Volume 2 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
Ling JinKiong, Kunwar Ria, Li Linlin, Peng Shengjie, Misnon Izan Izwan, Ab Rahim Mohd Hasbi, Yang Chun-Chen, Jose Rajan. Self-rechargeable energizers for sustainability[J]. eScience, 2022, 2(4): 347-364. doi: 10.1016/j.esci.2022.07.002
Citation: Ling JinKiong, Kunwar Ria, Li Linlin, Peng Shengjie, Misnon Izan Izwan, Ab Rahim Mohd Hasbi, Yang Chun-Chen, Jose Rajan. Self-rechargeable energizers for sustainability[J]. eScience, 2022, 2(4): 347-364. doi: 10.1016/j.esci.2022.07.002

Self-rechargeable energizers for sustainability

doi: 10.1016/j.esci.2022.07.002
More Information
  • Electrical energy generation and storage have always been complementary to each other but are often disconnected in practical electrical appliances. Recently, efforts to combine both energy generation and storage into self-powered energizers have demonstrated promising power sources for wearable and implantable electronics. In line with these efforts, achieving self-rechargeability in energy storage from ambient energy is envisioned as a tertiary energy storage (3rd-ES) phenomenon. This review examines a few of the possible 3rd-ES capable of harvesting ambient energy (photo-, thermo-, piezo-, tribo-, and bio-electrochemical energizers), focusing also on the devices' sustainability. The self-rechargeability mechanisms of these devices, which function through modifications of the energizers' constituents, are analyzed, and designs for wearable electronics are also reviewed. The challenges for self-rechargeable energizers and avenues for further electrochemical performance enhancement are discussed. This article serves as a one-stop source of information on self-rechargeable energizers, which are anticipated to drive the revolution in 3rd-ES technologies.
  • ● Self-rechargeability mechanisms and the required modifications are discussed.
    ● Self-powered energizers for wearable/implantable/microelectronics are proposed.
    ● Energizer designs for yarn/thread/textile applications are reviewed.
    ● Challenges for each self-powered energizer are pinpointed.
    ● Ambient energies as sources for energy generation and storage are reviewed.
  • loading
  • [1]
    Y. Liu, M. Pharr, G.A. Salvatore, stretchable electronics for wearable health monitoring, ACS Nano 11 (2017) 9614-9635. doi: 10.1021/acsnano.7b04898
    [2]
    Y. Gu, T. Zhang, H. Chen, F. Wang, Y. Pu, C. Gao, S. Li, Mini review on flexible and wearable electronics for monitoring human health information, Nanoscale Res. Lett. 14 (2019) 263. doi: 10.1186/s11671-019-3084-x
    [3]
    Z. Zhao, K. Xia, Y. Hou, Q. Zhang, Z. Ye, J. Lu, Designing flexible, smart and selfsustainable supercapacitors for portable/wearable electronics: from conductive polymers, Chem. Soc. Rev. 50 (2021) 12702-12743. doi: 10.1039/D1CS00800E
    [4]
    A. Costanzo, M. Dionigi, D. Masotti, M. Mongiardo, G. Monti, L. Tarricone, R. Sorrentino, Electromagnetic energy harvesting and wireless power transmission: a unified approach, Proc. IEEE 102 (2014) 1692-1711. doi: 10.1109/JPROC.2014.2355261
    [5]
    S. Mizojiri, K. Shimamura, M. Fukunari, S. Minakawa, S. Yokota, Y. Yamaguchi, Y. Tatematsu, T. Saito, Subterahertz wireless power transmission using 303-GHz rectenna and 300-kW-Class gyrotron, IEEE Microw. Wireless Compon. Lett. 28 (2018) 834-836. doi: 10.1109/LMWC.2018.2860248
    [6]
    Y. Hong, L. Jin, B. Wang, J. Liao, B. He, T. Yang, Z. Long, P. Li, Z. Zhang, S. Liu, Y. Lee, B.L. Khoo, Z. Yang, A wood-templated unidirectional piezoceramic composite for transmuscular ultrasonic wireless power transfer, Energy Environ. Sci. 14 (2021) 6574-6585. doi: 10.1039/D1EE02353E
    [7]
    B. Hu, H. Li, T. Li, H. Wang, Y. Zhou, X. Zhao, X. Hu, X. Du, Y. Zhao, X. Li, T. Qi, M. Helaoui, W. Chen, F. Ghannouchi, A long-distance high-power microwave wireless power transmission system based on asymmetrical resonant magnetron and cyclotron-wave rectifier, Energy Rep. 7 (2021) 1154-1161. doi: 10.1016/j.egyr.2020.12.026
    [8]
    W.-J. Zhi, L.-F. Wang, X.-J. Hu, Recent advances in the effects of microwave radiation on brains, Mil. Med. Res. 4 (2017) 29.
    [9]
    S. Tan, H. Wang, X. Xu, L. Zhao, J. Zhang, J. Dong, B. Yao, H. Wang, H. Zhou, Y. Gao, R. Peng, Study on dose-dependent, frequency-dependent, and accumulative effects of 1.5 GHz and 2.856 GHz microwave on cognitive functions in Wistar rats, Sci. Rep. 7 (2017) 10781. doi: 10.1038/s41598-017-11420-9
    [10]
    P. Bhartiya, S. Mumtaz, J.S. Lim, N. Kaushik, P. Lamichhane, L.N. Nguyen, J.H. Jang, S.H. Yoon, J.J. Choi, N.K. Kaushik, E.H. Choi, Pulsed 3.5 GHz high power microwaves irradiation on physiological solution and their biological evaluation on human cell lines, Sci. Rep. 11 (2021) 8475. doi: 10.1038/s41598-021-88078-x
    [11]
    T. Hou, B. Wang, Z. Jia, H. Wu, D. Lan, Z. Huang, A. Feng, M. Ma, G. Wu, A review of metal oxide-related microwave absorbing materials from the dimension and morphology perspective, J. Mater. Sci. Mater. Electron. 30 (2019) 10961-10984. doi: 10.1007/s10854-019-01537-0
    [12]
    J.-B. Cheng, H.-G. Shi, M. Cao, T. Wang, H.-B. Zhao, Y.-Z. Wang, Porous carbon materials for microwave absorption, Mater. Adv. 1 (2020) 2631-2645. doi: 10.1039/D0MA00662A
    [13]
    S. Niu, X. Wang, F. Yi, Y.S. Zhou, Z.L. Wang, A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics, Nat. Commun. 6 (2015) 8975. doi: 10.1038/ncomms9975
    [14]
    H. Guo, M.-H. Yeh, Y. Zi, Z. Wen, J. Chen, G. Liu, C. Hu, Z.L. Wang, Ultralight cutpaper-based self-charging power unit for self-powered portable electronic and medical systems, ACS Nano 11 (2017) 4475-4482. doi: 10.1021/acsnano.7b00866
    [15]
    J. Luo, T.L. Liu, Tandem solar flow batteries for conversion, storage, and utilization of solar energy, Chem 4 (2018) 2488-2490. doi: 10.1016/j.chempr.2018.10.008
    [16]
    J. Lv, J. Chen, P.S. Lee, Sustainable wearable energy storage devices self-charged by human-body bioenergy, SusMat 1 (2021) 285-302. doi: 10.1002/sus2.14
