 10.1002/admt.201600074
|
[21] |
Y. Zi, J. Wang, S. Wang, S. Li, Z. Wen, H. Guo, Z.L. Wang, Effective energy storage from a triboelectric nanogenerator, Nat. Commun. 7 (2016) 10987. doi: 10.1038/ncomms10987
|
[22] |
X. Liu, K. Zhao, Z.L. Wang, Y. Yang, Unity convoluted design of solid Li-ion battery and triboelectric nanogenerator for self-powered wearable electronics, Adv. Energy Mater. 7 (2017) 1701629. doi: 10.1002/aenm.201701629
|
[23] |
M.B. Khan, H. Saif, K. Lee, Y. Lee, Dual piezoelectric energy investing and harvesting interface for high-voltage input, Sensors 21 (2021) 2357. doi: 10.3390/s21072357
|
[24] |
X. Gao, Y. Zhang, Y. Zhao, S. Yin, J. Gui, C. Sun, S. Guo, Heterointerface engineering and piezoelectric effect enhanced performance of self-charging supercapacitors power cell, Nano Energy 91 (2022) 106701. doi: 10.1016/j.nanoen.2021.106701
|
[25] |
K. Krishnamoorthy, S. Manoharan, V.K. Mariappan, P. Pazhamalai, S.-J. Kim, Decoupling mechano- and electrochemical gating: a direct visualization for piezoionic propelled proton tunneling in self-charging supercapacitors, J. Mater. Chem. A 10 (2022) 7818-7829. doi: 10.1039/D1TA10254K
|
[26] |
D. Lau, N. Song, C. Hall, Y. Jiang, S. Lim, I. Perez-Wurfl, Z. Ouyang, A. Lennon, Hybrid solar energy harvesting and storage devices: the promises and challenges, Mater, Today Energy 13 (2019) 22-44. doi: 10.1016/j.mtener.2019.04.003
|
[27] |
J.S. Teixeira, R.S. Costa, A.L. Pires, A.M. Pereira, C. Pereira, Hybrid dual-function thermal energy harvesting and storage technologies: towards self-chargeable flexible/wearable devices, Dalton Trans. 50 (2021) 9983-10013. doi: 10.1039/D1DT01568K
|
[28] |
J.-H. Lee, J. Kim, T.Y. Kim, M.S. Al Hossain, S.-W. Kim, J.H. Kim, All-in-one energy harvesting and storage devices, J. Mater. Chem. A 4 (2016) 7983-7999. doi: 10.1039/C6TA01229A
|
[29] |
B. Singh, B. Padha, S. Verma, S. Satapathi, V. Gupta, S. Arya, Recent advances, challenges, and prospects of piezoelectric materials for self-charging supercapacitor, J. Energy Storage 47 (2022) 103547. doi: 10.1016/j.est.2021.103547
|
[30] |
X.K. Wei, N. Domingo, Y. Sun, N. Balke, R.E. Dunin-Borkowski, J. Mayer, Progress on Emerging Ferroelectric Materials for Energy Harvesting, Storage and Conversion, Adv. Energy Mater. 12 (2022) 2270102. doi: 10.1002/aenm.202270102
|
[31] |
H. Elahi, K. Munir, M. Eugeni, S. Atek, P. Gaudenzi, Energy harvesting towards self-powered iot devices, Energies 13 (2020) 5528. doi: 10.3390/en13215528
|
[32] |
Lithium-Ion Battery Market by Type (Li-NMC, LFP, LCO, LTO), Power Capacity (0-3, 000 mAh, 3, 000 mAh-10, 000 mAh, 10, 000 mAh-60, 000 mAh, above 60, 000 mAh), Industry (Consumer Electronics, Automotive, Industrial), Voltage, Region - Global Forecast to 2025, Lithium-Ion Battery Market, MARKETSANDMARKETS, 2020. https://www.marketresearch.com/MarketsandMarkets-v3719/LithiumIon-Battery-Type-Li-13181861/.
|
[33] |
Lithium-ion Battery Market Size USD 129.3 Billion by 2027 at a CAGR of 18.0%, CISION PR Newswire, 2020. https://www.prnewswire.co.uk/news-releases/lithium-ion-battery-market-size-usd-129-3-billion-by-2027-at-a-cagr-of-18-0-valuates-reports-896863595.html.
|
[34] |
Portable Electronics Market Growth Analysis, Emerging Trends, Opportunities, Sales Revenue, COVID 19 Analysis, Business Strategy, Future Prospects and Industry Outlook 2023, MarketWatch, 2021.
|
[35] |
M. Gao, P. Wang, L. Jiang, B. Wang, Y. Yao, S. Liu, D. Chu, W. Cheng, Y. Lu, Power generation for wearable systems, Energy Environ. Sci. 14 (2021) 2114-2157. doi: 10.1039/D0EE03911J
|
[36] |
J.L. Heilbron, The invention of the condenser, in: H. J. L. (Ed.) Electricity in the 17th and 18th Centuries: A Study of Early Modern Physics, University of California Press1979, pp. 309. https://www.ucpress.edu/book/9780520334595/electricityin-the-17th-and-18th-centuries
|
[37] |
T.S. Kuhn, in: The Structure of Scientific Revolutions, third ed., University of Chicago Press, 1996.
|
[38] |
A. R, Bibliographical history of electricity and magnetism, chronologically arranged, Nature 111 (1923) 142.
|
[39] |
J.S. Jayson, The daniell cell, ohm's law, and the emergence of the international system of units, Am. J. Phys. 82 (2014) 60-65. doi: 10.1119/1.4826445
|
[40] |
U. Kohler, C. Antonius, P. Bäuerlein, Advances in alkaline batteries, J. Power Sources 127 (2004) 45-52. doi: 10.1016/j.jpowsour.2003.09.006
|
[41] |
K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, LixCoO2 (0<x<-1): a new cathode material for batteries of high energy density, Mater. Res. Bull. 15 (1980) 783-789. doi: 10.1016/0025-5408(80)90012-4
|
[42] |
J.B. Goodenough, How we made the Li-ion rechargeable battery, Nat. Electron. 1 (2018) 204. doi: 10.1038/s41928-018-0048-6
|
[43] |
J.B. Goodenough, Oxide cathodes, in: W.A. van Schalkwijk, S. B (Eds.), Advances in Lithium-Ion Batteries, Springer, Boston, MA, 2002, pp. 135-154.
