Citation: | Ryan Kirstie R., Down Michael P., Hurst Nicholas J., Keefe Edmund M., Banks Craig E.. Additive manufacturing (3D printing) of electrically conductive polymers and polymer nanocomposites and their applications[J]. eScience, 2022, 2(4): 365-381. doi: 10.1016/j.esci.2022.07.003 |
[1] |
C.W. Foster, M.P. Down, Y. Zhang, X. Ji, S.J. Rowley-Neale, G.C. Smith, P.J. Kelly, C.E. Banks, 3D printed graphene based energy storage devices, Sci. Rep. 7 (2017), 42233. doi: 10.1038/srep42233
|
[2] |
E.M. Richter, D.P. Rocha, R.M. Cardoso, E.M. Keefe, C.W. Foster, R.A.A. Munoz, C.E. Banks, Complete additively manufactured (3D-printed) electrochemical sensing platform, Anal. Chem. 91 (2019) 12844-12851. doi: 10.1021/acs.analchem.9b02573
|
[3] |
M.P. Down, E. Martínez-Perin~ an, C.W. Foster, E. Lorenzo, G.C. Smith, C.E. Banks, Next-generation additive manufacturing of complete standalone sodium-ion energy storage architectures, Adv. Energy Mater. 9 (2019), 1803019. doi: 10.1002/aenm.201803019
|
[4] |
J. N, S. P, Application of 3D printed ABS based conductive carbon black composite sensor in void fraction measurement, Compos. B Eng. 159 (2019) 224-230. doi: 10.1016/j.compositesb.2018.09.097
|
[5] |
Z. Rymansaib, P. Iravani, E. Emslie, M. Medvidovic-Kosanovic, M. Sak-Bosnar, R. Verdejo, F. Marken, All-polystyrene 3D-printed electrochemical device with embedded carbon nanofiber-graphite-polystyrene composite conductor, Electroanalysis 28 (2016) 1517-1523. doi: 10.1002/elan.201600017
|
[6] |
S.J. Rowley-Neale, D.A.C. Brownson, G.C. Smith, D.A.G. Sawtell, P.J. Kelly, C.E. Banks, 2D nanosheet molybdenum disulphide (MoS2) modified electrodes explored towards the hydrogen evolution reaction, Nanoscale 7 (2015) 18152-18168. doi: 10.1039/C5NR05164A
|
[7] |
E. Fantino, A. Chiappone, F. Calignano, M. Fontana, F. Pirri, I. Roppolo, In situ thermal generation of silver nanoparticles in 3D printed polymeric structures, Materials 9 (2016) 3712.
|
[8] |
G. Tarabella, S.L. Marasso, V. Bertana, D. Vurro, P. D'Angelo, S. Iannotta, M. Cocuzza, Multifunctional operation of an organic device with three-dimensional architecture, Materials 12 (2019) 1357. doi: 10.3390/ma12081357
|
[9] |
A.T. Cullen, A.D. Price, Digital light processing for the fabrication of 3D intrinsically conductive polymer structures, Synth. Met. 235 (2018) 34-41. doi: 10.1016/j.synthmet.2017.11.003
|
[10] |
F.B. Holness, D.P. Aaron, Robotic extrusion processes for direct ink writing of 3D conductive polyaniline structures, Proc. SPIE 9798 (2016) 124161426.
|
[11] |
V.B. Mohan, D. Bhattacharyya, Mechanical, electrical and thermal performance of hybrid polyethylene-graphene nanoplatelets-polypyrrole composites: a comparative analysis of 3D printed and compression molded samples, Polymer-Plastics Technol. Mater. 59 (2020) 780-796. doi: 10.1080/25740881.2019.1695272
|
[12] |
S. Zips, L. Grob, P. Rinklin, K. Terkan, N.Y. Adly, L.J.K. Weiß, D. Mayer, B. Wolfrum, Fully printed μ-needle electrode array from conductive polymer ink for bioelectronic applications, ACS Appl. Mater. Interfaces 11 (2019) 32778-32786. doi: 10.1021/acsami.9b11774
|
[13] |
M.Y. Teo, N. RaviChandran, N. Kim, S. Kee, L. Stuart, K.C. Aw, J. Stringer, Direct patterning of highly conductive PEDOT: PSS/ionic liquid hydrogel via microreactive inkjet printing, ACS Appl. Mater. Interfaces 11 (2019) 37069-37076. doi: 10.1021/acsami.9b12069
|
[14] |
M.L. Griffith, J.W. Halloran, Scattering of ultraviolet radiation in turbid suspensions, J. Appl. Phys. 81 (1997) 2538-2546. doi: 10.1063/1.364311
|
[15] |
U. Khan, A. O'Neill, H. Porwal, P. May, K. Nawaz, J.N. Coleman, Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation, Carbon 50 (2012) 470-475. doi: 10.1016/j.carbon.2011.09.001
|
[16] |
A. Harvey, C. Backes, J.B. Boland, X. He, A. Griffin, B. Szydlowska, C. Gabbett, J.F. Donegan, J.N. Coleman, Non-resonant light scattering in dispersions of 2D nanosheets, Nat. Commun. 9 (2018) 4553. doi: 10.1038/s41467-018-07005-3
|
[17] |
C. Hinczewski, S. Corbel, T. Chartier, Ceramic suspensions suitable for stereolithography, J. Eur. Ceram. Soc. 18 (1998) 583-590. doi: 10.1016/S0955-2219(97)00186-6
|
[18] |
J. Jang, H. -G. Yi, D. -W. Cho, 3D printed tissue models: present and future, ACS Biomater. Sci. Eng. 2 (2016) 1722-1731. doi: 10.1021/acsbiomaterials.6b00129
|
[19] |
T. Abudula, R.O. Qurban, S.O. Bolarinwa, A.A. Mirza, M. Pasovic, A. Memic, 3D printing of metal/metal oxide incorporated thermoplastic nanocomposites with antimicrobial properties, Front. Bioeng. Biotechnol. 8 (2020) 568186. doi: 10.3389/fbioe.2020.568186
|
[20] |
A. Ambrosi, M. Pumera, 3D-printing technologies for electrochemical applications, Chem. Soc. Rev. 45 (2016) 2740-2755. doi: 10.1039/C5CS00714C
|
[21] |
J. Bustillos, D. Montero-Zambrano, A. Loganathan, B. Boesl, A. Agarwal, Stereolithography-based 3D printed photosensitive polymer/boron nitride nanoplatelets composites, Polym. Compos. 40 (2019) 379-388. doi: 10.1002/pc.24662
|
[22] |
M.A. Alhnan, T.C. Okwuosa, M. Sadia, K.W. Wan, W. Ahmed, B. Arafat, Emergence of 3D printed dosage forms: opportunities and challenges, Pharm. Res. 33 (2016) 1817-1832. doi: 10.1007/s11095-016-1933-1
|
[23] |
R.A. Barry Iii, R.F. Shepherd, J.N. Hanson, R.G. Nuzzo, P. Wiltzius, J.A. Lewis, Direct-write assembly of 3D hydrogel scaffolds for guided cell growth, Adv. Mat. 21 (2009) 2407-2410. doi: 10.1002/adma.200803702
|
[24] |
J. Liao, H. Chen, H. Luo, X. Wang, K. Zhou, D. Zhang, Direct ink writing of zirconia three-dimensional structures, J. Mater. Chem. C 5 (2017) 5867-5871. doi: 10.1039/C7TC01545C
|
[25] |
D. Vernardou, K.C. Vasilopoulos, G. Kenanakis, 3D printed graphene-based electrodes with high electrochemical performance, Appl. Phys. A 123 (2017) 623. doi: 10.1007/s00339-017-1238-1
|
[26] |
G. Hussain, W.A. Khan, H.A. Ashraf, H. Ahmad, H. Ahmed, A. Imran, I. Ahmad, K. Rehman, G. Abbas, Design and development of a lightweight SLS 3D printer with a controlled heating mechanism: Part A, Int. J. Lightweight Mater. Manufac. 2 (2019) 373-378.