    [17]
    R. Liu, C. Liu, S. Fan, A photocapacitor based on organometal halide perovskite and PANI/CNT composites integrated using a CNT bridge, J. Mater. Chem. A 5 (2017) 23078-23084. doi: 10.1039/C7TA06297D
    [18]
    I. Jeon, J. Yoon, U. Kim, C. Lee, R. Xiang, A. Shawky, J. Xi, J. Byeon, H.M. Lee, M. Choi, S. Maruyama, Y. Matsuo, High-performance solution-processed doublewalled carbon nanotube transparent electrode for perovskite solar cells, Adv. Energy Mater. 9 (2019) 1901204. doi: 10.1002/aenm.201901204
    [19]
    J. Ling, P.K.K. Kizhakkedath, T.M. Watson, I. Mora-Seró, L. Schmidt-Mende, T.M. Brown, R. Jose, A perspective on the commercial viability of perovskite solar cells, Solar RRL 5 (2021) 2100401. doi: 10.1002/solr.202100401
    [20]
    J. Xu, Z. Ku, Y. Zhang, D. Chao, H.J. Fan, Integrated photo-supercapacitor based on PEDOT modified printable perovskite solar cell, Adv. Mater. Technol. 1 (2016) 1600074. doi: 10.1002/admt.201600074
    [21]
    Y. Zi, J. Wang, S. Wang, S. Li, Z. Wen, H. Guo, Z.L. Wang, Effective energy storage from a triboelectric nanogenerator, Nat. Commun. 7 (2016) 10987. doi: 10.1038/ncomms10987
    [22]
    X. Liu, K. Zhao, Z.L. Wang, Y. Yang, Unity convoluted design of solid Li-ion battery and triboelectric nanogenerator for self-powered wearable electronics, Adv. Energy Mater. 7 (2017) 1701629. doi: 10.1002/aenm.201701629
    [23]
    M.B. Khan, H. Saif, K. Lee, Y. Lee, Dual piezoelectric energy investing and harvesting interface for high-voltage input, Sensors 21 (2021) 2357. doi: 10.3390/s21072357
    [24]
    X. Gao, Y. Zhang, Y. Zhao, S. Yin, J. Gui, C. Sun, S. Guo, Heterointerface engineering and piezoelectric effect enhanced performance of self-charging supercapacitors power cell, Nano Energy 91 (2022) 106701. doi: 10.1016/j.nanoen.2021.106701
    [25]
    K. Krishnamoorthy, S. Manoharan, V.K. Mariappan, P. Pazhamalai, S.-J. Kim, Decoupling mechano- and electrochemical gating: a direct visualization for piezoionic propelled proton tunneling in self-charging supercapacitors, J. Mater. Chem. A 10 (2022) 7818-7829. doi: 10.1039/D1TA10254K
    [26]
    D. Lau, N. Song, C. Hall, Y. Jiang, S. Lim, I. Perez-Wurfl, Z. Ouyang, A. Lennon, Hybrid solar energy harvesting and storage devices: the promises and challenges, Mater, Today Energy 13 (2019) 22-44. doi: 10.1016/j.mtener.2019.04.003
    [27]
    J.S. Teixeira, R.S. Costa, A.L. Pires, A.M. Pereira, C. Pereira, Hybrid dual-function thermal energy harvesting and storage technologies: towards self-chargeable flexible/wearable devices, Dalton Trans. 50 (2021) 9983-10013. doi: 10.1039/D1DT01568K
    [28]
    J.-H. Lee, J. Kim, T.Y. Kim, M.S. Al Hossain, S.-W. Kim, J.H. Kim, All-in-one energy harvesting and storage devices, J. Mater. Chem. A 4 (2016) 7983-7999. doi: 10.1039/C6TA01229A
    [29]
    B. Singh, B. Padha, S. Verma, S. Satapathi, V. Gupta, S. Arya, Recent advances, challenges, and prospects of piezoelectric materials for self-charging supercapacitor, J. Energy Storage 47 (2022) 103547. doi: 10.1016/j.est.2021.103547
    [30]
    X.K. Wei, N. Domingo, Y. Sun, N. Balke, R.E. Dunin-Borkowski, J. Mayer, Progress on Emerging Ferroelectric Materials for Energy Harvesting, Storage and Conversion, Adv. Energy Mater. 12 (2022) 2270102. doi: 10.1002/aenm.202270102
    [31]
    H. Elahi, K. Munir, M. Eugeni, S. Atek, P. Gaudenzi, Energy harvesting towards self-powered iot devices, Energies 13 (2020) 5528. doi: 10.3390/en13215528
    [32]
    Lithium-Ion Battery Market by Type (Li-NMC, LFP, LCO, LTO), Power Capacity (0-3, 000 mAh, 3, 000 mAh-10, 000 mAh, 10, 000 mAh-60, 000 mAh, above 60, 000 mAh), Industry (Consumer Electronics, Automotive, Industrial), Voltage, Region - Global Forecast to 2025, Lithium-Ion Battery Market, MARKETSANDMARKETS, 2020. https://www.marketresearch.com/MarketsandMarkets-v3719/LithiumIon-Battery-Type-Li-13181861/.
    [33]
    Lithium-ion Battery Market Size USD 129.3 Billion by 2027 at a CAGR of 18.0%, CISION PR Newswire, 2020. https://www.prnewswire.co.uk/news-releases/lithium-ion-battery-market-size-usd-129-3-billion-by-2027-at-a-cagr-of-18-0-valuates-reports-896863595.html.
    [34]
    Portable Electronics Market Growth Analysis, Emerging Trends, Opportunities, Sales Revenue, COVID 19 Analysis, Business Strategy, Future Prospects and Industry Outlook 2023, MarketWatch, 2021.
    [35]
    M. Gao, P. Wang, L. Jiang, B. Wang, Y. Yao, S. Liu, D. Chu, W. Cheng, Y. Lu, Power generation for wearable systems, Energy Environ. Sci. 14 (2021) 2114-2157. doi: 10.1039/D0EE03911J
    [36]
    J.L. Heilbron, The invention of the condenser, in: H. J. L. (Ed.) Electricity in the 17th and 18th Centuries: A Study of Early Modern Physics, University of California Press1979, pp. 309. https://www.ucpress.edu/book/9780520334595/electricityin-the-17th-and-18th-centuries
    [37]
    T.S. Kuhn, in: The Structure of Scientific Revolutions, third ed., University of Chicago Press, 1996.
    [38]
    A. R, Bibliographical history of electricity and magnetism, chronologically arranged, Nature 111 (1923) 142.
    [39]
    J.S. Jayson, The daniell cell, ohm's law, and the emergence of the international system of units, Am. J. Phys. 82 (2014) 60-65. doi: 10.1119/1.4826445
    [40]
    U. Kohler, C. Antonius, P. Bäuerlein, Advances in alkaline batteries, J. Power Sources 127 (2004) 45-52. doi: 10.1016/j.jpowsour.2003.09.006
    [41]
    K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, LixCoO2 (0<x<-1): a new cathode material for batteries of high energy density, Mater. Res. Bull. 15 (1980) 783-789. doi: 10.1016/0025-5408(80)90012-4
    [42]
    J.B. Goodenough, How we made the Li-ion rechargeable battery, Nat. Electron. 1 (2018) 204. doi: 10.1038/s41928-018-0048-6
    [43]
    J.B. Goodenough, Oxide cathodes, in: W.A. van Schalkwijk, S. B (Eds.), Advances in Lithium-Ion Batteries, Springer, Boston, MA, 2002, pp. 135-154.