|
[44] |
Y. Furushima, C. Yanagisawa, T. Nakagawa, Y. Aoki, N. Muraki, Thermal stability and kinetics of delithiated LiCO2, J. Power Sources 196 (2011) 2260-2263. doi: 10.1016/j.jpowsour.2010.09.076
|
[45] |
S. Kaewmala, W. Limphirat, V. Yordsri, H. Kim, S. Muhammad, W.-S. Yoon, S. Srilomsak, P. Limthongkul, N. Meethong, Structural and electrochemical kinetic properties of 0.5Li2MnO3 ·0.5LiCoO2 cathode materials with different Li2MnO3 domain sizes, Sci. Rep. 9 (2019) 427. doi: 10.1038/s41598-018-36593-9
|
[46] |
Z. Zhu, D. Yu, Z. Shi, R. Gao, X. Xiao, I. Waluyo, M. Ge, Y. Dong, W. Xue, G. Xu, W.-K. Lee, A. Hunt, J. Li, Gradient-morph LiCoO2 single crystals with stabilized energy density above 3400 Wh L-1, Energy Environ. Sci. 13 (2020) 1865-1878. doi: 10.1039/D0EE00231C
|
[47] |
Y. Zheng, S. Wang, Y. Gao, T. Yang, Q. Zhou, W. Song, C. Zeng, H. Wu, C. Feng, J. Liu, Lithium nickel cobalt manganese oxide recovery via spray pyrolysis directly from the leachate of spent cathode scraps, ACS Appl. Energy Mater. 2 (2019) 6952-6959. doi: 10.1021/acsaem.9b01647
|
[48] |
S. Dou, Review and prospect of layered lithium nickel manganese oxide as cathode materials for Li-ion batteries, J. Solid State Electrochem. 17 (2013) 911-926. doi: 10.1007/s10008-012-1977-z
|
[49] |
Y.-F. Zhu, Y. Xiao, S.-X. Dou, Y.-M. Kang, S.-L. Chou, Spinel/Post-spinel engineering on layered oxide cathodes for sodium-ion batteries, eScience 1 (2021) 13-27. doi: 10.1016/j.esci.2021.10.003
|
[50] |
X. Shen, X.-Q. Zhang, F. Ding, J.-Q. Huang, R. Xu, X. Chen, C. Yan, F.-Y. Su, C.- M. Chen, X. Liu, Q. Zhang, Advanced electrode materials in lithium batteries: retrospect and prospect, Energy Mater. Adv. 2021 (2021) 1205324.
|
[51] |
A. Kraytsberg, Y. Ein-Eli, Higher, stronger, Better… A review of 5 volt cathode materials for advanced lithium-ion batteries, Adv. Energy Mater. 2 (2012) 922-939. doi: 10.1002/aenm.201200068
|
[52] |
Z. Chen, W. Zhang, Z. Yang, A review on cathode materials for advanced lithium ion batteries: microstructure designs and performance regulations, Nanotechnology 31 (2019) 012001.
|
[53] |
N. Mohamed, N.K. Allam, Recent advances in the design of cathode materials for Li-ion batteries, RSC Adv. 10 (2020) 21662-21685. doi: 10.1039/D0RA03314F
|
[54] |
J. Ling, C. Karuppiah, S.G. Krishnan, M.V. Reddy, I.I. Misnon, M.H. Ab Rahim, C.- C. Yang, R. Jose, Phosphate polyanion materials as high-voltage lithium-ion battery cathode: a review, Energy Fuels 35 (2021) 10428-10450. doi: 10.1021/acs.energyfuels.1c01102
|
[55] |
X. Lian, N. Xu, Y. Ma, F. Hu, H. Wei, H.-Y. Chen, Y. Wu, L. Li, D. Li, S. Peng, In-situ formation of Co1-xS hollow polyhedrons anchored on multichannel carbon nanofibers as self—supporting anode for lithium/sodium-ion batteries, Chem. Eng. J. 421 (2021) 127755. doi: 10.1016/j.cej.2020.127755
|
[56] |
H. Huang, D. Yu, F. Hu, S.-C. Huang, J. Song, H.-Y. Chen, L.L. Li, S. Peng, Clusters induced electron redistribution to tune oxygen reduction activity of transition metal single-atom for metal-air batteries, Angew. Chem. Int. Ed. 61 (2022) e202116068.
|
[57] |
L. Li, D. Yu, P. Li, H. Huang, D. Xie, C.-C. Lin, F. Hu, H.-Y. Chen, S. Peng, Interfacial electronic coupling of ultrathin transition-metal hydroxide nanosheets with layered MXenes as a new prototype for platinum-like hydrogen evolution, Energy Environ. Sci. 14 (2021) 6419-6427. doi: 10.1039/D1EE02538D
|
[58] |
M.N. Obrovac, V.L. Chevrier, Alloy negative electrodes for Li-ion batteries, Chem. Rev. 114 (2014) 11444-11502. doi: 10.1021/cr500207g
|
[59] |
S. Liang, Y.-J. Cheng, J. Zhu, Y. Xia, P. Müller-Buschbaum, Ge)-Based lithium/sodium-ion battery alloying anodes, Small Methods 4 (2020) 2000218. doi: 10.1002/smtd.202000218
|
[60] |
S.-H. Qi, J.-W. Deng, W.-C. Zhang, Y.-Z. Feng, J.-M. Ma, Recent advances in alloy-based anode materials for potassium ion batteries, Rare Met. 39 (2020) 970-988. doi: 10.1007/s12598-020-01454-w
|
[61] |
A. Huang, Y. Ma, J. Peng, L. Li, S.-l. Chou, S. Ramakrishna, S. Peng, Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology, eScience 1 (2021) 141-162. doi: 10.1016/j.esci.2021.11.006
|
[62] |
H. Xie, Z. Wu, Z. Wang, N. Qin, Y. Li, Y. Cao, Z. Lu, Solid electrolyte interface stabilization via surface oxygen species functionalization in hard carbon for superior performance sodium-ion batteries, J. Mater. Chem. A 8 (2020) 3606-3612. doi: 10.1039/C9TA12429B
|
[63] |
S. Hong, M.-H. Choo, Y.H. Kwon, J.Y. Kim, S.-W. Song, Mechanisms for stable solid electrolyte interphase formation and improved cycling stability of tin-based battery anode in fluoroethylene carbonate-containing electrolyte, Adv. Mater. Interfaces 3 (2016) 1600172. doi: 10.1002/admi.201600172
|
[64] |
J. Zhang, C. Shen, P. Liu, Y. Qiao, Understanding the effect of electrolyte on the cycle and structure stability of high areal capacity Si-Al film electrode, Ionics 25 (2019) 483-492. doi: 10.1007/s11581-018-2816-8
|
[65] |
H. Jo, J. Kim, D.-T. Nguyen, K.K. Kang, D.-M. Jeon, A.R. Yang, S.-W. Song, Stabilizing the solid electrolyte interphase layer and cycling performance of silicon-graphite battery anode by using a binary additive of fluorinated carbonates, J. Phys. Chem. 120 (2016) 22466-22475.