|
[27] |
Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, 3D printing of ceramics: a review, J. Eur. Ceram. Soc. 39 (2019) 661-687. doi: 10.1016/j.jeurceramsoc.2018.11.013
|
[28] |
B. Msallem, N. Sharma, S. Cao, F.S. Halbeisen, H. -F. Zeilhofer, F.M. Thieringer, Evaluation of the dimensional accuracy of 3D-printed anatomical mandibular models using FFF, SLA, SLS, MJ, and BJ printing technology, J. Clin. Med. 9 (2020) 817. doi: 10.3390/jcm9030817
|
[29] |
M.A. Khan, E. Cantù, S. Tonello, M. Serpelloni, N.F. Lopomo, E. Sardini, A review on biomaterials for 3D conductive scaffolds for stimulating and monitoring cellular activities, Appl. Sci. 9 (2019) 961. doi: 10.3390/app9050961
|
[30] |
J. Jagur-Grodzinski, Electronically conductive polymers, Polym. Adv. Technol. 13 (2002) 615-625. doi: 10.1002/pat.285
|
[31] |
P. -O. Morin, T. Bura, M. Leclerc, Realizing the full potential of conjugated polymers: innovation in polymer synthesis, Mater. Horizons 3 (2016) 11-20. doi: 10.1039/C5MH00164A
|
[32] |
C.K. Chiang, C.R. Fincher, Y.W. Park, A.J. Heeger, H. Shirakawa, E.J. Louis, S.C. Gau, A.G. MacDiarmid, Electrical conductivity in doped polyacetylene, Phys. Rev. Lett. 39 (1977) 1098-1101. doi: 10.1103/PhysRevLett.39.1098
|
[33] |
R. Balint, N.J. Cassidy, S.H. Cartmell, Conductive polymers: towards a smart biomaterial for tissue engineering, Acta Biomater. 10 (2014) 2341-2353. doi: 10.1016/j.actbio.2014.02.015
|
[34] |
H. Bai, G. Shi, Gas sensors based on conducting polymers, Sensors 7 (2007) 267-307. doi: 10.3390/s7030267
|
[35] |
S. Bhadra, N.K. Singha, D. Khastgir, Dielectric properties and EMI shielding efficiency of polyaniline and ethylene 1-octene based semi-conducting composites, Curr. Appl. Phys. 9 (2009) 396-403. doi: 10.1016/j.cap.2008.03.009
|
[36] |
Z. Gu, Y. Tan, K. Tsuchiya, T. Shimomura, K. Ogino, Synthesis and characterization of poly(3-hexylthiophene)-b-polystyrene for photovoltaic application, Polymers 3 (2011) 558-570. doi: 10.3390/polym3010558
|
[37] |
G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes, J. Power Sources 196 (2011) 1-12. doi: 10.1016/j.jpowsour.2010.06.084
|
[38] |
Y.J. Wang, G. Yu, Conjugated polymers: from synthesis, transport properties, to device applications, J. Polym. Sci. B Polym. Phys. 57 (2019) 1557-1558. doi: 10.1002/polb.24911
|
[39] |
M.T. Ramesan, K. Suhailath, 13 - role of nanoparticles on polymer composites, in: R.K. Mishra, S. Thomas, N. Kalarikkal (Eds. ), Micro and Nano Fibrillar Composites (MFCs and NFCs) from Polymer Blends, Woodhead Publishing, 2017, pp. 301-326.
|
[40] |
Introduction of conducting polymers, in: M. Wan (Ed. ), Conducting Polymers with Micro or Nanometer Structure, Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 1-15.
|
[41] |
D. Kumar, R.C. Sharma, Advances in conductive polymers, Eur. Polym. J. 34 (1998) 1053-1060. doi: 10.1016/S0014-3057(97)00204-8
|
[42] |
E.M. Geniès, A. Boyle, M. Lapkowski, C. Tsintavis, Polyaniline: a historical survey, Synth. Met. 36 (1990) 139-182. doi: 10.1016/0379-6779(90)90050-U
|
[43] |
S. Bhadra, N.K. Singha, D. Khastgir, Electrochemical synthesis of polyaniline and its comparison with chemically synthesized polyaniline, J. Appl. Polym. Sci. 104 (2007) 1900-1904. doi: 10.1002/app.25867
|
[44] |
Z. Wang, Q. e. Zhang, S. Long, Y. Luo, P. Yu, Z. Tan, J. Bai, B. Qu, Y. Yang, J. Shi, H. Zhou, Z. -Y. Xiao, W. Hong, H. Bai, Three-dimensional printing of polyaniline/ reduced graphene oxide composite for high-performance planar supercapacitor, ACS Appl. Mater. Interfaces 10 (2018) 10437-10444. doi: 10.1021/acsami.7b19635
|
[45] |
F.B. Holness, A. Price, Robotic Extrusion Processes for Direct Ink Writing of 3D Conductive Polyaniline Structures, SPIE, 2016.