    [44]
    Y. Furushima, C. Yanagisawa, T. Nakagawa, Y. Aoki, N. Muraki, Thermal stability and kinetics of delithiated LiCO2, J. Power Sources 196 (2011) 2260-2263. doi: 10.1016/j.jpowsour.2010.09.076
    [45]
    S. Kaewmala, W. Limphirat, V. Yordsri, H. Kim, S. Muhammad, W.-S. Yoon, S. Srilomsak, P. Limthongkul, N. Meethong, Structural and electrochemical kinetic properties of 0.5Li2MnO3 ·0.5LiCoO2 cathode materials with different Li2MnO3 domain sizes, Sci. Rep. 9 (2019) 427. doi: 10.1038/s41598-018-36593-9
    [46]
    Z. Zhu, D. Yu, Z. Shi, R. Gao, X. Xiao, I. Waluyo, M. Ge, Y. Dong, W. Xue, G. Xu, W.-K. Lee, A. Hunt, J. Li, Gradient-morph LiCoO2 single crystals with stabilized energy density above 3400 Wh L-1, Energy Environ. Sci. 13 (2020) 1865-1878. doi: 10.1039/D0EE00231C
    [47]
    Y. Zheng, S. Wang, Y. Gao, T. Yang, Q. Zhou, W. Song, C. Zeng, H. Wu, C. Feng, J. Liu, Lithium nickel cobalt manganese oxide recovery via spray pyrolysis directly from the leachate of spent cathode scraps, ACS Appl. Energy Mater. 2 (2019) 6952-6959. doi: 10.1021/acsaem.9b01647
    [48]
    S. Dou, Review and prospect of layered lithium nickel manganese oxide as cathode materials for Li-ion batteries, J. Solid State Electrochem. 17 (2013) 911-926. doi: 10.1007/s10008-012-1977-z
    [49]
    Y.-F. Zhu, Y. Xiao, S.-X. Dou, Y.-M. Kang, S.-L. Chou, Spinel/Post-spinel engineering on layered oxide cathodes for sodium-ion batteries, eScience 1 (2021) 13-27. doi: 10.1016/j.esci.2021.10.003
    [50]
    X. Shen, X.-Q. Zhang, F. Ding, J.-Q. Huang, R. Xu, X. Chen, C. Yan, F.-Y. Su, C.- M. Chen, X. Liu, Q. Zhang, Advanced electrode materials in lithium batteries: retrospect and prospect, Energy Mater. Adv. 2021 (2021) 1205324.
    [51]
    A. Kraytsberg, Y. Ein-Eli, Higher, stronger, Better… A review of 5 volt cathode materials for advanced lithium-ion batteries, Adv. Energy Mater. 2 (2012) 922-939. doi: 10.1002/aenm.201200068
    [52]
    Z. Chen, W. Zhang, Z. Yang, A review on cathode materials for advanced lithium ion batteries: microstructure designs and performance regulations, Nanotechnology 31 (2019) 012001.
    [53]
    N. Mohamed, N.K. Allam, Recent advances in the design of cathode materials for Li-ion batteries, RSC Adv. 10 (2020) 21662-21685. doi: 10.1039/D0RA03314F
    [54]
    J. Ling, C. Karuppiah, S.G. Krishnan, M.V. Reddy, I.I. Misnon, M.H. Ab Rahim, C.- C. Yang, R. Jose, Phosphate polyanion materials as high-voltage lithium-ion battery cathode: a review, Energy Fuels 35 (2021) 10428-10450. doi: 10.1021/acs.energyfuels.1c01102
    [55]
    X. Lian, N. Xu, Y. Ma, F. Hu, H. Wei, H.-Y. Chen, Y. Wu, L. Li, D. Li, S. Peng, In-situ formation of Co1-xS hollow polyhedrons anchored on multichannel carbon nanofibers as self—supporting anode for lithium/sodium-ion batteries, Chem. Eng. J. 421 (2021) 127755. doi: 10.1016/j.cej.2020.127755
    [56]
    H. Huang, D. Yu, F. Hu, S.-C. Huang, J. Song, H.-Y. Chen, L.L. Li, S. Peng, Clusters induced electron redistribution to tune oxygen reduction activity of transition metal single-atom for metal-air batteries, Angew. Chem. Int. Ed. 61 (2022) e202116068.
    [57]
    L. Li, D. Yu, P. Li, H. Huang, D. Xie, C.-C. Lin, F. Hu, H.-Y. Chen, S. Peng, Interfacial electronic coupling of ultrathin transition-metal hydroxide nanosheets with layered MXenes as a new prototype for platinum-like hydrogen evolution, Energy Environ. Sci. 14 (2021) 6419-6427. doi: 10.1039/D1EE02538D
    [58]
    M.N. Obrovac, V.L. Chevrier, Alloy negative electrodes for Li-ion batteries, Chem. Rev. 114 (2014) 11444-11502. doi: 10.1021/cr500207g
    [59]
    S. Liang, Y.-J. Cheng, J. Zhu, Y. Xia, P. Müller-Buschbaum, Ge)-Based lithium/sodium-ion battery alloying anodes, Small Methods 4 (2020) 2000218. doi: 10.1002/smtd.202000218
    [60]
    S.-H. Qi, J.-W. Deng, W.-C. Zhang, Y.-Z. Feng, J.-M. Ma, Recent advances in alloy-based anode materials for potassium ion batteries, Rare Met. 39 (2020) 970-988. doi: 10.1007/s12598-020-01454-w
    [61]
    A. Huang, Y. Ma, J. Peng, L. Li, S.-l. Chou, S. Ramakrishna, S. Peng, Tailoring the structure of silicon-based materials for lithium-ion batteries via electrospinning technology, eScience 1 (2021) 141-162. doi: 10.1016/j.esci.2021.11.006
    [62]
    H. Xie, Z. Wu, Z. Wang, N. Qin, Y. Li, Y. Cao, Z. Lu, Solid electrolyte interface stabilization via surface oxygen species functionalization in hard carbon for superior performance sodium-ion batteries, J. Mater. Chem. A 8 (2020) 3606-3612. doi: 10.1039/C9TA12429B
    [63]
    S. Hong, M.-H. Choo, Y.H. Kwon, J.Y. Kim, S.-W. Song, Mechanisms for stable solid electrolyte interphase formation and improved cycling stability of tin-based battery anode in fluoroethylene carbonate-containing electrolyte, Adv. Mater. Interfaces 3 (2016) 1600172. doi: 10.1002/admi.201600172
    [64]
    J. Zhang, C. Shen, P. Liu, Y. Qiao, Understanding the effect of electrolyte on the cycle and structure stability of high areal capacity Si-Al film electrode, Ionics 25 (2019) 483-492. doi: 10.1007/s11581-018-2816-8
    [65]
    H. Jo, J. Kim, D.-T. Nguyen, K.K. Kang, D.-M. Jeon, A.R. Yang, S.-W. Song, Stabilizing the solid electrolyte interphase layer and cycling performance of silicon-graphite battery anode by using a binary additive of fluorinated carbonates, J. Phys. Chem. 120 (2016) 22466-22475.
    [66]
    J. Wu, Y. Cao, H. Zhao, J. Mao, Z. Guo, The critical role of carbon in marrying silicon and graphite anodes for high-energy lithium-ion batteries, Carbon Energy 1 (2019) 57-76. doi: 10.1002/cey2.2
    [67]
    Y. Lu, L. Yu, X.W. Lou, Nanostructured conversion-type Anode materials for advanced lithium-ion batteries, Chem 4 (2018) 972-996. doi: 10.1016/j.chempr.2018.01.003
    [68]
    A. Kraytsberg, Y. Ein-Eli, A critical review-promises and barriers of conversion electrodes for Li-ion batteries, J. Solid State Electrochem. 21 (2017) 1907-1923. doi: 10.1007/s10008-017-3580-9
    [69]
    D. Puthusseri, M. Wahid, S. Ogale, Conversion-type Anode materials for alkali-ion batteries: state of the art and possible research directions, ACS Omega 3 (2018) 4591-4601. doi: 10.1021/acsomega.8b00188
    [70]
    J. Ling, C. Karuppiah, M.V. Reddy, B. Pal, C.-C. Yang, R. Jose, Unraveling synergistic mixing of SnO2-TiO2 composite as anode for Li-ion battery and their electrochemical properties, J. Mater. Res. (2021) 4120-4130.