|
[66] |
J. Wu, Y. Cao, H. Zhao, J. Mao, Z. Guo, The critical role of carbon in marrying silicon and graphite anodes for high-energy lithium-ion batteries, Carbon Energy 1 (2019) 57-76. doi: 10.1002/cey2.2
|
[67] |
Y. Lu, L. Yu, X.W. Lou, Nanostructured conversion-type Anode materials for advanced lithium-ion batteries, Chem 4 (2018) 972-996. doi: 10.1016/j.chempr.2018.01.003
|
[68] |
A. Kraytsberg, Y. Ein-Eli, A critical review-promises and barriers of conversion electrodes for Li-ion batteries, J. Solid State Electrochem. 21 (2017) 1907-1923. doi: 10.1007/s10008-017-3580-9
|
[69] |
D. Puthusseri, M. Wahid, S. Ogale, Conversion-type Anode materials for alkali-ion batteries: state of the art and possible research directions, ACS Omega 3 (2018) 4591-4601. doi: 10.1021/acsomega.8b00188
|
[70] |
J. Ling, C. Karuppiah, M.V. Reddy, B. Pal, C.-C. Yang, R. Jose, Unraveling synergistic mixing of SnO2-TiO2 composite as anode for Li-ion battery and their electrochemical properties, J. Mater. Res. (2021) 4120-4130.
|
[71] |
J. Ling, C. Karuppiah, S. Das, V.K. Singh, I.I. Misnon, M.H. Ab Rahim, S. Peng, C.- C. Yang, R. Jose, Quasi-anisotropic benefits in electrospun nickel-cobalt-manganese oxide nano-octahedron as anode for lithium-ion batteries, New J. Chem. 46 (2022) 9799-9810. doi: 10.1039/D2NJ01462A
|
[72] |
J. Ling, C. Karuppiah, S. Das, I.I. Misnon, M.H. Ab Rahim, C.-C. Yang, R. Jose, Electrospun ternary composite metal oxide fibers as an anode for lithium-ion batteries, Front. Mater. 9 (2022) 815204. doi: 10.3389/fmats.2022.815204
|
[73] |
B.L. Vijayan, I.I. Misnon, G.M. Anilkumar, C.-C. Yang, R. Jose, Void-size-matched hierarchical 3D titania flowers in porous carbon as an electrode for high-density supercapacitive charge storage, J. Alloys Compd. 858 (2021) 157649. doi: 10.1016/j.jallcom.2020.157649
|
[74] |
B.L. Vijayan, N.K. Mohd Zain, I.I. Misnon, M.V. Reddy, S. Adams, C.-C. Yang, G.M. Anilkumar, R. Jose, Void space control in porous carbon for high-density supercapacitive charge storage, Energy Fuels 34 (2020) 5072-5083. doi: 10.1021/acs.energyfuels.0c00737
|
[75] |
K. Aruchamy, K. Dharmalingam, C.W. Lee, D. Mondal, N. Sanna Kotrappanavar, Creating ultrahigh surface area functional carbon from biomass for high performance supercapacitor and facile removal of emerging pollutants, Chem. Eng. J. 427 (2022) 131477. doi: 10.1016/j.cej.2021.131477
|
[76] |
L. Zhang, X. Yang, F. Zhang, G. Long, T. Zhang, K. Leng, Y. Zhang, Y. Huang, Y. Ma, M. Zhang, Y. Chen, Controlling the effective surface area and pore size distribution of sp2 carbon materials and their impact on the capacitance performance of these materials, J. Am. Chem. Soc. 135 (2013) 5921-5929. doi: 10.1021/ja402552h
|
[77] |
K. Lota, I. Acznik, A. Sierczynska, G. Lota, The capacitance properties of activated carbon obtained from chitosan as the electrode material for electrochemical capacitors, Mater. Lett. 173 (2016) 72-75. doi: 10.1016/j.matlet.2016.03.031
|
[78] |
K.S. Lee, Y.J. Seo, H.T. Jeong, Capacitive behavior of functionalized activated carbon-based all-solid-state supercapacitor, Carbon Lett. 31 (2021) 1041-1049. doi: 10.1007/s42823-020-00219-w
|
[79] |
B.S. Singu, S.E. Hong, K.R. Yoon, Preparation and characterization of manganese oxide nanosheets for pseudocapacitor application, J. Energy Storage 25 (2019) 100851. doi: 10.1016/j.est.2019.100851
|
[80] |
D. Guo, Z. Hu, Q. Li, L. Bian, Y. Song, X. Liu, Mixed-valence manganese oxide/ reduced graphene oxide composites with enhanced pseudocapacitive performance, J. Mater. Sci. 57 (2022) 563-575. doi: 10.1007/s10853-021-06613-7
|
[81] |
X. Cai, Y. Song, S.-Q. Wang, X. Sun, X.-X. Liu, Extending the cycle life of high mass loading MoOx electrode for supercapacitor applications, Electrochim. Acta 325 (2019) 134877. doi: 10.1016/j.electacta.2019.134877
|
[82] |
L. Liu, H. Zhao, Y. Lei, Advances on three-dimensional electrodes for microsupercapacitors: a mini-review, InfoMat 1 (2019) 74-84. doi: 10.1002/inf2.12007
|
[83] |
B.L. Vijayan, I.I. Misnon, C. Karuppaiah, G.M. Anil Kumar, S. Yang, C.-C. Yang, R. Jose, Thin metal film on porous carbon as a medium for electrochemical energy storage, J. Power Sources 489 (2021) 229522. doi: 10.1016/j.jpowsour.2021.229522
|
[84] |
Z.U. Rehman, M. Bilal, J. Hou, J. Ahmad, S. Ullah, X. Wang, A. Hussain, 6 - metal oxide-carbon composites for supercapacitor applications, in: M.A. Chaudhry, R. Hussain, F.K. Butt (Eds.), Metal Oxide-Carbon Hybrid Materials, Elsevier, 2022, pp. 133-177.