|
[46] |
N. Ferrer-Anglada, M. Kaempgen, S. Roth, Transparent and flexible carbon nanotube/polypyrrole and carbon nanotube/polyaniline pH sensors, physica status solidi (b) 243 (2006) 3519-3523. doi: 10.1002/pssb.200669220
|
[47] |
S. Bocchini, A. Chiolerio, S. Porro, D. Accardo, N. Garino, K. Bejtka, D. Perrone, C.F. Pirri, Synthesis of polyaniline-based inks, doping thereof and test device printing towards electronic applications, J. Mater. Chem. C 1 (2013) 5101-5109. doi: 10.1039/c3tc30764f
|
[48] |
A.G. MacDiarmid, L.S. Yang, W. -S. Huang, B.D. Humphrey, Polyaniline, Electrochemistry and application to rechargeable batteries, Synth. Met. 18 (1987) 393-398. doi: 10.1016/0379-6779(87)90911-8
|
[49] |
M. Mitra, C. Kulsi, K. Chatterjee, K. Kargupta, S. Ganguly, D. Banerjee, S. Goswami, Reduced graphene oxide-polyaniline composites-synthesis, characterization and optimization for thermoelectric applications, RSC Adv. 5 (2015) 31039-31048. doi: 10.1039/C5RA01794G
|
[50] |
E.N. Zare, P. Makvandi, B. Ashtari, F. Rossi, A. Motahari, G. Perale, Progress in conductive polyaniline-based nanocomposites for biomedical applications: a review, J. Med. Chem. 63 (2020) 1-22. doi: 10.1021/acs.jmedchem.9b00803
|
[51] |
C. -H. Chang, T. -C. Huang, C. -W. Peng, T. -C. Yeh, H. -I. Lu, W. -I. Hung, C. -J. Weng, T. -I. Yang, J. -M. Yeh, Novel anticorrosion coatings prepared from polyaniline/ graphene composites, Carbon 50 (2012) 5044-5051. doi: 10.1016/j.carbon.2012.06.043
|
[52] |
Y. Yang, A.J. Heeger, Polyaniline as a transparent electrode for polymer light-emitting diodes: lower operating voltage and higher efficiency, Appl. Phys. Lett. 64 (1994) 1245-1247. doi: 10.1063/1.110853
|
[53] |
D. Coltevieille, A. Le Méhauté, C. Challioui, P. Mirebeau, J.N. Demay, Industrial applications of polyaniline, Synth. Met. 101 (1999) 703-704. doi: 10.1016/S0379-6779(98)01093-5
|
[54] |
S. Bhadra, D. Khastgir, N.K. Singha, J.H. Lee, Progress in preparation, processing and applications of polyaniline, Prog. Polym. Sci. 34 (2009) 783-810. doi: 10.1016/j.progpolymsci.2009.04.003
|
[55] |
C.H. Teh, R. Rozaidi, D. Rusli, H.A. Sahrim, Synthesis and spectroscopic studies of DGEBA-grafted polyaniline, Polym. -Plast. Technol. Eng. 48 (2008) 17-24. doi: 10.1080/03602550802539106
|
[56] |
A. Mirmohseni, G.G. Wallace, Preparation and characterization of processable electroactive polyanilin… polyvinyl alcohol composite, Polymer 44 (2003) 3523-3528. doi: 10.1016/S0032-3861(03)00242-8
|
[57] |
Q.M. Jia, J.B. Li, L. Wang, J.W. Zhu, M. Zheng, Electrically conductive epoxy resin composites containing polyaniline with different morphologies, Mater. Sci. Eng. A 448 (2007) 356-360. doi: 10.1016/j.msea.2006.09.065
|
[58] |
X. Cheng, V. Kumar, T. Yokozeki, T. Goto, T. Takahashi, J. Koyanagi, L. Wu, R. Wang, Highly conductive graphene oxide/polyaniline hybrid polymer nanocomposites with simultaneously improved mechanical properties, Compos. Appl. Sci. Manuf. 82 (2016) 100-107. doi: 10.1016/j.compositesa.2015.12.006
|
[59] |
S. Wang, Y. Zhou, Y. Liu, L. Wang, C. Gao, Enhanced thermoelectric properties of polyaniline/polypyrrole/carbon nanotube ternary composites by treatment with a secondary dopant using ferric chloride, J. Mater. Chem. C 8 (2020) 528-535. doi: 10.1039/C9TC06300E
|
[60] |
H. Yan, K. Kou, Enhanced thermoelectric properties in polyaniline composites with polyaniline-coated carbon nanotubes, J. Mater. Sci. 49 (2014) 1222-1228. doi: 10.1007/s10853-013-7804-9
|
[61] |
M. Jaymand, Recent progress in chemical modification of polyaniline, Prog. Polym. Sci. 38 (2013) 1287-1306. doi: 10.1016/j.progpolymsci.2013.05.015
|
[62] |
S. Bhadra, S. Chattopadhyay, N.K. Singha, D. Khastgir, Improvement of conductivity of electrochemically synthesized polyaniline, J. Appl. Polym. Sci. 108 (2008) 57-64. doi: 10.1002/app.26926
|
[63] |
Y. Haba, E. Segal, M. Narkis, G. Titelman, A. Siegmann, Polyaniline DBSA/ polymer blends prepared via aqueous dispersions, Synth. Met. 110 (2000) 189-193. doi: 10.1016/S0379-6779(99)00280-5
|
[64] |
Y. Xia, J.M. Wiesinger, A.G. MacDiarmid, A.J. Epstein, Camphorsulfonic acid fully doped polyaniline emeraldine salt: conformations in different solvents studied by an ultraviolet/visible/near-infrared spectroscopic method, Chem. Mater. 7 (1995) 443-445. doi: 10.1021/cm00051a002
|
[65] |
S.H. Park, K. -H. Shin, J. -Y. Kim, S.J. Yoo, K.J. Lee, J. Shin, J.W. Choi, J. Jang, Y. - E. Sung, The application of camphorsulfonic acid doped polyaniline films prepared on TCO-free glass for counter electrode of bifacial dye-sensitized solar cells, J. Photochem. Photobiol. Chem. 245 (2012) 1-8. doi: 10.1016/j.jphotochem.2012.07.002
|
[66] |
C. Ma, L. Jiang, Y. Wang, F. Gang, N. Xu, T. Li, Z. Liu, Y. Chi, X. Wang, L. Zhao, Q. Feng, X. Sun, 3D printing of conductive tissue engineering scaffolds containing polypyrrole nanoparticles with different morphologies and concentrations, Materials 12 (2019) 2491. doi: 10.3390/ma12152491
|
[67] |
X. Ding, Y. Zhao, C. Hu, Y. Hu, Z. Dong, N. Chen, Z. Zhang, L. Qu, Spinning fabrication of graphene/polypyrrole composite fibers for all-solid-state, flexible fibriform supercapacitors, J. Mater. Chem. 2 (2014) 12355-12360. doi: 10.1039/C4TA01230E
|
[68] |
S. Dhibar, C.K. Das, Silver nanoparticles decorated polypyrrole/graphene nanocomposite: a potential candidate for next-generation supercapacitor electrode material, J. Appl. Polym. Sci. 134 (2017) 44724.