    [71]
    J. Ling, C. Karuppiah, S. Das, V.K. Singh, I.I. Misnon, M.H. Ab Rahim, S. Peng, C.- C. Yang, R. Jose, Quasi-anisotropic benefits in electrospun nickel-cobalt-manganese oxide nano-octahedron as anode for lithium-ion batteries, New J. Chem. 46 (2022) 9799-9810. doi: 10.1039/D2NJ01462A
    [72]
    J. Ling, C. Karuppiah, S. Das, I.I. Misnon, M.H. Ab Rahim, C.-C. Yang, R. Jose, Electrospun ternary composite metal oxide fibers as an anode for lithium-ion batteries, Front. Mater. 9 (2022) 815204. doi: 10.3389/fmats.2022.815204
    [73]
    B.L. Vijayan, I.I. Misnon, G.M. Anilkumar, C.-C. Yang, R. Jose, Void-size-matched hierarchical 3D titania flowers in porous carbon as an electrode for high-density supercapacitive charge storage, J. Alloys Compd. 858 (2021) 157649. doi: 10.1016/j.jallcom.2020.157649
    [74]
    B.L. Vijayan, N.K. Mohd Zain, I.I. Misnon, M.V. Reddy, S. Adams, C.-C. Yang, G.M. Anilkumar, R. Jose, Void space control in porous carbon for high-density supercapacitive charge storage, Energy Fuels 34 (2020) 5072-5083. doi: 10.1021/acs.energyfuels.0c00737
    [75]
    K. Aruchamy, K. Dharmalingam, C.W. Lee, D. Mondal, N. Sanna Kotrappanavar, Creating ultrahigh surface area functional carbon from biomass for high performance supercapacitor and facile removal of emerging pollutants, Chem. Eng. J. 427 (2022) 131477. doi: 10.1016/j.cej.2021.131477
    [76]
    L. Zhang, X. Yang, F. Zhang, G. Long, T. Zhang, K. Leng, Y. Zhang, Y. Huang, Y. Ma, M. Zhang, Y. Chen, Controlling the effective surface area and pore size distribution of sp2 carbon materials and their impact on the capacitance performance of these materials, J. Am. Chem. Soc. 135 (2013) 5921-5929. doi: 10.1021/ja402552h
    [77]
    K. Lota, I. Acznik, A. Sierczynska, G. Lota, The capacitance properties of activated carbon obtained from chitosan as the electrode material for electrochemical capacitors, Mater. Lett. 173 (2016) 72-75. doi: 10.1016/j.matlet.2016.03.031
    [78]
    K.S. Lee, Y.J. Seo, H.T. Jeong, Capacitive behavior of functionalized activated carbon-based all-solid-state supercapacitor, Carbon Lett. 31 (2021) 1041-1049. doi: 10.1007/s42823-020-00219-w
    [79]
    B.S. Singu, S.E. Hong, K.R. Yoon, Preparation and characterization of manganese oxide nanosheets for pseudocapacitor application, J. Energy Storage 25 (2019) 100851. doi: 10.1016/j.est.2019.100851
    [80]
    D. Guo, Z. Hu, Q. Li, L. Bian, Y. Song, X. Liu, Mixed-valence manganese oxide/ reduced graphene oxide composites with enhanced pseudocapacitive performance, J. Mater. Sci. 57 (2022) 563-575. doi: 10.1007/s10853-021-06613-7
    [81]
    X. Cai, Y. Song, S.-Q. Wang, X. Sun, X.-X. Liu, Extending the cycle life of high mass loading MoOx electrode for supercapacitor applications, Electrochim. Acta 325 (2019) 134877. doi: 10.1016/j.electacta.2019.134877
    [82]
    L. Liu, H. Zhao, Y. Lei, Advances on three-dimensional electrodes for microsupercapacitors: a mini-review, InfoMat 1 (2019) 74-84. doi: 10.1002/inf2.12007
    [83]
    B.L. Vijayan, I.I. Misnon, C. Karuppaiah, G.M. Anil Kumar, S. Yang, C.-C. Yang, R. Jose, Thin metal film on porous carbon as a medium for electrochemical energy storage, J. Power Sources 489 (2021) 229522. doi: 10.1016/j.jpowsour.2021.229522
    [84]
    Z.U. Rehman, M. Bilal, J. Hou, J. Ahmad, S. Ullah, X. Wang, A. Hussain, 6 - metal oxide-carbon composites for supercapacitor applications, in: M.A. Chaudhry, R. Hussain, F.K. Butt (Eds.), Metal Oxide-Carbon Hybrid Materials, Elsevier, 2022, pp. 133-177.
    [85]
    C. Schultz, S. Vedder, B. Streipert, M. Winter, S. Nowak, Quantitative investigation of the decomposition of organic lithium ion battery electrolytes with LC-MS/MS, RSC Adv. 7 (2017) 27853-27862. doi: 10.1039/C7RA03839A
    [86]
    J. Henschel, C. Peschel, S. Klein, F. Horsthemke, M. Winter, S. Nowak, Clarification of decomposition pathways in a state-of-the-art lithium ion battery electrolyte through 13C-labeling of electrolyte components, Angew. Chem. Int. Ed. 59 (2020) 6128-6137. doi: 10.1002/anie.202000727
    [87]
    C. Zhang, Deciphering electrolyte degradation, Nat. Energy 4 (2019), 1006. doi: 10.1038/s41560-019-0524-x
    [88]
    A.L. Michan, M. Leskes, C.P. Grey, Voltage dependent solid electrolyte interphase formation in silicon electrodes: monitoring the formation of organic decomposition products, Chem. Mater. 28 (2016) 385-398. doi: 10.1021/acs.chemmater.5b04408
    [89]
    A. Wang, S. Kadam, H. Li, S. Shi, Y. Qi, Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries, NPJ Comput. Mater. 4 (2018) 15. doi: 10.1038/s41524-018-0064-0
    [90]
    Q. Zhuang, J. Xu, X. Fan, G. Wei, Q. Dong, Y. Jiang, L. Huang, S. Sun, LiCoO2 electrode/electrolyte interface of Li-ion batteries investigated by electrochemical impedance spectroscopy, Sci. China Chem. 50 (2007) 776-783.