|
[85] |
C. Schultz, S. Vedder, B. Streipert, M. Winter, S. Nowak, Quantitative investigation of the decomposition of organic lithium ion battery electrolytes with LC-MS/MS, RSC Adv. 7 (2017) 27853-27862. doi: 10.1039/C7RA03839A
|
[86] |
J. Henschel, C. Peschel, S. Klein, F. Horsthemke, M. Winter, S. Nowak, Clarification of decomposition pathways in a state-of-the-art lithium ion battery electrolyte through 13C-labeling of electrolyte components, Angew. Chem. Int. Ed. 59 (2020) 6128-6137. doi: 10.1002/anie.202000727
|
[87] |
C. Zhang, Deciphering electrolyte degradation, Nat. Energy 4 (2019), 1006. doi: 10.1038/s41560-019-0524-x
|
[88] |
A.L. Michan, M. Leskes, C.P. Grey, Voltage dependent solid electrolyte interphase formation in silicon electrodes: monitoring the formation of organic decomposition products, Chem. Mater. 28 (2016) 385-398. doi: 10.1021/acs.chemmater.5b04408
|
[89] |
A. Wang, S. Kadam, H. Li, S. Shi, Y. Qi, Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries, NPJ Comput. Mater. 4 (2018) 15. doi: 10.1038/s41524-018-0064-0
|
[90] |
Q. Zhuang, J. Xu, X. Fan, G. Wei, Q. Dong, Y. Jiang, L. Huang, S. Sun, LiCoO2 electrode/electrolyte interface of Li-ion batteries investigated by electrochemical impedance spectroscopy, Sci. China Chem. 50 (2007) 776-783.
|
[91] |
C. Yan, R. Xu, Y. Xiao, J.-F. Ding, L. Xu, B.-Q. Li, J.-Q. Huang, Toward critical electrode/electrolyte interfaces in rechargeable batteries, Adv. Funct. Mater. 30 (2020) 1909887. doi: 10.1002/adfm.201909887
|
[92] |
L. Xu, S. Tang, Y. Cheng, K. Wang, J. Liang, C. Liu, Y.-C. Cao, F. Wei, L. Mai, Interfaces in solid-state lithium batteries, Joule 2 (2018) 1991-2015. doi: 10.1016/j.joule.2018.07.009
|
[93] |
D. Mohanty, A.S. Sefat, E.A. Payzant, J. Li, D.L. Wood, C. Daniel, Unconventional irreversible structural changes in a high-voltage Li-Mn-rich oxide for lithium-ion battery cathodes, J. Power Sources 283 (2015) 423-428. doi: 10.1016/j.jpowsour.2015.02.087
|
[94] |
J.P. Pender, G. Jha, D.H. Youn, J.M. Ziegler, I. Andoni, E.J. Choi, A. Heller, B.S. Dunn, P.S. Weiss, R.M. Penner, C.B. Mullins, Electrode degradation in lithiumion batteries, ACS Nano 14 (2020) 1243-1295. doi: 10.1021/acsnano.9b04365
|
[95] |
C.P. Grey, D.S. Hall, Prospects for lithium-ion batteries and beyond——a 2030 vision, Nat. Commun. 11 (2020) 6279. doi: 10.1038/s41467-020-19991-4
|
[96] |
F. Hu, D. Yu, M. Ye, H. Wang, Y. Hao, L. Wang, L. Li, X. Han, S. Peng, Latticematching formed mesoporous transition metal oxide heterostructures advance water splitting by active Fe-O-Cu bridges, Adv. Energy Mater. 12 (2022) 2200067. doi: 10.1002/aenm.202200067
|
[97] |
L. Deng, F. Hu, M. Ma, S.-C. Huang, Y. Xiong, H.-Y. Chen, L. Li, S. Peng, Electronic modulation caused by interfacial Ni-O-M (M=Ru, Ir, Pd) bonding for accelerating hydrogen evolution kinetics, Angew. Chem. Int. Ed. 60 (2021) 22276-22282. doi: 10.1002/anie.202110374
|
[98] |
K.M. Abraham, How comparable are sodium-ion batteries to lithium-ion counterparts? ACS Energy Lett. 5 (2020) 3544-3547. doi: 10.1021/acsenergylett.0c02181
|
[99] |
Y. Hao, F. Hu, Y. Chen, Y. Wang, J. Xue, S. Yang, S. Peng, Recent progress of electrospun nanofibers for zinc-air batteries, Adv. Fiber Mater. 4 (2022) 185-202. doi: 10.1007/s42765-021-00109-4
|
[100] |
M. Fichtner, K. Edström, E. Ayerbe, M. Berecibar, A. Bhowmik, I.E. Castelli, S. Clark, R. Dominko, M. Erakca, A.A. Franco, A. Grimaud, B. Horstmann, A. Latz, H. Lorrmann, M. Meeus, R. Narayan, F. Pammer, J. Ruhland, H. Stein, T. Vegge, M. Weil, Rechargeable batteries of the future-the state of the art from a BATTERY 2030+ perspective, Adv. Energy Mater. 12 (2022) 2102904. doi: 10.1002/aenm.202102904
|
[101] |
P.K. Panda, R. Ahuja, Future Outlook and Direction of Next-Generation Battery Materials, Next-Generation Materials for Batteries, AIP Publishing, pp. 11-22. https://aip.scitation.org/doi/10.1063/9780735421684_011
|
[102] |
R.C. Bonnabeau, R.M. Ferlic, C. Walton Lillehei, A new rechargeable epicardial cardiac pacemaker, J. Thorac. Cardiovasc. Surg. 50 (1965) 857-867. doi: 10.1016/S0022-5223(19)33139-3
|
[103] |
S. M, S. Lakshmi, Design and analysis of batteryless cardiac pacemaker through combining thermoelectric generators along with DC-DC converter, Int. Trans. Electr. Energy Syst. 31 (2021) e13162.
|
[104] |
H. Ryu, H.-m. Park, M.-K. Kim, B. Kim, H.S. Myoung, T.Y. Kim, H.-J. Yoon, S.S. Kwak, J. Kim, T.H. Hwang, E.-K. Choi, S.-W. Kim, Self-rechargeable cardiac pacemaker system with triboelectric nanogenerators, Nat. Commun. 12 (2021) 4374. doi: 10.1038/s41467-021-24417-w
|
[105] |
K.S. Ackshaya Varshini, K.S. Maanav Charan, M.B. Shyam Kumar, Concept design and analysis of self sustainable triboelectric pacemaker, J. Phys. Conf. 2115 (2021) 012050. doi: 10.1088/1742-6596/2115/1/012050
|
[106] |
J.Y. Kim, J.-W. Lee, H.S. Jung, H. Shin, N.-G. Park, High-efficiency perovskite solar cells, Chem. Rev. 120 (2020) 7867-7918. doi: 10.1021/acs.chemrev.0c00107
|
[107] |
K. Li, Q. He, J. Wang, Z. Zhou, X. Li, Wearable energy harvesters generating electricity from low-frequency human limb movement, Microsyst. Nanoeng. 4 (2018) 24. doi: 10.1038/s41378-018-0024-3
|
[108] |
N. Jaziri, A. Boughamoura, J. Müller, B. Mezghani, F. Tounsi, M. Ismail, A comprehensive review of Thermoelectric Generators: technologies and common applications, Energy Rep. 6 (2020) 264-287.