|
[69] |
H. Okuzaki, T. Kuwabara, K. Funasaka, T. Saido, Humidity-sensitive polypyrrole films for electro-active polymer actuators, Adv. Funct. Mater. 23 (2013) 4400-4407. doi: 10.1002/adfm.201203883
|
[70] |
P. Humpoícek, V. Kašpárkova, J. Pacherník, J. Stejskal, P. Bober, Z. Capakova, K.A. Radaszkiewicz, I. Junkar, M. Lehocký, The biocompatibility of polyaniline and polypyrrole: a comparative study of their cytotoxicity, embryotoxicity and impurity profile, Mater. Sci. Eng. C 91 (2018) 303-310. doi: 10.1016/j.msec.2018.05.037
|
[71] |
H. Derakhshankhah, R. Mohammad-Rezaei, B. Massoumi, M. Abbasian, A. Rezaei, H. Samadian, M. Jaymand, Conducting polymer-based electrically conductive adhesive materials: design, fabrication, properties, and applications, Journal of Materials Science: Materials in Electronics 31 (2020) 10947-10961. doi: 10.1007/s10854-020-03712-0
|
[72] |
H.K. Lim, S.O. Lee, K.J. Song, S.G. Kim, K.H. Kim, Synthesis and properties of soluble polypyrrole doped with dodecylbenzenesulfonate and combined with polymeric additive poly(ethylene glycol), J. Appl. Polym. Sci. 97 (2005) 1170-1175. doi: 10.1002/app.21824
|
[73] |
Y. Shen, M. Wan, In situ doping polymerization of pyrrole with sulfonic acid as a dopant, Synth. Met. 96 (1998) 127-132. doi: 10.1016/S0379-6779(98)00076-9
|
[74] |
D.Y. Kim, J.Y. Lee, C.Y. Kim, E.T. Kang, K.L. Tan, Difference in doping behavior between polypyrrole films and powders, Synth. Met. 72 (1995) 243-248. doi: 10.1016/0379-6779(95)03286-X
|
[75] |
Y.H. Lee, J.Y. Lee, D.S. Lee, A novel conducting soluble polypyrrole composite with a polymeric co-dopant, Synth. Met. 114 (2000) 347-353. doi: 10.1016/S0379-6779(00)00268-X
|
[76] |
T. y. V. Vernitskaya, O.N. Efimov, Polypyrrole: a conducting polymer; its synthesis, properties and applications, Russ. Chem. Rev. 66 (1997) 443-457. doi: 10.1070/RC1997v066n05ABEH000261
|
[77] |
S. Sadki, P. Schottland, N. Brodie, G. Sabouraud, The mechanisms of pyrrole electropolymerization, Chem. Soc. Rev. 29 (2000) 283-293. doi: 10.1039/a807124a
|
[78] |
J. Wang, Y. Xu, J. Zhu, P. Ren, Electrochemical in situ polymerization of reduced graphene oxide/polypyrrole composite with high power density, J. Power Sources 208 (2012) 138-143. doi: 10.1016/j.jpowsour.2012.02.018
|
[79] |
C.M.G. Henríquez, G. del Carmen Pizarro Guerra, M.A.S. Vallejos, S.D.R. de la Fuente, M.T.U. Flores, L.M.R. Jimenez, In situ silver nanoparticle formation embedded into a photopolymerized hydrogel with biocide properties, J. Nanostructure Chem. 4 (2014) 119-132. doi: 10.1007/s40097-014-0125-y
|
[80] |
R. Nazar, S. Ronchetti, I. Roppolo, M. Sangermano, R.M. Bongiovanni, In situ synthesis of polymer embedded silver nanoparticles via photopolymerization, Macromol. Mater. Eng. 300 (2015) 226-233. doi: 10.1002/mame.201400204
|
[81] |
E. Fantino, A. Chiappone, I. Roppolo, D. Manfredi, R. Bongiovanni, C.F. Pirri, F. Calignano, 3D printing of conductive complex structures with in situ generation of silver nanoparticles, Adv. Mat. 28 (2016) 3712-3717. doi: 10.1002/adma.201505109
|
[82] |
N.S. Ilicheva, N.K. Kitaeva, V.R. Duflot, V.I. Kabanova, Synthesis and properties of electroconductive polymeric composite material based on polypyrrole, ISRN Polymer Science 2012 (2012) 320316.
|
[83] |
Z. Gao, L. Zhou, H. Huang, Exceptional anisotropy in conductivity and mechanical properties of poly-3-octylthiophene films, Thin Solid Films 347 (1999) 146-150. doi: 10.1016/S0040-6090(98)01743-X
|
[84] |
Y. Huang, H. Li, Z. Wang, M. Zhu, Z. Pei, Q. Xue, Y. Huang, C. Zhi, Nanostructured Polypyrrole as a flexible electrode material of supercapacitor, Nano Energy 22 (2016) 422-438. doi: 10.1016/j.nanoen.2016.02.047
|
[85] |
L. Liu, Y. Zhao, N. Jia, Q. Zhou, C. Zhao, M. Yan, Z. Jiang, Electrochemical fabrication and electronic behavior of polypyrrole nano-fiber array devices, Thin Solid Films 503 (2006) 241-245. doi: 10.1016/j.tsf.2005.11.046
|
[86] |
C.K. Tan, D.J. Blackwood, Corrosion protection by multilayered conducting polymer coatings, Corrosion Sci. 45 (2003) 545-557. doi: 10.1016/S0010-938X(02)00144-0
|
[87] |
A.D. Bendrea, L. Cianga, I. Cianga, Review paper: progress in the field of conducting polymers for tissue engineering applications, J. Biomater. Appl. 26 (2011) 3-84. doi: 10.1177/0885328211402704
|
[88] |
J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin, S. Hao, High-performance polypyrrole nanoparticles counter electrode for dye-sensitized solar cells, J. Power Sources 181 (2008) 172-176. doi: 10.1016/j.jpowsour.2008.03.029
|
[89] |
C. Feng, L. Ma, F. Li, H. Mai, X. Lang, S. Fan, A polypyrrole/anthraquinone-2, 6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells, Biosens. Bioelectron. 25 (2010) 1516-1520. doi: 10.1016/j.bios.2009.10.009
|
[90] |
O. Yavuz, M.K. Ram, M. Aldissi, P. Poddar, H. Srikanth, Polypyrrole composites for shielding applications, Synth. Met. 151 (2005) 211-217. doi: 10.1016/j.synthmet.2005.05.011
|
[91] |
T. Horii, H. Hikawa, M. Katsunuma, H. Okuzaki, Synthesis of highly conductive PEDOT: PSS and correlation with hierarchical structure, Polymer 140 (2018) 33-38. doi: 10.1016/j.polymer.2018.02.034
|
[92] |
S.N. Karri, P. Srinivasan, Synthesis of PEDOT: PSS using benzoyl peroxide as an alternative oxidizing agent for ESD coating and electro-active material in supercapacitor, Mater. Sci. Energy Technol. 2 (2019) 208-215.
|
[93] |
P. Sakunpongpitiporn, K. Phasuksom, N. Paradee, A. Sirivat, Facile synthesis of highly conductive PEDOT: PSS via surfactant templates, RSC Adv. 9 (2019) 6363-6378. doi: 10.1039/C8RA08801B
|
[94] |
L. Ouyang, C. Musumeci, M.J. Jafari, T. Ederth, O. Inganäs, Imaging the phase separation between PEDOT and polyelectrolytes during processing of highly conductive PEDOT: PSS films, ACS Appl. Mater. Interfaces 7 (2015) 19764-19773. doi: 10.1021/acsami.5b05439
|
[95] |
J.H. Lee, Y.R. Jeong, G. Lee, S.W. Jin, Y.H. Lee, S.Y. Hong, H. Park, J.W. Kim, S. - S. Lee, J.S. Ha, Highly conductive, stretchable, and transparent PEDOT: PSS electrodes fabricated with triblock copolymer additives and acid treatment, ACS Appl. Mater. Interfaces 10 (2018) 28027-28035. doi: 10.1021/acsami.8b07287
|
[96] |
G.B. Tseghai, D.A. Mengistie, B. Malengier, K.A. Fante, L. Van Langenhove, PEDOT: PSS-Based conductive textiles and their applications, Sensors 20 (2020) 1881. doi: 10.3390/s20071881
|
[97] |
S. Ghosh, N.A. Kouame, S. Remita, L. Ramos, F. Goubard, P. -H. Aubert, A. Dazzi, A. Deniset-Besseau, H. Remita, Visible-light active conducting polymer nanostructures with superior photocatalytic activity, Sci. Rep. 5 (2015) 18002.
|
[98] |
Y.H. Kim, C. Sachse, M.L. Machala, C. May, L. Müller-Meskamp, K. Leo, Highly conductive PEDOT: PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells, Adv. Funct. Mater. 21 (2011) 1076-1081. doi: 10.1002/adfm.201002290
|
[99] |
A.M. Nardes, M. Kemerink, R.A.J. Janssen, Anisotropic hopping conduction in spin-coated PEDOT: PSS thin films, Phys. Rev. B 76 (2007) 085208. doi: 10.1103/PhysRevB.76.085208
|
[100] |
Y. Xia, J. Ouyang, PEDOT: PSS films with significantly enhanced conductivities induced by preferential solvation with cosolvents and their application in polymer photovoltaic cells, J. Mater. Chem. B 21 (2011) 4927-4936. doi: 10.1039/c0jm04177g
|
[101] |
H. Kim, Y. -J. Lee, G. -G. Park, S. -h. Park, Y. Choi, Y. Yoo, Fabrication of carbon paper containing PEDOT: PSS for use as a gas diffusion layer in proton exchange membrane fuel cells, Carbon 85 (2015) 422-428. doi: 10.1016/j.carbon.2014.12.103
|
[102] |
F.B. Holness, A.D. Price, Direct ink writing of 3D conductive polyaniline structures and rheological modelling, Smart Mater. Struct. 27 (2017) 015006.