    [91]
    C. Yan, R. Xu, Y. Xiao, J.-F. Ding, L. Xu, B.-Q. Li, J.-Q. Huang, Toward critical electrode/electrolyte interfaces in rechargeable batteries, Adv. Funct. Mater. 30 (2020) 1909887. doi: 10.1002/adfm.201909887
    [92]
    L. Xu, S. Tang, Y. Cheng, K. Wang, J. Liang, C. Liu, Y.-C. Cao, F. Wei, L. Mai, Interfaces in solid-state lithium batteries, Joule 2 (2018) 1991-2015. doi: 10.1016/j.joule.2018.07.009
    [93]
    D. Mohanty, A.S. Sefat, E.A. Payzant, J. Li, D.L. Wood, C. Daniel, Unconventional irreversible structural changes in a high-voltage Li-Mn-rich oxide for lithium-ion battery cathodes, J. Power Sources 283 (2015) 423-428. doi: 10.1016/j.jpowsour.2015.02.087
    [94]
    J.P. Pender, G. Jha, D.H. Youn, J.M. Ziegler, I. Andoni, E.J. Choi, A. Heller, B.S. Dunn, P.S. Weiss, R.M. Penner, C.B. Mullins, Electrode degradation in lithiumion batteries, ACS Nano 14 (2020) 1243-1295. doi: 10.1021/acsnano.9b04365
    [95]
    C.P. Grey, D.S. Hall, Prospects for lithium-ion batteries and beyond——a 2030 vision, Nat. Commun. 11 (2020) 6279. doi: 10.1038/s41467-020-19991-4
    [96]
    F. Hu, D. Yu, M. Ye, H. Wang, Y. Hao, L. Wang, L. Li, X. Han, S. Peng, Latticematching formed mesoporous transition metal oxide heterostructures advance water splitting by active Fe-O-Cu bridges, Adv. Energy Mater. 12 (2022) 2200067. doi: 10.1002/aenm.202200067
    [97]
    L. Deng, F. Hu, M. Ma, S.-C. Huang, Y. Xiong, H.-Y. Chen, L. Li, S. Peng, Electronic modulation caused by interfacial Ni-O-M (M=Ru, Ir, Pd) bonding for accelerating hydrogen evolution kinetics, Angew. Chem. Int. Ed. 60 (2021) 22276-22282. doi: 10.1002/anie.202110374
    [98]
    K.M. Abraham, How comparable are sodium-ion batteries to lithium-ion counterparts? ACS Energy Lett. 5 (2020) 3544-3547. doi: 10.1021/acsenergylett.0c02181
    [99]
    Y. Hao, F. Hu, Y. Chen, Y. Wang, J. Xue, S. Yang, S. Peng, Recent progress of electrospun nanofibers for zinc-air batteries, Adv. Fiber Mater. 4 (2022) 185-202. doi: 10.1007/s42765-021-00109-4
    [100]
    M. Fichtner, K. Edström, E. Ayerbe, M. Berecibar, A. Bhowmik, I.E. Castelli, S. Clark, R. Dominko, M. Erakca, A.A. Franco, A. Grimaud, B. Horstmann, A. Latz, H. Lorrmann, M. Meeus, R. Narayan, F. Pammer, J. Ruhland, H. Stein, T. Vegge, M. Weil, Rechargeable batteries of the future-the state of the art from a BATTERY 2030+ perspective, Adv. Energy Mater. 12 (2022) 2102904. doi: 10.1002/aenm.202102904
    [101]
    P.K. Panda, R. Ahuja, Future Outlook and Direction of Next-Generation Battery Materials, Next-Generation Materials for Batteries, AIP Publishing, pp. 11-22. https://aip.scitation.org/doi/10.1063/9780735421684_011
    [102]
    R.C. Bonnabeau, R.M. Ferlic, C. Walton Lillehei, A new rechargeable epicardial cardiac pacemaker, J. Thorac. Cardiovasc. Surg. 50 (1965) 857-867. doi: 10.1016/S0022-5223(19)33139-3
    [103]
    S. M, S. Lakshmi, Design and analysis of batteryless cardiac pacemaker through combining thermoelectric generators along with DC-DC converter, Int. Trans. Electr. Energy Syst. 31 (2021) e13162.
    [104]
    H. Ryu, H.-m. Park, M.-K. Kim, B. Kim, H.S. Myoung, T.Y. Kim, H.-J. Yoon, S.S. Kwak, J. Kim, T.H. Hwang, E.-K. Choi, S.-W. Kim, Self-rechargeable cardiac pacemaker system with triboelectric nanogenerators, Nat. Commun. 12 (2021) 4374. doi: 10.1038/s41467-021-24417-w
    [105]
    K.S. Ackshaya Varshini, K.S. Maanav Charan, M.B. Shyam Kumar, Concept design and analysis of self sustainable triboelectric pacemaker, J. Phys. Conf. 2115 (2021) 012050. doi: 10.1088/1742-6596/2115/1/012050
    [106]
    J.Y. Kim, J.-W. Lee, H.S. Jung, H. Shin, N.-G. Park, High-efficiency perovskite solar cells, Chem. Rev. 120 (2020) 7867-7918. doi: 10.1021/acs.chemrev.0c00107
    [107]
    K. Li, Q. He, J. Wang, Z. Zhou, X. Li, Wearable energy harvesters generating electricity from low-frequency human limb movement, Microsyst. Nanoeng. 4 (2018) 24. doi: 10.1038/s41378-018-0024-3
    [108]
    N. Jaziri, A. Boughamoura, J. Müller, B. Mezghani, F. Tounsi, M. Ismail, A comprehensive review of Thermoelectric Generators: technologies and common applications, Energy Rep. 6 (2020) 264-287.
    [109]
    Z. Bu, X. Zhang, Y. Hu, Z. Chen, S. Lin, W. Li, Y. Pei, An over 10% module efficiency obtained using non-Bi2Te3 thermoelectric materials for recovering heat of <600 K, Energy Environ. Sci. 14 (2021) 6506-6513. doi: 10.1039/D1EE02253A
    [110]
    S. Qu, C. Ming, P. Qiu, K. Xu, Q. Xu, Q. Yao, P. Lu, H. Zeng, X. Shi, L. Chen, Highperformance n-type Ta4SiTe4/polyvinylidene fluoride (PVDF)/graphdiyne organic-inorganic flexible thermoelectric composites, Energy Environ. Sci. 14 (2021) 6586-6594. doi: 10.1039/D1EE02552J
    [111]
    H. Nagai, T. Suzuki, Y. Takahashi, M. Sato, Photovoltaic lithium-ion battery fabricated by molecular precursor method, Funct. Mater. Lett. 9 (2016) 1650046. doi: 10.1142/S1793604716500466
    [112]
    A. Paolella, C. Faure, G. Bertoni, S. Marras, A. Guerfi, A. Darwiche, P. Hovington, B. Commarieu, Z. Wang, M. Prato, M. Colombo, S. Monaco, W. Zhu, Z. Feng, A. Vijh, C. George, G.P. Demopoulos, M. Armand, K. Zaghib, Light-assisted delithiation of lithium iron phosphate nanocrystals towards photo-rechargeable lithium ion batteries, Nat. Commun. 8 (2017) 14643. doi: 10.1038/ncomms14643
    [113]
    S. Ahmad, C. George, D.J. Beesley, J.J. Baumberg, M. De Volder, Photorechargeable organo-halide perovskite batteries, Nano Lett. 18 (2018) 1856-1862. doi: 10.1021/acs.nanolett.7b05153
    [114]
    B.D. Boruah, A. Mathieson, B. Wen, S. Feldmann, W.M. Dose, M. De Volder, Photorechargeable zinc-ion batteries, Energy Environ. Sci. 13 (2020) 2414-2421. doi: 10.1039/D0EE01392G
    [115]
    M. Yu, X. Ren, L. Ma, Y. Wu, Integrating a redox-coupled dye-sensitized photoelectrode into a lithium-oxygen battery for photoassisted charging, Nat. Commun. 5 (2014) 5111. doi: 10.1038/ncomms6111
    [116]
    J. Ling, B. Pal, K. Chong, L. Schmidt-Mende, J. Bisquert, R. Jose, Photocurrents in crystal-amorphous hybrid stannous oxide/alumina binary nanofibers, J. Am. Ceram. Soc. 102 (2019) 6337-6348. doi: 10.1111/jace.16504