|
[109] |
Z. Bu, X. Zhang, Y. Hu, Z. Chen, S. Lin, W. Li, Y. Pei, An over 10% module efficiency obtained using non-Bi2Te3 thermoelectric materials for recovering heat of <600 K, Energy Environ. Sci. 14 (2021) 6506-6513. doi: 10.1039/D1EE02253A
|
[110] |
S. Qu, C. Ming, P. Qiu, K. Xu, Q. Xu, Q. Yao, P. Lu, H. Zeng, X. Shi, L. Chen, Highperformance n-type Ta4SiTe4/polyvinylidene fluoride (PVDF)/graphdiyne organic-inorganic flexible thermoelectric composites, Energy Environ. Sci. 14 (2021) 6586-6594. doi: 10.1039/D1EE02552J
|
[111] |
H. Nagai, T. Suzuki, Y. Takahashi, M. Sato, Photovoltaic lithium-ion battery fabricated by molecular precursor method, Funct. Mater. Lett. 9 (2016) 1650046. doi: 10.1142/S1793604716500466
|
[112] |
A. Paolella, C. Faure, G. Bertoni, S. Marras, A. Guerfi, A. Darwiche, P. Hovington, B. Commarieu, Z. Wang, M. Prato, M. Colombo, S. Monaco, W. Zhu, Z. Feng, A. Vijh, C. George, G.P. Demopoulos, M. Armand, K. Zaghib, Light-assisted delithiation of lithium iron phosphate nanocrystals towards photo-rechargeable lithium ion batteries, Nat. Commun. 8 (2017) 14643. doi: 10.1038/ncomms14643
|
[113] |
S. Ahmad, C. George, D.J. Beesley, J.J. Baumberg, M. De Volder, Photorechargeable organo-halide perovskite batteries, Nano Lett. 18 (2018) 1856-1862. doi: 10.1021/acs.nanolett.7b05153
|
[114] |
B.D. Boruah, A. Mathieson, B. Wen, S. Feldmann, W.M. Dose, M. De Volder, Photorechargeable zinc-ion batteries, Energy Environ. Sci. 13 (2020) 2414-2421. doi: 10.1039/D0EE01392G
|
[115] |
M. Yu, X. Ren, L. Ma, Y. Wu, Integrating a redox-coupled dye-sensitized photoelectrode into a lithium-oxygen battery for photoassisted charging, Nat. Commun. 5 (2014) 5111. doi: 10.1038/ncomms6111
|
[116] |
J. Ling, B. Pal, K. Chong, L. Schmidt-Mende, J. Bisquert, R. Jose, Photocurrents in crystal-amorphous hybrid stannous oxide/alumina binary nanofibers, J. Am. Ceram. Soc. 102 (2019) 6337-6348. doi: 10.1111/jace.16504
|
[117] |
C.W. Chan, J. Ling-Chin, A.P. Roskilly, A review of chemical heat pumps, thermodynamic cycles and thermal energy storage technologies for low grade heat utilisation, Appl. Therm. Eng. 50 (2013) 1257-1273. doi: 10.1016/j.applthermaleng.2012.06.041
|
[118] |
D. Brogioli, F. La Mantia, Innovative technologies for energy production from low temperature heat sources: critical literature review and thermodynamic analysis, Energy Environ. Sci. 14 (2021) 1057-1082. doi: 10.1039/D0EE02795B
|
[119] |
M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, G. Chen, Perspectives on thermoelectrics: from fundamentals to device applications, Energy Environ. Sci. 5 (2012) 5147-5162. doi: 10.1039/C1EE02497C
|
[120] |
R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature 413 (2001) 597-602. doi: 10.1038/35098012
|
[121] |
M.Y. Kim, S.J. Park, G.-Y. Kim, S.-Y. Choi, H. Jin, Designing efficient spin Seebeckbased thermoelectric devices via simultaneous optimization of bulk and interface properties, Energy Environ. Sci. 14 (2021) 3480-3491. doi: 10.1039/D1EE00667C
|
[122] |
R. Dhawan, P. Madusanka, G. Hu, J. Debord, T. Tran, K. Maggio, H. Edwards, M. Lee, Si0.97Ge0.03 microelectronic thermoelectric generators with high power and voltage densities, Nat. Commun. 11 (2020) 4362. doi: 10.1038/s41467-020-18122-3
|
[123] |
X.-L. Shi, J. Zou, Z.-G. Chen, Advanced thermoelectric design: from materials and structures to devices, Chem. Rev. 120 (2020) 7399-7515. doi: 10.1021/acs.chemrev.0c00026
|
[124] |
G. Vats, A. Kumar, N. Ortega, C.R. Bowen, R.S. Katiyar, Giant pyroelectric energy harvesting and a negative electrocaloric effect in multilayered nanostructures, Energy Environ. Sci. 9 (2016) 1335-1345. doi: 10.1039/C5EE03641K
|
[125] |
H. Im, T. Kim, H. Song, J. Choi, J.S. Park, R. Ovalle-Robles, H.D. Yang, K.D. Kihm, R.H. Baughman, H.H. Lee, T.J. Kang, Y.H. Kim, High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes, Nat. Commun. 7 (2016) 10600. doi: 10.1038/ncomms10600
|
[126] |
S.-M. Jung, J. Kwon, J. Lee, K. Shim, D. Park, T. Kim, Y.H. Kim, S.J. Hwang, Y.- T. Kim, Cu-based thermoelectrochemical cells for direct conversion of low-grade waste heat into electricity, ACS Appl. Energy Mater. 3 (2020) 6383-6390. doi: 10.1021/acsaem.0c00586
|
[127] |
M.F. Dupont, D.R. MacFarlane, J.M. Pringle, Thermo-electrochemical cells for waste heat harvesting - progress and perspectives, Chem. Commun. 53 (2017) 6288-6302. doi: 10.1039/C7CC02160G
|
[128] |
M.A. Buckingham, S. Hammoud, H. Li, C.J. Beale, J.T. Sengel, L. Aldous, A fundamental study of the thermoelectrochemistry of ferricyanide/ferrocyanide: cation, concentration, ratio, and heterogeneous and homogeneous electrocatalysis effects in thermogalvanic cells, Sustain. Energy Fuels 4 (2020) 3388-3399. doi: 10.1039/D0SE00440E
|
[129] |