|
[103] |
K. Kurselis, R. Kiyan, V.N. Bagratashvili, V.K. Popov, B.N. Chichkov, 3D fabrication of all-polymer conductive microstructures by two photon polymerization, Opt. Express 21 (2013) 31029-31035. doi: 10.1364/OE.21.031029
|
[104] |
I. Salaoru, S. Maswoud, S. Paul, Inkjet printing of functional electronic memory cells: a step forward to green electronics, Micromachines 10 (2019) 417. doi: 10.3390/mi10060417
|
[105] |
H. Joo, S. Cho, Comparative studies on polyurethane composites filled with polyaniline and graphene for DLP-type 3D printing, Polymers 12 (2020) 67. doi: 10.3390/polym12010067
|
[106] |
K. Yamada, Y. Magori, S. Akimoto, J. Sone, Micro-nano 3D printing of electronically conductive polymers as a new process for achieving higher electronic conductivities, Microsyst. Technol. 25 (2019) 2051-2057. doi: 10.1007/s00542-018-3897-z
|
[107] |
X. Wang, M. Jiang, Z. Zhou, J. Gou, D. Hui, 3D printing of polymer matrix composites: a review and prospective, Compos. B Eng. 110 (2017) 442-458. doi: 10.1016/j.compositesb.2016.11.034
|
[108] |
Z. -X. Low, Y.T. Chua, B.M. Ray, D. Mattia, I.S. Metcalfe, D.A. Patterson, Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques, J. Membr. Sci. 523 (2017) 596-613. doi: 10.1016/j.memsci.2016.10.006
|
[109] |
E. Gutierrez-Fernandez, I.A. Gabaldon-Saucedo, M.C. García-Gutierrez, A. Varea, A. Nogales, E. Rebollar, A. Vila, T.A. Ezquerra, A. Cirera, Quantitative assessment by local probe methods of the mechanical and electrical properties of inkjet-printed PEDOT: PSS thin films over Indium Tin Oxide substrates, Org. Electron. 70 (2019) 258-263. doi: 10.1016/j.orgel.2019.04.020
|
[110] |
F. Greco, A. Zucca, S. Taccola, A. Menciassi, T. Fujie, H. Haniuda, S. Takeoka, P. Dario, V. Mattoli, Ultra-thin conductive free-standing PEDOT/PSS nanofilms, Soft Matter 7 (2011) 10642-10650. doi: 10.1039/c1sm06174g
|
[111] |
G. Scordo, V. Bertana, L. Scaltrito, S. Ferrero, M. Cocuzza, S.L. Marasso, S. Romano, R. Sesana, F. Catania, C.F. Pirri, A novel highly electrically conductive composite resin for stereolithography, Mater. Today Commun. 19 (2019) 12-17. doi: 10.1016/j.mtcomm.2018.12.017
|
[112] |
E. Saleh, B. Liu, J. Fernandez, C. Tuck, R. Wildman, I. Ashcroft, R. Hague, P. Dickens, The optimization of conductive inks for 3D inkjet printing, in: NIP & Digital Fabrication Conference, 2014.
|
[113] |
V. Kuzmenko, E. Karabulut, E. Pernevik, P. Enoksson, P. Gatenholm, Tailor-made conductive inks from cellulose nanofibrils for 3D printing of neural guidelines, Carbohydr. Polym. 189 (2018) 22-30. doi: 10.1016/j.carbpol.2018.01.097
|
[114] |
R.L. Truby, J.A. Lewis, Printing soft matter in three dimensions, Nature 540 (2016) 371-378. doi: 10.1038/nature21003
|
[115] |
X. Mu, T. Bertron, C. Dunn, H. Qiao, J. Wu, Z. Zhao, C. Saldana, H.J. Qi, Porous polymeric materials by 3D printing of photocurable resin, Mater. Horizons 4 (2017) 442-449. doi: 10.1039/C7MH00084G
|
[116] |
K.A. Hamzah, C.K. Yeoh, M.M. Noor, P.L. Teh, Y.Y. Aw, S.A. Sazali, W.M.A. Wan Ibrahim, Mechanical properties and thermal and electrical conductivity of 3D printed ABS-copper ferrite composites via 3D printing technique, J. Thermoplast. Compos. Mater. 35 (2019) 3-16.
|
[117] |
C.R. Tubío, J. Azuaje, L. Escalante, A. Coelho, F. Guitian, E. Sotelo, A. Gil, 3D printing of a heterogeneous copper-based catalyst, J. Catal. 334 (2016) 110-115. doi: 10.1016/j.jcat.2015.11.019
|
[118] |
H. -J. Choi, M.S. Kim, D. Ahn, S.Y. Yeo, S. Lee, Electrical percolation threshold of carbon black in a polymer matrix and its application to antistatic fibre, Sci. Rep. 9 (2019) 6338. doi: 10.1038/s41598-019-42495-1
|
[119] |
A. Motaghi, A. Hrymak, G.H. Motlagh, Electrical conductivity and percolation threshold of hybrid carbon/polymer composites, J. Appl. Polym. Sci. 132 (2015), 41744.
|
[120] |
M. Rahaman, A. Aldalbahi, P. Govindasami, N.P. Khanam, S. Bhandari, P. Feng, T. Altalhi, A new insight in determining the percolation threshold of electrical conductivity for extrinsically conducting polymer composites through different sigmoidal models, Polymers 9 (2017) 527. doi: 10.3390/polym9100527
|
[121] |
A.J. Marsden, D.G. Papageorgiou, C. Valles, A. Liscio, V. Palermo, M.A. Bissett, R.J. Young, I.A. Kinloch, Electrical percolation in graphene-polymer composites, 2D Mater. 5 (2018) 032003. doi: 10.1088/2053-1583/aac055
|
[122] |
P.H. Coelho, A.R. Morales, Electrical conductivity, percolation threshold and dispersion properties of PMMA nanocomposites of hybrid conducting fillers, in: 14th IEEE International Conference on Nanotechnology, 2014, pp. 706-710.