    [117]
    C.W. Chan, J. Ling-Chin, A.P. Roskilly, A review of chemical heat pumps, thermodynamic cycles and thermal energy storage technologies for low grade heat utilisation, Appl. Therm. Eng. 50 (2013) 1257-1273. doi: 10.1016/j.applthermaleng.2012.06.041
    [118]
    D. Brogioli, F. La Mantia, Innovative technologies for energy production from low temperature heat sources: critical literature review and thermodynamic analysis, Energy Environ. Sci. 14 (2021) 1057-1082. doi: 10.1039/D0EE02795B
    [119]
    M. Zebarjadi, K. Esfarjani, M.S. Dresselhaus, Z.F. Ren, G. Chen, Perspectives on thermoelectrics: from fundamentals to device applications, Energy Environ. Sci. 5 (2012) 5147-5162. doi: 10.1039/C1EE02497C
    [120]
    R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O'Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature 413 (2001) 597-602. doi: 10.1038/35098012
    [121]
    M.Y. Kim, S.J. Park, G.-Y. Kim, S.-Y. Choi, H. Jin, Designing efficient spin Seebeckbased thermoelectric devices via simultaneous optimization of bulk and interface properties, Energy Environ. Sci. 14 (2021) 3480-3491. doi: 10.1039/D1EE00667C
    [122]
    R. Dhawan, P. Madusanka, G. Hu, J. Debord, T. Tran, K. Maggio, H. Edwards, M. Lee, Si0.97Ge0.03 microelectronic thermoelectric generators with high power and voltage densities, Nat. Commun. 11 (2020) 4362. doi: 10.1038/s41467-020-18122-3
    [123]
    X.-L. Shi, J. Zou, Z.-G. Chen, Advanced thermoelectric design: from materials and structures to devices, Chem. Rev. 120 (2020) 7399-7515. doi: 10.1021/acs.chemrev.0c00026
    [124]
    G. Vats, A. Kumar, N. Ortega, C.R. Bowen, R.S. Katiyar, Giant pyroelectric energy harvesting and a negative electrocaloric effect in multilayered nanostructures, Energy Environ. Sci. 9 (2016) 1335-1345. doi: 10.1039/C5EE03641K
    [125]
    H. Im, T. Kim, H. Song, J. Choi, J.S. Park, R. Ovalle-Robles, H.D. Yang, K.D. Kihm, R.H. Baughman, H.H. Lee, T.J. Kang, Y.H. Kim, High-efficiency electrochemical thermal energy harvester using carbon nanotube aerogel sheet electrodes, Nat. Commun. 7 (2016) 10600. doi: 10.1038/ncomms10600
    [126]
    S.-M. Jung, J. Kwon, J. Lee, K. Shim, D. Park, T. Kim, Y.H. Kim, S.J. Hwang, Y.- T. Kim, Cu-based thermoelectrochemical cells for direct conversion of low-grade waste heat into electricity, ACS Appl. Energy Mater. 3 (2020) 6383-6390. doi: 10.1021/acsaem.0c00586
    [127]
    M.F. Dupont, D.R. MacFarlane, J.M. Pringle, Thermo-electrochemical cells for waste heat harvesting - progress and perspectives, Chem. Commun. 53 (2017) 6288-6302. doi: 10.1039/C7CC02160G
    [128]
    M.A. Buckingham, S. Hammoud, H. Li, C.J. Beale, J.T. Sengel, L. Aldous, A fundamental study of the thermoelectrochemistry of ferricyanide/ferrocyanide: cation, concentration, ratio, and heterogeneous and homogeneous electrocatalysis effects in thermogalvanic cells, Sustain. Energy Fuels 4 (2020) 3388-3399. doi: 10.1039/D0SE00440E
    [129]
    D.E. McCoy, T. Feo, T.A. Harvey, R.O. Prum, Structural absorption by barbule microstructures of super black bird of paradise feathers, Nat. Commun. 9 (2018) 1. doi: 10.1038/s41467-017-02088-w
    [130]
    Y. Fang, H. Cheng, H. He, S. Wang, J. Li, S. Yue, L. Zhang, Z. Du, J. Ouyang, Stretchable and transparent ionogels with high thermoelectric properties, Adv. Funct. Mater. 30 (2020) 2004699. doi: 10.1002/adfm.202004699
    [131]
    X. Xue, P. Deng, B. He, Y. Nie, L. Xing, Y. Zhang, Z.L. Wang, Flexible self-charging power cell for one-step energy conversion and storage, Adv. Energy Mater. 4 (2014) 1301329. doi: 10.1002/aenm.201301329
    [132]
    A. Al-zubaidi, X. Ji, J. Yu, Thermal charging of supercapacitors: a perspective, Sustain. Energy Fuels 1 (2017) 1457-1474. doi: 10.1039/C7SE00239D
    [133]
    X. He, H. Cheng, S. Yue, J. Ouyang, Quasi-solid state nanoparticle/(ionic liquid) gels with significantly high ionic thermoelectric properties, J. Mater. Chem. A 8 (2020) 10813-10821. doi: 10.1039/D0TA04100A
    [134]
    X.-L. Shi, W.-Y. Chen, T. Zhang, J. Zou, Z.-G. Chen, and wearable electronics, Energy Environ. Sci. 14 (2021) 729-764. doi: 10.1039/D0EE03520C
    [135]
    X. Xue, S. Wang, W. Guo, Y. Zhang, Z.L. Wang, Hybridizing energy conversion and storage in a mechanical-to-electrochemical process for self-charging power cell, Nano Lett. 12 (2012) 5048-5054. doi: 10.1021/nl302879t
    [136]
    K. Krishnamoorthy, P. Pazhamalai, V.K. Mariappan, S.S. Nardekar, S. Sahoo, S.- J. Kim, Probing the energy conversion process in piezoelectric-driven electrochemical self-charging supercapacitor power cell using piezoelectrochemical spectroscopy, Nat. Commun. 11 (2020) 2351. doi: 10.1038/s41467-020-15808-6
    [137]
    L. Xing, Y. Nie, X. Xue, Y. Zhang, PVDF mesoporous nanostructures as the piezoseparator for a self-charging power cell, Nano Energy 10 (2014) 44-52. doi: 10.1016/j.nanoen.2014.09.004
    [138]
    P.K. Szewczyk, A. Gradys, S.K. Kim, L. Persano, M. Marzec, A. Kryshtal, T. Busolo, A. Toncelli, D. Pisignano, A. Bernasik, S. Kar-Narayan, P. Sajkiewicz, U. Stachewicz, Enhanced piezoelectricity of electrospun polyvinylidene fluoride fibers for energy harvesting, ACS Appl. Mater. Interfaces 12 (2020) 13575-13583. doi: 10.1021/acsami.0c02578
    [139]
    K. Bicy, A.B. Gueye, D. Rouxel, N. Kalarikkal, S. Thomas, Lithium-ion battery separators based on electrospun PVDF: a review, Surface. Interfac. 31 (2022) 101977. doi: 10.1016/j.surfin.2022.101977
    [140]
    R. Song, H. Jin, X. Li, L. Fei, Y. Zhao, H. Huang, H. Lai-Wa Chan, Y. Wang, Y. Chai, A rectification-free piezo-supercapacitor with a polyvinylidene fluoride separator and functionalized carbon cloth electrodes, J. Mater. Chem. A 3 (2015) 14963-14970. doi: 10.1039/C5TA03349G
    [141]
    A. Ramadoss, B. Saravanakumar, S.W. Lee, Y.-S. Kim, S.J. Kim, Z.L. Wang, Piezoelectric-driven self-charging supercapacitor power cell, ACS Nano 9 (2015) 4337-4345. doi: 10.1021/acsnano.5b00759
    [142]