D.E. McCoy, T. Feo, T.A. Harvey, R.O. Prum, Structural absorption by barbule microstructures of super black bird of paradise feathers, Nat. Commun. 9 (2018) 1. doi: 10.1038/s41467-017-02088-w
|
[130] |
Y. Fang, H. Cheng, H. He, S. Wang, J. Li, S. Yue, L. Zhang, Z. Du, J. Ouyang, Stretchable and transparent ionogels with high thermoelectric properties, Adv. Funct. Mater. 30 (2020) 2004699. doi: 10.1002/adfm.202004699
|
[131] |
X. Xue, P. Deng, B. He, Y. Nie, L. Xing, Y. Zhang, Z.L. Wang, Flexible self-charging power cell for one-step energy conversion and storage, Adv. Energy Mater. 4 (2014) 1301329. doi: 10.1002/aenm.201301329
|
[132] |
A. Al-zubaidi, X. Ji, J. Yu, Thermal charging of supercapacitors: a perspective, Sustain. Energy Fuels 1 (2017) 1457-1474. doi: 10.1039/C7SE00239D
|
[133] |
X. He, H. Cheng, S. Yue, J. Ouyang, Quasi-solid state nanoparticle/(ionic liquid) gels with significantly high ionic thermoelectric properties, J. Mater. Chem. A 8 (2020) 10813-10821. doi: 10.1039/D0TA04100A
|
[134] |
X.-L. Shi, W.-Y. Chen, T. Zhang, J. Zou, Z.-G. Chen, and wearable electronics, Energy Environ. Sci. 14 (2021) 729-764. doi: 10.1039/D0EE03520C
|
[135] |
X. Xue, S. Wang, W. Guo, Y. Zhang, Z.L. Wang, Hybridizing energy conversion and storage in a mechanical-to-electrochemical process for self-charging power cell, Nano Lett. 12 (2012) 5048-5054. doi: 10.1021/nl302879t
|
[136] |
K. Krishnamoorthy, P. Pazhamalai, V.K. Mariappan, S.S. Nardekar, S. Sahoo, S.- J. Kim, Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy, Nat. Commun. 11 (2020) 2351. doi: 10.1038/s41467-020-15808-6
|
[137] |
L. Xing, Y. Nie, X. Xue, Y. Zhang, PVDF mesoporous nanostructures as the piezoseparator for a self-charging power cell, Nano Energy 10 (2014) 44-52. doi: 10.1016/j.nanoen.2014.09.004
|
[138] |
P.K. Szewczyk, A. Gradys, S.K. Kim, L. Persano, M. Marzec, A. Kryshtal, T. Busolo, A. Toncelli, D. Pisignano, A. Bernasik, S. Kar-Narayan, P. Sajkiewicz, U. Stachewicz, Enhanced piezoelectricity of electrospun polyvinylidene fluoride fibers for energy harvesting, ACS Appl. Mater. Interfaces 12 (2020) 13575-13583. doi: 10.1021/acsami.0c02578
|
[139] |
K. Bicy, A.B. Gueye, D. Rouxel, N. Kalarikkal, S. Thomas, Lithium-ion battery separators based on electrospun PVDF: a review, Surface. Interfac. 31 (2022) 101977. doi: 10.1016/j.surfin.2022.101977
|
[140] |
R. Song, H. Jin, X. Li, L. Fei, Y. Zhao, H. Huang, H. Lai-Wa Chan, Y. Wang, Y. Chai, A rectification-free piezo-supercapacitor with a polyvinylidene fluoride separator and functionalized carbon cloth electrodes, J. Mater. Chem. A 3 (2015) 14963-14970. doi: 10.1039/C5TA03349G
|
[141] |
A. Ramadoss, B. Saravanakumar, S.W. Lee, Y.-S. Kim, S.J. Kim, Z.L. Wang, Piezoelectric-driven self-charging supercapacitor power cell, ACS Nano 9 (2015) 4337-4345. doi: 10.1021/acsnano.5b00759
|
[142] |
E.P. Gilshteyn, D. Amanbaev, M.V. Silibin, A. Sysa, V.A. Kondrashov, A.S. Anisimov, T. Kallio, A.G. Nasibulin, Flexible self-powered piezo-supercapacitor system for wearable electronics, Nanotechnology 29 (2018) 325501. doi: 10.1088/1361-6528/aac658
|
[143] |
A. Forouzan, M. Yousefzadeh, M. Latifi, R. Jose, Effect of geometrical parameters on piezoresponse of nanofibrous wearable piezoelectric nanofabrics under low impact pressure, Macromol. Mater. Eng. 306 (2021) 2000510. doi: 10.1002/mame.202000510
|
[144] |
Y. Zhang, C.K. Jeong, J. Wang, X. Chen, K.H. Choi, L.-Q. Chen, W. Chen, Q.M. Zhang, Q. Wang, Hydrogel ionic diodes toward harvesting ultralowfrequency mechanical energy, Adv. Mater. 33 (2021) 2103056. doi: 10.1002/adma.202103056
|
[145] |
H. Wu, S. Wang, Z. Wang, Y. Zi, Achieving ultrahigh instantaneous power density of 10 MW/m2 by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG), Nat. Commun. 12 (2021) 5470. doi: 10.1038/s41467-021-25753-7
|
[146] |
Z. Zhao, L. Zhou, S. Li, D. Liu, Y. Li, Y. Gao, Y. Liu, Y. Dai, J. Wang, Z.L. Wang, Selection rules of triboelectric materials for direct-current triboelectric nanogenerator, Nat. Commun. 12 (2021) 4686. doi: 10.1038/s41467-021-25046-z
|
[147] |
Z. Wang, Q. Tang, C. Shan, Y. Du, W. He, S. Fu, G. Li, A. Liu, W. Liu, C. Hu, Giant performance improvement of triboelectric nanogenerator systems achieved by matched inductor design, Energy Environ. Sci. 14 (2021) 6627-6637. doi: 10.1039/D1EE02852A
|
[148] |
R. Cheng, K. Dong, P. Chen, C. Ning, X. Peng, Y. Zhang, D. Liu, Z.L. Wang, High output direct-current power fabrics based on the air breakdown effect, Energy Environ. Sci. 14 (2021) 2460-2471. doi: 10.1039/D1EE00059D
|
[149] |
J.W. Lee, S. Jung, J. Jo, G.H. Han, D.-M. Lee, J. Oh, H.J. Hwang, D. Choi, S.- W. Kim, J.H. Lee, C. Yang, J.M. Baik, Sustainable highly charged C60- functionalized polyimide in a non-contact mode triboelectric nanogenerator, Energy Environ. Sci. 14 (2021) 1004-1015. doi: 10.1039/D0EE03057K
|
[150] |