|
[123] |
V.B. Mohan, K. Jayaraman, D. Bhattacharyya, Hybridization of graphene-reinforced two polymer nanocomposites, Int. J. Smart Nano Mater. 7 (2016) 179. doi: 10.1080/19475411.2016.1237389
|
[124] |
M.S. Mannoor, Z. Jiang, T. James, Y.L. Kong, K.A. Malatesta, W.O. Soboyejo, N. Verma, D.H. Gracias, M.C. McAlpine, 3D printed bionic ears, Nano Lett. 13 (2013) 2634-2639. doi: 10.1021/nl4007744
|
[125] |
Z. Lei, Z. Chen, H. Peng, Y. Shen, W. Feng, Y. Liu, Z. Zhang, Y. Chen, Fabrication of highly electrical conductive composite filaments for 3D-printing circuits, J. Mater. Sci. 53 (2018) 14495-14505. doi: 10.1007/s10853-018-2645-1
|
[126] |
W.K.C. Yung, B. Sun, J. Huang, Y. Jin, Z. Meng, H.S. Choy, Z. Cai, G. Li, C.L. Ho, J. Yang, W.Y. Wong, Photochemical copper coating on 3D printed thermoplastics, Sci. Rep. 6 (2016) 31188. doi: 10.1038/srep31188
|
[127] |
T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components - process, structure and properties, Prog. Mater. Sci. 92 (2018) 112-224. doi: 10.1016/j.pmatsci.2017.10.001
|
[128] |
S. Jambhulkar, W. Xu, R. Franklin, D. Ravichandran, Y. Zhu, K. Song, Integrating 3D printing and self-assembly for layered polymer/nanoparticle microstructures as high-performance sensors, J. Mater. Chem. C 8 (2020) 9495-9501. doi: 10.1039/D0TC02660C
|
[129] |
J.C. Tan, H.Y. Low, Embedded electrical tracks in 3D printed objects by fused filament fabrication of highly conductive composites, Addit. Manuf. 23 (2018) 294-302.
|
[130] |
V. Vamvakaki, K. Tsagaraki, N. Chaniotakis, Carbon nanofiber-based glucose biosensor, Anal. Chem. 78 (2006) 5538-5542. doi: 10.1021/ac060551t
|
[131] |
I. Balberg, A comprehensive picture of the electrical phenomena in carbon blach polymer composites, Carbon 40 (2002) 139-143. doi: 10.1016/S0008-6223(01)00164-6
|
[132] |
F. Li, L. Qi, J. Yang, M. Xu, X. Luo, D. Ma, Polyurethane/conducting carbon black composites: structure, electric conductivity, strain recovery behavior, and their relationships, J. Appl. Polym. Sci. 75 (2000) 68-77. doi: 10.1002/(SICI)1097-4628(20000103)75:1<68::AID-APP8>3.0.CO;2-I
|
[133] |
R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, A.K. Bhowmick, A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites, Prog. Polym. Sci. 36 (2011) 638-670. doi: 10.1016/j.progpolymsci.2010.11.003
|
[134] |
M. Corosş, F. Pogacean, L. Magerusşan, C. Socaci, S. Pruneanu, A brief overview on synthesis and applications of graphene and graphene-based nanomaterials, Front. Mater. Sci. 13 (2019) 23-32. doi: 10.1007/s11706-019-0452-5
|
[135] |
A.K. Geim, K.S. Novoselov, The rise of graphene, Nat. Mater. 6 (2007) 183-191. doi: 10.1038/nmat1849
|
[136] |
V.N. Popov, Carbon nanotubes: properties and application, Mater. Sci. Eng. R Rep. 43 (2004) 61-102. doi: 10.1016/j.mser.2003.10.001
|
[137] |
J. Czyzewski, P. Burzynski, K. Gaweł, J. Meisner, Rapid prototyping of electrically conductive components using 3D printing technology, J. Mater. Process. Technol. 209 (2009) 5281-5285. doi: 10.1016/j.jmatprotec.2009.03.015
|
[138] |
S. Khodabakhshi, P.F. Fulvio, E. Andreoli, Carbon black reborn: structure and chemistry for renewable energy harnessing, Carbon 162 (2020) 604-649. doi: 10.1016/j.carbon.2020.02.058
|
[139] |
S.W. Kwok, K.H.H. Goh, Z.D. Tan, S.T.M. Tan, W.W. Tjiu, J.Y. Soh, Z.J.G. Ng, Y.Z. Chan, H.K. Hui, K.E.J. Goh, Electrically conductive filament for 3D-printed circuits and sensors, Appl. Mater. Today 9 (2017) 167-175.
|
[140] |
L.Y.W. Loh, U. Gupta, Y. Wang, C.C. Foo, J. Zhu, W.F. Lu, 3D printed metamaterial capacitive sensing array for universal jamming gripper and human joint wearables, Adv. Eng. Mater. 23 (2021) 2001082. doi: 10.1002/adem.202001082
|
[141] |
A.H. Espera Jr., A.D. Valino, J.O. Palaganas, L. Souza, Q. Chen, R.C. Advincula, 3D printing of a robust polyamide-12-carbon black composite via selective laser sintering: thermal and electrical conductivity, Macromol. Mater. Eng. 304 (2019) 1800718. doi: 10.1002/mame.201800718
|
[142] |
A.F. Jo~ao, S.V.F. Castro, R.M. Cardoso, R.R. Gamela, D.P. Rocha, E.M. Richter, R.A.A. Munoz, ~ 3D printing pen using conductive filaments to fabricate affordable electrochemical sensors for trace metal monitoring, J. Electroanal. Chem. 876 (2020), 114701. doi: 10.1016/j.jelechem.2020.114701
|
[143] |
W. Wu, H. -Y. Liu, Y. Kang, T. Zhang, S. Jiang, B. Li, J. Yin, J. Zhu, Synergistic combination of carbon-black and graphene for 3D printable stretchable conductors, Mater. Technol. (2020) 1-10.
|
[144] |
M. Dawoud, I. Taha, S.J. Ebeid, Strain sensing behaviour of 3D printed carbon black filled ABS, J. Manuf. Process. 35 (2018) 337-342. doi: 10.1016/j.jmapro.2018.08.012
|
[145] |
P.A. Eutionnat-Diffo, A. Cayla, Y. Chen, J. Guan, V. Nierstrasz, C. Campagne, Development of flexible and conductive immiscible thermoplastic/elastomer monofilament for smart textiles applications using 3D printing, Polymers 12 (2020) 2300. doi: 10.3390/polym12102300
|
[146] |
L. Lei, Z. Yao, J. Zhou, B. Wei, H. Fan, 3D printing of carbon black/polypropylene composites with excellent microwave absorption performance, Compos. Sci. Technol. 200 (2020) 108479. doi: 10.1016/j.compscitech.2020.108479
|
[147] |
A. Mora, P. Verma, S. Kumar, Electrical conductivity of CNT/polymer composites: 3D printing, measurements and modeling, Compos. B Eng. 183 (2020), 107600. doi: 10.1016/j.compositesb.2019.107600
|
[148] |
K. Gnanasekaran, T. Heijmans, S. van Bennekom, H. Woldhuis, S. Wijnia, G. de With, H. Friedrich, 3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling, Appl. Mater. Today 9 (2017) 21-28. doi: 10.1016/j.apmt.2017.04.003
|
[149] |
L.A. Chavez, J.E. Regis, L.C. Delfin, C.A. Garcia Rosales, H. Kim, N. Love, Y. Liu, Y. Lin, Electrical and mechanical tuning of 3D printed photopolymer-MWCNT nanocomposites through in situ dispersion, J. Appl. Polym. Sci. 136 (2019) 47600. doi: 10.1002/app.47600
|
[150] |
V.B. Mohan, B.J. Krebs, D. Bhattacharyya, Development of novel highly conductive 3D printable hybrid polymer-graphene composites, Mater. Today Commun. 17 (2018) 554-561. doi: 10.1016/j.mtcomm.2018.09.023
|
[151] |
X. Wei, D. Li, W. Jiang, Z. Gu, X. Wang, Z. Zhang, Z. Sun, 3D printable graphene composite, Sci. Rep. 5 (2015) 11181. doi: 10.1038/srep11181
|
[152] |
B.G. Compton, N.S. Hmeidat, R.C. Pack, M.F. Heres, J.R. Sangoro, Electrical and mechanical properties of 3D-printed graphene-reinforced epoxy, JOM 70 (2018) 292-297. doi: 10.1007/s11837-017-2707-x
|
[153] |
R.M. Hensleigh, H. Cui, J.S. Oakdale, J.C. Ye, P.G. Campbell, E.B. Duoss, C.M. Spadaccini, X. Zheng, M.A. Worsley, Additive manufacturing of complex micro-architected graphene aerogels, Mater. Horizons 5 (2018) 1035-1041. doi: 10.1039/C8MH00668G
|
[154] |
L. Feng, N. Xie, J. Zhong, Carbon nanofibers and their composites: a review of synthesizing, properties and applications, Materials 7 (2014) 3919-3945. doi: 10.3390/ma7053919
|
[155] |
S.S. Nakshatharan, J.G. Martinez, A. Punning, A. Aabloo, E.W.H. Jager, Soft parallel manipulator fabricated by additive manufacturing, Sensors and Actuators B: Chemical 305 (2020) 127355. doi: 10.1016/j.snb.2019.127355
|
[156] |
Z. Hamouda, J. Wojkiewicz, A.A. Pud, L. Kone, B. Belaabed, S. Bergheul, T. Lasri, Dual-band elliptical planar conductive polymer antenna printed on a flexible substrate, IEEE Trans. Antenn. Propag. 63 (2015) 5864-5867. doi: 10.1109/TAP.2015.2479643
|
[157] |
S.R. Dabbagh, M.R. Sarabi, R. Rahbarghazi, E. Sokullu, A.K. Yetisen, S. Tasoglu, 3D-printed microneedles in biomedical applications, iScience 24 (2020) 102012-102012.