    E.P. Gilshteyn, D. Amanbaev, M.V. Silibin, A. Sysa, V.A. Kondrashov, A.S. Anisimov, T. Kallio, A.G. Nasibulin, Flexible self-powered piezo-supercapacitor system for wearable electronics, Nanotechnology 29 (2018) 325501. doi: 10.1088/1361-6528/aac658
    [143]
    A. Forouzan, M. Yousefzadeh, M. Latifi, R. Jose, Effect of geometrical parameters on piezoresponse of nanofibrous wearable piezoelectric nanofabrics under low impact pressure, Macromol. Mater. Eng. 306 (2021) 2000510. doi: 10.1002/mame.202000510
    [144]
    Y. Zhang, C.K. Jeong, J. Wang, X. Chen, K.H. Choi, L.-Q. Chen, W. Chen, Q.M. Zhang, Q. Wang, Hydrogel ionic diodes toward harvesting ultralowfrequency mechanical energy, Adv. Mater. 33 (2021) 2103056. doi: 10.1002/adma.202103056
    [145]
    H. Wu, S. Wang, Z. Wang, Y. Zi, Achieving ultrahigh instantaneous power density of 10 MW/m2 by leveraging the opposite-charge-enhanced transistor-like triboelectric nanogenerator (OCT-TENG), Nat. Commun. 12 (2021) 5470. doi: 10.1038/s41467-021-25753-7
    [146]
    Z. Zhao, L. Zhou, S. Li, D. Liu, Y. Li, Y. Gao, Y. Liu, Y. Dai, J. Wang, Z.L. Wang, Selection rules of triboelectric materials for direct-current triboelectric nanogenerator, Nat. Commun. 12 (2021) 4686. doi: 10.1038/s41467-021-25046-z
    [147]
    Z. Wang, Q. Tang, C. Shan, Y. Du, W. He, S. Fu, G. Li, A. Liu, W. Liu, C. Hu, Giant performance improvement of triboelectric nanogenerator systems achieved by matched inductor design, Energy Environ. Sci. 14 (2021) 6627-6637. doi: 10.1039/D1EE02852A
    [148]
    R. Cheng, K. Dong, P. Chen, C. Ning, X. Peng, Y. Zhang, D. Liu, Z.L. Wang, High output direct-current power fabrics based on the air breakdown effect, Energy Environ. Sci. 14 (2021) 2460-2471. doi: 10.1039/D1EE00059D
    [149]
    J.W. Lee, S. Jung, J. Jo, G.H. Han, D.-M. Lee, J. Oh, H.J. Hwang, D. Choi, S.- W. Kim, J.H. Lee, C. Yang, J.M. Baik, Sustainable highly charged C60- functionalized polyimide in a non-contact mode triboelectric nanogenerator, Energy Environ. Sci. 14 (2021) 1004-1015. doi: 10.1039/D0EE03057K
    [150]
    S. Wang, Y. Xiao, Y. Chen, S. Peng, D. Wang, T. Hong, Z. Yang, Y. Sun, X. Gao, L.- D. Zhao, Hierarchical structures lead to high thermoelectric performance in Cum+nPb100SbmTe100Se2m (CLAST), Energy Environ. Sci. 14 (2021) 451-461. doi: 10.1039/D0EE03459B
    [151]
    L. Chen, C. Chen, L. Jin, H. Guo, A.C. Wang, F. Ning, Q. Xu, Z. Du, F. Wang, Z.L. Wang, Stretchable negative Poisson's ratio yarn for triboelectric nanogenerator for environmental energy harvesting and self-powered sensor, Energy Environ. Sci. 14 (2021) 955-964. doi: 10.1039/D0EE02777D
    [152]
    H.J. Yang, J.-W. Lee, S.H. Seo, B. Jeong, B. Lee, W.J. Do, J.H. Kim, J.Y. Cho, A. Jo, H.J. Jeong, S.Y. Jeong, G.-H. Kim, G.-W. Lee, Y.-E. Shin, H. Ko, J.T. Han, J.H. Park, Fully stretchable self-charging power unit with micro-supercapacitor and triboelectric nanogenerator based on oxidized single-walled carbon nanotube/ polymer electrodes, Nano Energy 86 (2021) 106083. doi: 10.1016/j.nanoen.2021.106083
    [153]
    J. Luo, F.R. Fan, T. Jiang, Z. Wang, W. Tang, C. Zhang, M. Liu, G. Cao, Z.L. Wang, Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit, Nano Res. 8 (2015) 3934-3943. doi: 10.1007/s12274-015-0894-8
    [154]
    S. Wang, Z.-H. Lin, S. Niu, L. Lin, Y. Xie, K.C. Pradel, Z.L. Wang, Motion charged battery as sustainable flexible-power-unit, ACS Nano 7 (2013) 11263-11271. doi: 10.1021/nn4050408
    [155]
    Y. Song, X. Cheng, H. Chen, J. Huang, X. Chen, M. Han, Z. Su, B. Meng, Z. Song, H. Zhang, Integrated self-charging power unit with flexible supercapacitor and triboelectric nanogenerator, J. Mater. Chem. A 4 (2016) 14298-14306. doi: 10.1039/C6TA05816G
    [156]
    A. Maitra, S. Paria, S.K. Karan, R. Bera, A. Bera, A.K. Das, S.K. Si, L. Halder, A. De, B.B. Khatua, Triboelectric nanogenerator driven self-charging and self-healing flexible asymmetric supercapacitor power cell for direct power generation, ACS Appl. Mater. Interfaces 11 (2019) 5022-5036. doi: 10.1021/acsami.8b19044
    [157]
    Y. Yang, L. Xie, Z. Wen, C. Chen, X. Chen, A. Wei, P. Cheng, X. Xie, X. Sun, Coaxial triboelectric nanogenerator and supercapacitor fiber-based self-charging power fabric, ACS Appl. Mater. Interfaces 10 (2018) 42356-42362. doi: 10.1021/acsami.8b15104
    [158]
    Z. Luo, Y. Wang, B. Kou, C. Liu, W. Zhang, L. Chen, Sweat-chargeable" on-skin supercapacitors for practical wearable energy applications, Energy Stor. Mater. 38 (2021) 9-16. doi: 10.1016/j.ensm.2021.02.046
    [159]
    C. Shan, W. Liu, Z. Wang, X. Pu, W. He, Q. Tang, S. Fu, G. Li, L. Long, H. Guo, J. Sun, A. Liu, C. Hu, An inverting TENG to realize the AC mode based on the coupling of triboelectrification and air-breakdown, Energy Environ. Sci. 14 (2021) 5395-5405. doi: 10.1039/D1EE01641E
    [160]
    L. Cheng, Q. Xu, Y. Zheng, X. Jia, Y. Qin, A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed, Nat. Commun. 9 (2018) 3773. doi: 10.1038/s41467-018-06045-z
    [161]
    J. Lv, I. Jeerapan, F. Tehrani, L. Yin, C.A. Silva-Lopez, J.-H. Jang, D. Joshuia, R. Shah, Y. Liang, L. Xie, F. Soto, C. Chen, E. Karshalev, C. Kong, Z. Yang, J. Wang, Sweat-based wearable energy harvesting-storage hybrid textile devices, Energy Environ. Sci. 11 (2018) 3431-3442. doi: 10.1039/C8EE02792G
    [162]
    X. Xiao, The direct use of enzymatic biofuel cells as functional bioelectronics, eScience 2 (2022) 1-9. doi: 10.1016/j.esci.2021.12.005
    [163]
    W. Dang, L. Manjakkal, W.T. Navaraj, L. Lorenzelli, V. Vinciguerra, R. Dahiya, Stretchable wireless system for sweat pH monitoring, Biosens. Bioelectron. 107 (2018) 192-202. doi: 10.1016/j.bios.2018.02.025
    [164]
    A.J. Bandodkar, S.P. Lee, I. Huang, W. Li, S. Wang, C.J. Su, W.J. Jeang, T. Hang, S. Mehta, N. Nyberg, P. Gutruf, J. Choi, J. Koo, J.T. Reeder, R. Tseng, R. Ghaffari, J.A. Rogers, Sweat-activated biocompatible batteries for epidermal electronic and microfluidic systems, Nat. Electron. 3 (2020) 554-562. doi: 10.1038/s41928-020-0443-7
    [165]