S. Wang, Y. Xiao, Y. Chen, S. Peng, D. Wang, T. Hong, Z. Yang, Y. Sun, X. Gao, L.- D. Zhao, Hierarchical structures lead to high thermoelectric performance in Cum+nPb100SbmTe100Se2m (CLAST), Energy Environ. Sci. 14 (2021) 451-461. doi: 10.1039/D0EE03459B
|
[151] |
L. Chen, C. Chen, L. Jin, H. Guo, A.C. Wang, F. Ning, Q. Xu, Z. Du, F. Wang, Z.L. Wang, Stretchable negative Poisson's ratio yarn for triboelectric nanogenerator for environmental energy harvesting and self-powered sensor, Energy Environ. Sci. 14 (2021) 955-964. doi: 10.1039/D0EE02777D
|
[152] |
H.J. Yang, J.-W. Lee, S.H. Seo, B. Jeong, B. Lee, W.J. Do, J.H. Kim, J.Y. Cho, A. Jo, H.J. Jeong, S.Y. Jeong, G.-H. Kim, G.-W. Lee, Y.-E. Shin, H. Ko, J.T. Han, J.H. Park, Fully stretchable self-charging power unit with micro-supercapacitor and triboelectric nanogenerator based on oxidized single-walled carbon nanotube/ polymer electrodes, Nano Energy 86 (2021) 106083. doi: 10.1016/j.nanoen.2021.106083
|
[153] |
J. Luo, F.R. Fan, T. Jiang, Z. Wang, W. Tang, C. Zhang, M. Liu, G. Cao, Z.L. Wang, Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit, Nano Res. 8 (2015) 3934-3943. doi: 10.1007/s12274-015-0894-8
|
[154] |
S. Wang, Z.-H. Lin, S. Niu, L. Lin, Y. Xie, K.C. Pradel, Z.L. Wang, Motion charged battery as sustainable flexible-power-unit, ACS Nano 7 (2013) 11263-11271. doi: 10.1021/nn4050408
|
[155] |
Y. Song, X. Cheng, H. Chen, J. Huang, X. Chen, M. Han, Z. Su, B. Meng, Z. Song, H. Zhang, Integrated self-charging power unit with flexible supercapacitor and triboelectric nanogenerator, J. Mater. Chem. A 4 (2016) 14298-14306. doi: 10.1039/C6TA05816G
|
[156] |
A. Maitra, S. Paria, S.K. Karan, R. Bera, A. Bera, A.K. Das, S.K. Si, L. Halder, A. De, B.B. Khatua, Triboelectric nanogenerator driven self-charging and self-healing flexible asymmetric supercapacitor power cell for direct power generation, ACS Appl. Mater. Interfaces 11 (2019) 5022-5036. doi: 10.1021/acsami.8b19044
|
[157] |
Y. Yang, L. Xie, Z. Wen, C. Chen, X. Chen, A. Wei, P. Cheng, X. Xie, X. Sun, Coaxial triboelectric nanogenerator and supercapacitor fiber-based self-charging power fabric, ACS Appl. Mater. Interfaces 10 (2018) 42356-42362. doi: 10.1021/acsami.8b15104
|
[158] |
Z. Luo, Y. Wang, B. Kou, C. Liu, W. Zhang, L. Chen, Sweat-chargeable" on-skin supercapacitors for practical wearable energy applications, Energy Stor. Mater. 38 (2021) 9-16. doi: 10.1016/j.ensm.2021.02.046
|
[159] |
C. Shan, W. Liu, Z. Wang, X. Pu, W. He, Q. Tang, S. Fu, G. Li, L. Long, H. Guo, J. Sun, A. Liu, C. Hu, An inverting TENG to realize the AC mode based on the coupling of triboelectrification and air-breakdown, Energy Environ. Sci. 14 (2021) 5395-5405. doi: 10.1039/D1EE01641E
|
[160] |
L. Cheng, Q. Xu, Y. Zheng, X. Jia, Y. Qin, A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed, Nat. Commun. 9 (2018) 3773. doi: 10.1038/s41467-018-06045-z
|
[161] |
J. Lv, I. Jeerapan, F. Tehrani, L. Yin, C.A. Silva-Lopez, J.-H. Jang, D. Joshuia, R. Shah, Y. Liang, L. Xie, F. Soto, C. Chen, E. Karshalev, C. Kong, Z. Yang, J. Wang, Sweat-based wearable energy harvesting-storage hybrid textile devices, Energy Environ. Sci. 11 (2018) 3431-3442. doi: 10.1039/C8EE02792G
|
[162] |
X. Xiao, The direct use of enzymatic biofuel cells as functional bioelectronics, eScience 2 (2022) 1-9. doi: 10.1016/j.esci.2021.12.005
|
[163] |
W. Dang, L. Manjakkal, W.T. Navaraj, L. Lorenzelli, V. Vinciguerra, R. Dahiya, Stretchable wireless system for sweat pH monitoring, Biosens. Bioelectron. 107 (2018) 192-202. doi: 10.1016/j.bios.2018.02.025
|
[164] |
A.J. Bandodkar, S.P. Lee, I. Huang, W. Li, S. Wang, C.J. Su, W.J. Jeang, T. Hang, S. Mehta, N. Nyberg, P. Gutruf, J. Choi, J. Koo, J.T. Reeder, R. Tseng, R. Ghaffari, J.A. Rogers, Sweat-activated biocompatible batteries for epidermal electronic and microfluidic systems, Nat. Electron. 3 (2020) 554-562. doi: 10.1038/s41928-020-0443-7
|
[165] |
Z. Sun, X. Wen, L. Wang, D. Ji, X. Qin, J. Yu, S. Ramakrishna, Emerging design principles, materials, and applications for moisture-enabled electric generation, eScience 2 (2022) 32-46. doi: 10.1016/j.esci.2021.12.009
|
[166] |
L. Manjakkal, A. Pullanchiyodan, N. Yogeswaran, E.S. Hosseini, R. Dahiya, A wearable supercapacitor based on conductive PEDOT:PSS-coated cloth and a sweat electrolyte, Adv. Mater. 32 (2020) 1907254. doi: 10.1002/adma.201907254
|
[167] |
Y. Niu, S. Gong, X. Liu, C. Xu, M. Xu, S.-G. Sun, Z. Chen, Engineering iron-group bimetallic nanotubes as efficient bifunctional oxygen electrocatalysts for flexible Zn-Air batteries, eScience 2 (2022), https://doi.org/10.1016/j.esci.2022.05.001. doi: 10.1016/j.esci.2022.05.001
|
[168] |
A. Koushanpour, M. Gamella, E. Katz, A biofuel cell based on biocatalytic reactions of lactate on both anode and cathode electrodes - extracting electrical power from human sweat, Electroanalysis 29 (2017) 1602-1611. doi: 10.1002/elan.201700126