|
[158] |
C. Micolini, F.B. Holness, J.A. Johnson, A.D. Price, Assessment of embedded conjugated polymer sensor arrays for potential load transmission measurement in orthopaedic implants, Sensors 17 (2017) 2768. doi: 10.3390/s17122768
|
[159] |
D.N. Heo, S. -J. Lee, R. Timsina, X. Qiu, N.J. Castro, L.G. Zhang, Development of 3D printable conductive hydrogel with crystallized PEDOT: PSS for neural tissue engineering, Mater. Sci. Eng. C 99 (2019) 582-590. doi: 10.1016/j.msec.2019.02.008
|
[160] |
S. Vijayavenkataraman, S. Kannan, T. Cao, J.Y.H. Fuh, G. Sriram, W.F. Lu, 3D-Printed PCL/PPy conductive scaffolds as three-dimensional porous nerve guide conduits (NGCs) for peripheral nerve injury repair, Front. Bioeng. Biotechnol. 7 (2019) 266. doi: 10.3389/fbioe.2019.00266
|
[161] |
B. Weng, X. Liu, R. Shepherd, G. Wallace, Inkjet printed polypyrrole/collagen scaffold: a combination of spatial control and electrical stimulation of PC12 cells, Synth. Met. 162 (2012) 1375-1380. doi: 10.1016/j.synthmet.2012.05.022
|
[162] |
A.E. Jakus, E.B. Secor, A.L. Rutz, S.W. Jordan, M.C. Hersam, R.N. Shah, Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications, ACS Nano 9 (2015) 4636-4648. doi: 10.1021/acsnano.5b01179
|
[163] |
J. van den Brand, M. de Kok, M. Koetse, M. Cauwe, R. Verplancke, F. Bossuyt, M. Jablonski, J. Vanfleteren, Flexible and stretchable electronics for wearable health devices, Solid State Electron. 113 (2015) 116-120. doi: 10.1016/j.sse.2015.05.024
|
[164] |
W. Wu, Stretchable electronics: functional materials, fabrication strategies and applications, Adv. Mat. Sci. Technol. Adv. Mat. 20 (2019) 187-224. doi: 10.1080/14686996.2018.1549460
|
[165] |
V. Yadav, G. Natu, R. Paily, Analysis of super-fine resolution printing of polyaniline and silver microstructures for electronic applications, in: IEEE Transactions on Components, Packaging and Manufacturing Technology, 2018, 1-1.
|
[166] |
A.T. ten Cate, C.H. Gaspar, H.L.K. Virtanen, R.S.A. Stevens, R.B.J. Koldeweij, J.T. Olkkonen, C.H.A. Rentrop, M.H. Smolander, Printed electronic switch on flexible substrates using printed microcapsules, J. Mater. Sci. 49 (2014) 5831-5837. doi: 10.1007/s10853-014-8271-7
|
[167] |
J. Vaithilingam, E. Saleh, C. Tuck, R. Wildman, R. Hague, I. Ashcroft, P. Dickens, 3D-inkjet Printing of Flexible and Stretchable Electronics, 2015, pp. 1513-1526.
|
[168] |
A.I. Hofmann, I. Östergren, Y. Kim, S. Fauth, M. Craighero, M. -H. Yoon, A. Lund, C. Müller, All-polymer conducting fibers and 3D prints via melt processing and templated polymerization, ACS Appl. Mater. Interfaces 12 (2020) 8713-8721. doi: 10.1021/acsami.9b20615
|
[169] |
L. Li, Z. Lou, W. Han, D. Chen, K. Jiang, G. Shen, Highly stretchable micro-supercapacitor arrays with hybrid MWCNT/PANI electrodes, Adv. Mater. Technol. 2 (2017) 1600282. doi: 10.1002/admt.201600282
|
[170] |
S. Duan, K. Yang, Z. Wang, M. Chen, L. Zhang, H. Zhang, C. Li, Fabrication of highly stretchable conductors based on 3D printed porous poly(dimethylsiloxane) and conductive carbon nanotubes/graphene network, ACS Appl. Mater. Interfaces 8 (2016) 2187-2192. doi: 10.1021/acsami.5b10791
|
[171] |
D. Zhang, B. Chi, B. Li, Z. Gao, Y. Du, J. Guo, J. Wei, Fabrication of highly conductive graphene flexible circuits by 3D printing, Synth. Met. 217 (2016) 79-86. doi: 10.1016/j.synthmet.2016.03.014
|
[172] |
J. Janata, M. Josowicz, Conducting polymers in electronic chemical sensors, Nat. Mater. 2 (2003) 19-24. doi: 10.1038/nmat768
|
[173] |
Y. Wang, A. Liu, Y. Han, T. Li, Sensors based on conductive polymers and their composites: a review, Polym. Int. 69 (2020) 7-17. doi: 10.1002/pi.5907
|
[174] |
H. Devaraj, K.C. Aw, J. Travas-Sejdic, R.N. Sharma, Low velocity digital air flow sensor from 3D printed PEDOT: PSS micro-hair structures, 2015 Transducers - 2015, in: 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2015, pp. 1097-1100.