    Z. Sun, X. Wen, L. Wang, D. Ji, X. Qin, J. Yu, S. Ramakrishna, Emerging design principles, materials, and applications for moisture-enabled electric generation, eScience 2 (2022) 32-46. doi: 10.1016/j.esci.2021.12.009
    [166]
    L. Manjakkal, A. Pullanchiyodan, N. Yogeswaran, E.S. Hosseini, R. Dahiya, A wearable supercapacitor based on conductive PEDOT:PSS-coated cloth and a sweat electrolyte, Adv. Mater. 32 (2020) 1907254. doi: 10.1002/adma.201907254
    [167]
    Y. Niu, S. Gong, X. Liu, C. Xu, M. Xu, S.-G. Sun, Z. Chen, Engineering iron-group bimetallic nanotubes as efficient bifunctional oxygen electrocatalysts for flexible Zn-Air batteries, eScience 2 (2022), https://doi.org/10.1016/j.esci.2022.05.001. doi: 10.1016/j.esci.2022.05.001
    [168]
    A. Koushanpour, M. Gamella, E. Katz, A biofuel cell based on biocatalytic reactions of lactate on both anode and cathode electrodes - extracting electrical power from human sweat, Electroanalysis 29 (2017) 1602-1611. doi: 10.1002/elan.201700126
    [169]
    M. Cadet, S. Gounel, C. Stines-Chaumeil, X. Brilland, J. Rouhana, F. Louerat, N. Mano, An enzymatic glucose/O2 biofuel cell operating in human blood, Biosens. Bioelectron. 83 (2016) 60-67. doi: 10.1016/j.bios.2016.04.016
    [170]
    Y. Lee, V.K. Bandari, Z. Li, M. Medina-Sánchez, M.F. Maitz, D. Karnaushenko, M.V. Tsurkan, D.D. Karnaushenko, O.G. Schmidt, Nano-biosupercapacitors enable autarkic sensor operation in blood, Nat. Commun. 12 (2021) 4967. doi: 10.1038/s41467-021-24863-6
    [171]
    A. Fakharuddin, H. Li, F. Di Giacomo, T. Zhang, N. Gasparini, A.Y. Elezzabi, A. Mohanty, A. Ramadoss, J. Ling, A. Soultati, M. Tountas, L. Schmidt-Mende, P. Argitis, R. Jose, M.K. Nazeeruddin, A.R.B. Mohd Yusoff, M. Vasilopoulou, Fibershaped electronic devices, Adv. Energy Mater. 11 (2021) 2101443. doi: 10.1002/aenm.202101443
    [172]
    R. Liu, Z.L. Wang, K. Fukuda, T. Someya, Flexible self-charging power sources, Nat. Rev. Mater. (2022), https://doi.org/10.1038/s41578-022-00441-0. doi: 10.1038/s41578-022-00441-0
    [173]
    F. Mo, G. Liang, Z. Huang, H. Li, D. Wang, C. Zhi, An overview of fiber-shaped batteries with a focus on multifunctionality, scalability, and technical difficulties, Adv. Mater. 32 (2020) 1902151. doi: 10.1002/adma.201902151
    [174]
    Y. Zhou, C.-H. Wang, W. Lu, L. Dai, Recent advances in fiber-shaped supercapacitors and lithium-ion batteries, Adv. Mater. 32 (2020) 1902779. doi: 10.1002/adma.201902779
    [175]
    W.-Y. Jin, M.M. Ovhal, H.B. Lee, B. Tyagi, J.-W. Kang, Scalable, all-printed photocapacitor fibers and modules based on metal-embedded flexible transparent conductive electrodes for self-charging wearable applications, Adv. Energy Mater. 11 (2021) 2003509. doi: 10.1002/aenm.202003509
    [176]
    H. Guo, M.-H. Yeh, Y.-C. Lai, Y. Zi, C. Wu, Z. Wen, C. Hu, Z.L. Wang, All-in-one shape-adaptive self-charging power package for wearable electronics, ACS Nano 10 (2016) 10580-10588. doi: 10.1021/acsnano.6b06621
    [177]
    M. Liu, Z. Cong, X. Pu, W. Guo, T. Liu, M. Li, Y. Zhang, W. Hu, Z.L. Wang, Highenergy asymmetric supercapacitor yarns for self-charging power textiles, Adv. Funct. Mater. 29 (2019) 1806298. doi: 10.1002/adfm.201806298
    [178]
    J.H. Kim, S.-J. Koo, J.Y. Cheon, Y. Jung, S. Cho, D. Lee, J.W. Choi, T. Kim, M. Song, Self-powered and flexible integrated solid-state fiber-shaped energy conversion and storage based on CNT Yarn with efficiency of 5.5, Nano Energy 96 (2022) 107054. doi: 10.1016/j.nanoen.2022.107054
    [179]
    F. Li, Y. Li, J. Qu, J. Wang, V.K. Bandari, F. Zhu, O.G. Schmidt, Recent developments of stamped planar micro-supercapacitors: materials, fabrication and perspectives, Nano Mater. Sci. 3 (2021) 154-169. doi: 10.1016/j.nanoms.2020.10.003
    [180]
    L. Liu, Z. Niu, J. Chen, Design and integration of flexible planar microsupercapacitors, Nano Res. 10 (2017) 1524-1544. doi: 10.1007/s12274-017-1448-z
    [181]
    Y. Song, J. Zhang, H. Guo, X. Chen, Z. Su, H. Chen, X. Cheng, H. Zhang, All-fabricbased wearable self-charging power cloth, Appl. Phys. Lett. 111 (2017) 073901. doi: 10.1063/1.4998426
    [182]
    Y. Lu, Y. Jiang, Z. Lou, R. Shi, D. Chen, G. Shen, Wearable supercapacitor selfcharged by P(VDF-TrFE) piezoelectric separator, Prog. Nat. Sci. 30 (2020) 174-179. doi: 10.1016/j.pnsc.2020.01.023
    [183]
    A. Rasheed, W. He, Y. Qian, H. Park, D.J. Kang, Flexible supercapacitor-type rectifier-free self-charging power unit based on a multifunctional polyvinylidene fluoride-ZnO-rGO piezoelectric matrix, ACS Appl. Mater. Interfaces 12 (2020) 20891-20900. doi: 10.1021/acsami.9b22362
    [184]
    A.P. Cohn, W.R. Erwin, K. Share, L. Oakes, A.S. Westover, R.E. Carter, R. Bardhan, C.L. Pint, All silicon electrode photocapacitor for integrated energy storage and conversion, Nano Lett. 15 (2015) 2727-2731. doi: 10.1021/acs.nanolett.5b00563
    [185]
    Z. Wang, J. Cheng, H. Huang, B. Wang, Flexible self-powered fiber-shaped photocapacitors with ultralong cyclelife and total energy efficiency of 5.1, Energy Stor. Mater. 24 (2020) 255-264. doi: 10.1016/j.ensm.2019.08.011
    [186]
    T.J. Mun, S.H. Kim, J.W. Park, J.H. Moon, Y. Jang, C. Huynh, R.H. Baughman, S.J. Kim, Wearable energy generating and storing textile based on carbon nanotube yarns, Adv. Funct. Mater. 30 (2020) 2000411. doi: 10.1002/adfm.202000411
    [187]
    K. Dong, Y.-C. Wang, J. Deng, Y. Dai, S.L. Zhang, H. Zou, B. Gu, B. Sun, Z.L. Wang, A highly stretchable and washable all-yarn-based self-charging knitting power textile composed of fiber triboelectric nanogenerators and supercapacitors, ACS Nano 11 (2017) 9490-9499. doi: 10.1021/acsnano.7b05317
    [188]
    M. Wentker, M. Greenwood, J. Leker, A bottom-up approach to lithium-ion battery cost modeling with a focus on cathode active materials, Energies 12 (2019) 504. doi: 10.3390/en12030504
    [189]
    S. Ramakrishna, R. Jose, Addressing sustainability gaps, Sci. Total Environ. 806 (2022) 151208. doi: 10.1016/j.scitotenv.2021.151208
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (123) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return