|
[169] |
M. Cadet, S. Gounel, C. Stines-Chaumeil, X. Brilland, J. Rouhana, F. Louerat, N. Mano, An enzymatic glucose/O2 biofuel cell operating in human blood, Biosens. Bioelectron. 83 (2016) 60-67. doi: 10.1016/j.bios.2016.04.016
|
[170] |
Y. Lee, V.K. Bandari, Z. Li, M. Medina-Sánchez, M.F. Maitz, D. Karnaushenko, M.V. Tsurkan, D.D. Karnaushenko, O.G. Schmidt, Nano-biosupercapacitors enable autarkic sensor operation in blood, Nat. Commun. 12 (2021) 4967. doi: 10.1038/s41467-021-24863-6
|
[171] |
A. Fakharuddin, H. Li, F. Di Giacomo, T. Zhang, N. Gasparini, A.Y. Elezzabi, A. Mohanty, A. Ramadoss, J. Ling, A. Soultati, M. Tountas, L. Schmidt-Mende, P. Argitis, R. Jose, M.K. Nazeeruddin, A.R.B. Mohd Yusoff, M. Vasilopoulou, Fibershaped electronic devices, Adv. Energy Mater. 11 (2021) 2101443. doi: 10.1002/aenm.202101443
|
[172] |
R. Liu, Z.L. Wang, K. Fukuda, T. Someya, Flexible self-charging power sources, Nat. Rev. Mater. (2022), https://doi.org/10.1038/s41578-022-00441-0. doi: 10.1038/s41578-022-00441-0
|
[173] |
F. Mo, G. Liang, Z. Huang, H. Li, D. Wang, C. Zhi, An overview of fiber-shaped batteries with a focus on multifunctionality, scalability, and technical difficulties, Adv. Mater. 32 (2020) 1902151. doi: 10.1002/adma.201902151
|
[174] |
Y. Zhou, C.-H. Wang, W. Lu, L. Dai, Recent advances in fiber-shaped supercapacitors and lithium-ion batteries, Adv. Mater. 32 (2020) 1902779. doi: 10.1002/adma.201902779
|
[175] |
W.-Y. Jin, M.M. Ovhal, H.B. Lee, B. Tyagi, J.-W. Kang, Scalable, all-printed photocapacitor fibers and modules based on metal-embedded flexible transparent conductive electrodes for self-charging wearable applications, Adv. Energy Mater. 11 (2021) 2003509. doi: 10.1002/aenm.202003509
|
[176] |
H. Guo, M.-H. Yeh, Y.-C. Lai, Y. Zi, C. Wu, Z. Wen, C. Hu, Z.L. Wang, All-in-one shape-adaptive self-charging power package for wearable electronics, ACS Nano 10 (2016) 10580-10588. doi: 10.1021/acsnano.6b06621
|
[177] |
M. Liu, Z. Cong, X. Pu, W. Guo, T. Liu, M. Li, Y. Zhang, W. Hu, Z.L. Wang, Highenergy asymmetric supercapacitor yarns for self-charging power textiles, Adv. Funct. Mater. 29 (2019) 1806298. doi: 10.1002/adfm.201806298
|
[178] |
J.H. Kim, S.-J. Koo, J.Y. Cheon, Y. Jung, S. Cho, D. Lee, J.W. Choi, T. Kim, M. Song, Self-powered and flexible integrated solid-state fiber-shaped energy conversion and storage based on CNT Yarn with efficiency of 5.5, Nano Energy 96 (2022) 107054. doi: 10.1016/j.nanoen.2022.107054
|
[179] |
F. Li, Y. Li, J. Qu, J. Wang, V.K. Bandari, F. Zhu, O.G. Schmidt, Recent developments of stamped planar micro-supercapacitors: materials, fabrication and perspectives, Nano Mater. Sci. 3 (2021) 154-169. doi: 10.1016/j.nanoms.2020.10.003
|
[180] |
L. Liu, Z. Niu, J. Chen, Design and integration of flexible planar microsupercapacitors, Nano Res. 10 (2017) 1524-1544. doi: 10.1007/s12274-017-1448-z
|
[181] |
Y. Song, J. Zhang, H. Guo, X. Chen, Z. Su, H. Chen, X. Cheng, H. Zhang, All-fabricbased wearable self-charging power cloth, Appl. Phys. Lett. 111 (2017) 073901. doi: 10.1063/1.4998426
|
[182] |
Y. Lu, Y. Jiang, Z. Lou, R. Shi, D. Chen, G. Shen, Wearable supercapacitor selfcharged by P(VDF-TrFE) piezoelectric separator, Prog. Nat. Sci. 30 (2020) 174-179. doi: 10.1016/j.pnsc.2020.01.023
|
[183] |
A. Rasheed, W. He, Y. Qian, H. Park, D.J. Kang, Flexible supercapacitor-type rectifier-free self-charging power unit based on a multifunctional polyvinylidene fluoride-ZnO-rGO piezoelectric matrix, ACS Appl. Mater. Interfaces 12 (2020) 20891-20900. doi: 10.1021/acsami.9b22362
|
[184] |
A.P. Cohn, W.R. Erwin, K. Share, L. Oakes, A.S. Westover, R.E. Carter, R. Bardhan, C.L. Pint, All silicon electrode photocapacitor for integrated energy storage and conversion, Nano Lett. 15 (2015) 2727-2731. doi: 10.1021/acs.nanolett.5b00563
|
[185] |
Z. Wang, J. Cheng, H. Huang, B. Wang, Flexible self-powered fiber-shaped photocapacitors with ultralong cyclelife and total energy efficiency of 5.1, Energy Stor. Mater. 24 (2020) 255-264. doi: 10.1016/j.ensm.2019.08.011
|
[186] |
T.J. Mun, S.H. Kim, J.W. Park, J.H. Moon, Y. Jang, C. Huynh, R.H. Baughman, S.J. Kim, Wearable energy generating and storing textile based on carbon nanotube yarns, Adv. Funct. Mater. 30 (2020) 2000411. doi: 10.1002/adfm.202000411
|
[187] |
K. Dong, Y.-C. Wang, J. Deng, Y. Dai, S.L. Zhang, H. Zou, B. Gu, B. Sun, Z.L. Wang, A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors, ACS Nano 11 (2017) 9490-9499. doi: 10.1021/acsnano.7b05317
|
[188] |
M. Wentker, M. Greenwood, J. Leker, A bottom-up approach to lithium-ion battery cost modeling with a focus on cathode active materials, Energies 12 (2019) 504. doi: 10.3390/en12030504
|
[189] |
S. Ramakrishna, R. Jose, Addressing sustainability gaps, Sci. Total Environ. 806 (2022) 151208. doi: 10.1016/j.scitotenv.2021.151208
|