|
[175] |
G. Tarabella, S.L. Marasso, V. Bertana, D. Vurro, P. D'Angelo, S. Iannotta, M. Cocuzza, Multifunctional operation of an organic device with three-dimensional architecture, Materials 12 (2019) 1357. doi: 10.3390/ma12081357
|
[176] |
Z. Wang, W. Gao, Q. Zhang, K. Zheng, J. Xu, W. Xu, E. Shang, J. Jiang, J. Zhang, Y. Liu, 3D-Printed graphene/polydimethylsiloxane composites for stretchable and strain-insensitive temperature sensors, ACS Appl. Mater. Interfaces 11 (2019) 1344-1352. doi: 10.1021/acsami.8b16139
|
[177] |
K. Chizari, M.A. Daoud, A.R. Ravindran, D. Therriault, 3D printing of highly conductive nanocomposites for the functional optimization of liquid sensors, Small 12 (2016) 6076-6082. doi: 10.1002/smll.201601695
|
[178] |
Y. Zhao, B. Liu, L. Pan, G. Yu, 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices, Energy Environ. Sci. 6 (2013) 2856-2870. doi: 10.1039/c3ee40997j
|
[179] |
A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, J.P. Ferraris, Conducting polymers as active materials in electrochemical capacitors, J. Power Sources 47 (1994) 89-107. doi: 10.1016/0378-7753(94)80053-7
|
[180] |
R. Xing, Y. Xia, R. Huang, W. Qi, R. Su, Z. He, Three-dimensional printing of black phosphorous/polypyrrole electrode for energy storage using thermoresponsive ink, Chem. Commun. 56 (2020) 3115-3118. doi: 10.1039/C9CC08605F
|
[181] |
P. Dou, Z. Liu, Z. Cao, J. Zheng, C. Wang, X. Xu, Rapid synthesis of hierarchical nanostructured Polyaniline hydrogel for high power density energy storage application and three-dimensional multilayers printing, J. Mater. Sci. 51 (2016) 4274-4282. doi: 10.1007/s10853-016-9727-8
|
[182] |
Z. Qi, J. Ye, W. Chen, J. Biener, E.B. Duoss, C.M. Spadaccini, M.A. Worsley, C. Zhu, 3D-Printed, superelastic polypyrrole-graphene electrodes with ultrahigh areal capacitance for electrochemical energy storage, Adv. Mater. Technol. 3 (2018) 1800053. doi: 10.1002/admt.201800053
|
[183] |
G.H. Shim, M. Han, J. Sharp-Norton, S. Creager, S. Foulger, Inkjet-printed electrochromic devices utilizing polyaniline-silica and poly(3, 4-ethylenedioxythiophene)-silica colloidal composite particles, J. Mater. Chem. 18 (2008) 594-601. doi: 10.1039/b712766a
|
[184] |
X. Lu, T. Zhao, X. Ji, J. Hu, T. Li, X. Lin, W. Huang, 3D printing well organized porous iron-nickel/polyaniline nanocages multiscale supercapacitor, J. Alloys Compd. 760 (2018) 78-83. doi: 10.1016/j.jallcom.2018.05.165
|
[185] |
G. Kaur, R. Adhikari, P. Cass, M. Bown, P. Gunatillake, Electrically conductive polymers and composites for biomedical applications, RSC Adv. 5 (2015) 37553-37567. doi: 10.1039/C5RA01851J
|
[186] |
K.K. Kanazawa, A.F. Diaz, M.T. Krounbi, G.B. Street, Electrical properties of pyrrole and its copolymers, Synth. Met. 4 (1981) 119-130. doi: 10.1016/0379-6779(81)90027-8
|
[187] |
K.M. Ziadan, W.T. Saadon, Study of the electrical characteristics of polyaniline prepeared by electrochemical polymerization, Energy Procedia 19 (2012) 71-79. doi: 10.1016/j.egypro.2012.05.184
|
[188] |
W. ŁUzny, E. Banka, Relations between the structure and electric conductivity of polyaniline protonated with camphorsulfonic acid, Macromolecules 33 (2000) 425-429. doi: 10.1021/ma9913663
|
[189] |
L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J.R. Reynolds, Poly(3, 4-ethylenedioxythiophene) and its derivatives: Past, present, and future, Adv. Mater. 12 (2000) 481-494. doi: 10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C
|
[190] |
Z. Yu, Y. Xia, D. Du, J. Ouyang, PEDOT: PSS films with metallic conductivity through a treatment with common organic solutions of organic salts and their application as a transparent electrode of polymer solar cells, ACS Appl. Mater. Interfaces 8 (2016) 11629-11638. doi: 10.1021/acsami.6b00317
|
[191] |
X. Ding, R. Jia, Z. Gan, Y. Du, D. Wang, X. Xu, Tough and conductive polymer hydrogel based on double network for photo-curing 3D printing, Mater. Res. Express 7 (2020) 055304. doi: 10.1088/2053-1591/ab8cfb
|
[192] |
H. Han, S. Cho, Fabrication of conducting polyacrylate resin solution with polyaniline nanofiber and graphene for conductive 3D printing application, Polymers 10 (2018) 1003. doi: 10.3390/polym10091003
|
[193] |
R. Hong, Z. Zhao, J. Leng, J. Wu, J. Zhang, Two-step approach based on selective laser sintering for high performance carbon black/ polyamide 12 composite with 3D segregated conductive network, Compos. Part B Eng. 176 (2019) 107214. doi: 10.1016/j.compositesb.2019.107214
|
[194] |
S.R. Athreya, K. Kalaitzidou, S. Das, Processing and characterization of a carbon black-filled electrically conductive Nylon-12 nanocomposite produced by selective laser sintering, Mater. Sci. Eng. A 527 (2010) 2637-2642. doi: 10.1016/j.msea.2009.12.028
|
[195] |
G. Gonzalez, A. Chiappone, I. Roppolo, E. Fantino, V. Bertana, F. Perrucci, L. Scaltrito, F. Pirri, M. Sangermano, Development of 3D printable formulations containing CNT with enhanced electrical properties, Polymer 109 (2017) 246-253. doi: 10.1016/j.polymer.2016.12.051
|
[196] |
L.L. Lebel, B. Aissa, M.A. El Khakani, D. Therriault, Ultravolet-assisted direct-write fabrication of carbon nanotube/polymer nanocomposite microcoils, Adv. Mater. 22 (2010) 592-596. doi: 10.1002/adma.200902192
|
[197] |
C.B. Sweeney, B.A. Lackey, M.J. Pospisil, T.C. Achee, V.K. Hicks, A.G. Moran, B.R. Teipel, M.A. Saed, M.J. Green, Welding of 3D-printed carbon nanotube-polymer composites by locally induced microwave heating, Sci. Adv. 3 (2017) 700262.
|
[198] |
R. Paz, R. Moriche, M. Monzon, J. García, Influence of manufacturing parameters and post processing on the electrical conductivity of extrusion-based 3D printed nanocomposite parts, Polymers 12 (2020) 733. doi: 10.3390/polym12040733
|
[199] |
A. Chiappone, I. Roppolo, E. Naretto, E. Fantino, F. Calignano, M. Sangermano, F. Pirri, Study of graphene oxide-based 3D printable composites: Effect of the in situ reduction, Compos. Part B Eng. 124 (2017) 9-15. doi: 10.1016/j.compositesb.2017.05.049
|
[200] |
G. McKerricher, D. Titterington, A. Shamim, A fully inkjet-printed 3-D honeycomb-inspired patch antenna, IEEE Antennas Wirel. Propag. Lett. 15 (2016) 544-547. doi: 10.1109/LAWP.2015.2457492
|
[201] |
J.F. Christ, N. Aliheidari, A. Ameli, P. Potschke, 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nanocomposites, Mater. Design 131 (2017) 394-401. doi: 10.1016/j.matdes.2017.06.011
|
[202] |
Q. Mu, L. Wang, C.K. Dunn, X. Kuang, F. Duan, Z. Zhang, H.J. Qi, T. Wang, Digital light processing 3D printing of conductive complex structures, Addit. Manuf. 18 (2017) 74-83.
|